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Abstract: In the context of global climate change and the increasing focus on carbon emissions, carbon
emission research has become a prominent area of study. However, research in this field inevitably
involves extensive monitoring, and when the data become complex and chaotic, the accuracy of
these data can be challenging to control, making it difficult to determine their reliability. This
article starts by exploring the operational and maintenance data of zero-carbon buildings, aiming to
uncover the correlation between energy consumption data and environmental data. This correlation
is categorized into two main types: linear correlation and trend correlation. By establishing error
degree calculations based on these correlation relationships, anomaly detection can be performed
on the data. Analyzing the interrelationships between these datasets allows for the formulation of
appropriate fitting equations, primarily consisting of linear and polynomial fits, all of which exhibit a
determination coefficient exceeding 0.99. These fitting equations are then utilized to correct errors in
the anomalous data, and the reasonableness of the fitting methods is demonstrated by examining the
residual distribution. The final results align with the corresponding expectations, providing a concise
and effective correction method for monitoring data in zero-carbon smart buildings. Importantly, this
method exhibits a certain level of generality and can be applied to various scenarios within the realm
of zero-carbon buildings.

Keywords: self-regulation; zero-carbon building; data mining; correlation analysis; fitting function

1. Introduction

With the rapid acceleration of global industrialization and urbanization, the release
of greenhouse gases into the atmosphere has intensified, leading to severe environmental
issues [1]. As of the end of 2022, the average concentration of carbon dioxide in the
air reached a concerning 417 ppm [2], necessitating immediate action to address these
environmental challenges. Notably, construction activities alone contribute to 36% of
worldwide energy consumption and a significant 39% of global carbon dioxide emissions [2].
In this context, the emergence and advancement of zero-carbon buildings offer a pivotal
reference point for mitigating carbon emissions within the construction industry.

Currently, a substantial number of buildings are equipped with building automation
control systems, with energy management being a key consideration. Gathering energy
consumption-related data plays a vital role in realizing intelligent energy consumption
control. However, the collected energy consumption data may not always be flawless [3].
On one hand, issues with the measuring instruments themselves, such as aging and delays,
can lead to inaccuracies in the data. On the other hand, achieving high precision in
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measurements often demands higher costs, making it impractical to require all measuring
instruments to meet stringent standards of accuracy. In this context, it becomes essential
to carefully examine and mine the source data to extract valuable insights and make
informed decisions.

Some researchers have achieved significant improvements in the accuracy of building
operational data by employing optimized prediction algorithms. Fu et al. [3] proposed
a methodology based on a correlation coefficient and a wavelet-based support vector
machine (SVM) predictor to detect and recover the proportional deviation data faults and
faults caused by network communication. Ma et al. [4] propose a synchronous prediction
method for predicting building energy consumption in the secondary branch, and, in this
model, a synchronous data feature similarity (SDFS) model is used to find a similar energy
consumption feature and an extreme gradient boosting (XGBoost) model is used for training
and the production of accurate prediction results. Lukas Lundström [5] proposed an
adaptive weather correction framework for energy consumption data, which used weather
data as the input of the training model to predict energy consumption. The proposed
method is more accurate for low-energy and net-zero-energy buildings. Alghamdi and
Javaid [6] significantly enhanced the accuracy of subsequent predictions by preprocessing
data related to smart grid loads and prices.

Another group of researchers has achieved favorable results in data preprocess-
ing by combining theoretical approaches with complementary application algorithms.
Chen et al. [7] present a sorted Top-N AD mechanism to generate a list of suspicious
anomalous SMs and an error estimation model (EEM) using only SM electricity consump-
tion data is investigated. The truncated singular value decomposition regularization with
L-curve optimization (TSVD+L) method is proposed to address the model’s ill-posedness.
Choi et al. [8] have demonstrated the advantages of preprocessing data using a density-
based circular temporal clustering method. This approach effectively identifies anomalies
in year-long building energy data even without the assistance of domain-specific knowl-
edge. Zach et al. [9] have outlined a scalable approach to building monitoring and data
processing that is independent of suppliers and technologies. This distributed software
architecture, achieved through robust data preprocessing algorithms, virtual data points,
automatic building model calibration [10], and various software interfaces, allows for
scalable handling of data streams required for a wide range of applications from individual
buildings to city-level contexts. Bhagat et al. [11] introduced an exclusive framework for
data preprocessing and data wrangling in which most of the helper functions are heavily
used in every data preprocessing exercise and “Sparx” comes as a complete kit, irrespective
of structured and unstructured data.

Based on the current research, studies on energy consumption measurement errors
have predominantly focused on the data themselves, often overlooking the potential
influence of surrounding environmental factors. Concurrently, there have been related re-
search efforts aiming to improve energy consumption prediction accuracy by incorporating
weather conditions and employing intelligent prediction algorithms for training. Although
these endeavors have shown some improvements in prediction results, addressing data
errors at the correction level remains a challenge. On the one hand, accurate prediction de-
mands a substantial number of data, and obtaining all the corresponding data is sometimes
unfeasible. On the other hand, detecting and diagnosing abnormal data is a critical aspect,
requiring a rational and effective data diagnosis method. As a follow-up study, the center
of focus is placed on the measurement data related to energy consumption in zero-carbon
buildings, with a particular emphasis on exploring potential correlations among energy
consumption-related data. To address the issue of measurement errors in zero-carbon data,
a concise yet effective method for detecting anomalies in energy consumption data has
been established. By thoroughly analyzing the underlying relationships among various
factors, the aim is to identify the most suitable fitting function for updating and rectifying
abnormal values.
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2. Enhancing Zero-Carbon Building Operation and Maintenance: Database
Development, Data Mining Process, and Targeted Services

Aiming at the energy consumption operation characteristics of zero-carbon buildings,
this research constructs a general database model of zero-carbon buildings with reference
to relevant papers, and presents the operation mode of the data display platform based
on digital twin technology [12]. The digital twin platforms’ data processing flow encom-
passes eight modules: data collection, transmission, storage, preprocessing, processing,
retrieval, feedback, and control (Figure 1). Data collection is typically accomplished using
BIM models and Internet of Things (IoT) systems to gather data that are both currently
utilized and potentially useful in the day-to-day operation and maintenance of zero-carbon
buildings. This stage serves as a fundamental underpinning for the smooth operation of
the entire maintenance and management platform. The collected data are then transmitted
in real time to local servers and cloud servers via transmission systems such as intelligent
gateways. These initial datasets often present issues like data loss and anomalies and are
generally not directly processed or utilized. Instead, they require preprocessing, which in-
volves further screening and integration [13] to extract pertinent information. Subsequently,
certain data points, such as real-time power generation, electricity consumption, and water
consumption, are directly accessed by the operation and maintenance platform to provide
users with relevant information. Additionally, some information, including historical
trends in electricity and water consumption, personnel flow patterns, and even abnormal
operational statuses throughout the entire building, is obtained through the analysis and
processing of the corresponding datasets. This information is indirectly accessed by the
operation and maintenance platform to serve as a basis for informed decision making
regarding the overall building operation strategy. The process of indirect data retrieval is
more intricate, but both direct and indirect data utilization rely on the critical data provided
during the preprocessing step. Finally, the information retrieved through both direct and
indirect means is fed back to the intelligent control terminal. This feedback loop enables the
control of the fundamental operation and maintenance aspects of zero-carbon buildings,
thus establishing a closed-loop system.
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The main research focus of this study is centered on information preprocessing to
ensure data completeness and precision. Data preprocessing is a data mining technique
that involves transforming raw data into an understandable format [11]. In order to
guarantee the authenticity and reliability of the data, and to make them applicable for
dynamic energy regulation and energy-saving strategy research in zero-carbon buildings,
error adjustments were applied to energy-related data, catering to the needs of building
operation and maintenance.

A comprehensive database model is established for supporting the operation and
maintenance of zero-carbon buildings, building upon the foundation of the data prepro-
cessing model. This structured database is effectively divided into four key categories,
namely, building information [14–16], personnel and environmental data [5,17,18], energy
consumption records [14,15], and functional equipment details (Figure 2). Architectural
information constitutes an inherent attribute of a building, encompassing details such as
the main body of the building and its geographical location. These attributes are typically
resistant to change. In contrast, personnel and environmental information represent vari-
ables that constantly evolve, constituting uncertain factors within the building. However,
they are closely tied to the user experience, particularly in intelligently adjustable zero-
carbon buildings, where these factors play a pivotal role in autonomous regulation. The
targets of such regulation include energy collection equipment and functional devices. The
ability to collect energy consumption data stands out as one of the most significant features
distinguishing zero-carbon buildings from conventional structures, making it a key element
in their transformation into zero-carbon buildings. Functional equipment information
pertains to data related to the usage of various equipment during the normal operation
of zero-carbon buildings. Upon delving deeper into the research, it becomes evident that
certain shared attributes exist among the categorized data. Notable examples include
the correlation between factors like sunlight duration and solar panel power generation,
as well as insights into energy consumption for lighting and the duration of operation
under brightness levels below 15 lux. Leveraging these interconnected relationships, our
investigation extends into the realm of data mining methodologies, enabling us to extract
meaningful insights from the data-rich environment.
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3. Method
3.1. Data Refining

Through a thorough exploration of data pertinent to zero-carbon buildings, intriguing
relationships between collected energy consumption, utilization patterns, and building–
environmental attributes have come to light. This discovery has paved the way for address-
ing optimization challenges at the data level. Building upon these insightful conjectures and
informed by practical experiences, the pertinent information has been meticulously refined
(Figure 3). Our refinement process has homed in on two core aspects: energy-related factors
and environmental influences. This dual focus stems from the understanding that, within
the context of minimizing human-driven variables, energy consumption predominantly
derives from and is regulated by the surrounding environment. This intricate interplay
becomes particularly significant for intelligent zero-carbon buildings that possess the ca-
pability to autonomously adapt [19], mitigating potential waste scenarios and fostering
optimal resource utilization.
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Among some related elements, there are linear correlations, such as between solar
power generation and sunshine time, and between lighting energy consumption and
working time when the ambient brightness is lower than 15 lux. At the same time, it was
found that there is a trend correlation among other non-linear correlation factors. Simply
put, there is a certain monotonic relationship between two elements, such as cooling energy
consumption and heating energy consumption and their corresponding environmental
factors. The research on data anomaly detection is carried out based on these two types
of correlations.

3.2. Error Discrimination Based on Correlation Test

To begin, correlation discovery is initiated based on the calculated data, with the
aim of identifying standardized correlations between pairs of factors, denoted as C0. This
value is determined through multiple random calculations, representing the correlated
data pairs of energy consumption and environmental factors over multiple time intervals.
After analyzing the fluctuation range of correlations between these two factor types, we
establish a constant value as the standard correlation, typically the average of correlations
from random calculations.

Subsequently, using C0 as the foundation, the error degree E for each dataset is
calculated based on Equation (1). Since the range of calculations often fails to account for
extreme values, the practical scope used for anomaly testing extends to 1.2 times the actual
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calculation range. Once the range for E used in anomaly data testing has been established,
it serves as a criterion for subsequent data anomaly checks. Data falling within this range
are considered acceptable, while data falling outside this range are flagged as anomalous.

Figure 4 illustrates the specific steps involved in correlation computation. Each circle
represents energy consumption and environmental information corresponding to individ-
ual months within a year. Continuous sets of seven months are considered as a testing
step, and the corresponding correlations between data pairs for these seven months are
calculated. The correlation for the first set of seven months is denoted as C1, and this
pattern continues for subsequent sets, labeled as Cn. Equation (1) is employed to compute
the corresponding error degree, and this error is used to determine whether the data are
anomalous or not.

E =

∣∣∣∣C0 − Cn

C0

∣∣∣∣ (1)

where E is the degree of error and Cn is the correlation of the corresponding data of the nth
group of seven months.
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When the value of E is less than or equal to the upper limit of the abnormal inspection
range, the data are considered to adhere to the correlation law and are deemed as normal
data. Conversely, when the value of E exceeds the upper limit of the abnormal inspection
range, the data are identified as abnormal and a fitting function is applied for correction.
The standard correlations used to measure the upper limit of the abnormal test range
for E can be categorized into two types: linear correlation factors and trend correlation
factors. Linear correlation factors represent cases where two variables exhibit a clear linear
relationship and can be analyzed through Pearson correlation testing. In this scenario, an
represents the standard correlation for the nth type of linear correlation factors, equivalent
to C0 in the Equation (1). Trend-related factors refer to situations where two variables
exhibit a clear monotonic relationship but not a linear one and can be analyzed through
Spearman correlation testing. In this case, bn represents the standard correlation for the
nth type of trend-related factors, also equivalent to C0 in Equation (1). It is important
to note that the values of an and bn may vary across different buildings, thus requiring
recalculation for each building.

3.3. Error Correction and Test

On one hand, the limited volume of available data inherently poses challenges, poten-
tially leading to issues such as under-fitting, over-fitting, and prediction model instability
when employing the learning and predictive functionalities of neural network models for
data correction. On the other hand, upon close examination of the existing correlation fac-
tors, it becomes evident that these amalgamated factors predominantly fall into two distinct
categories: linear correlation factors and trend correlation factors. Linear correlation factors
embody instances where a clear linear relationship exists between two types of factors.
In contrast, trend correlation factors encompass pairs of factors that exhibit substantial
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positive or negative correlation, even though they might not be strictly linearly related.
Considering this distinction, a simplified model can be adeptly tailored to suit this type of
data. Techniques such as linear fitting and polynomial fitting prove to be well-suited for
effectively accommodating these characteristics.

The concept of the linear correlation factor revolves around harnessing its inherent
linear relationship to rectify errors. This approach is particularly effective for correlation
factors characterized by linear associations, such as lighting energy consumption and
lighting duration, as well as solar power generation and sunshine duration. This correction
technique is facilitated through a fitting formula derived from Equation (2) [20]. Optimizing
the parameter solution for linear fitting involves the utilization of the least squares method.
This method seeks to identify the most suitable fitting parameters by minimizing the sum
of squared errors between actual observations and the theoretical model, represented by
the fitting function. Let us consider our fitting function as y∗i = f (xi, θ), where θ symbolizes
the fitting parameter. The underlying principle of the least squares method is to determine
the optimal fitting parameter θ that minimizes the sum of squared errors, denoted as E(θ)
in Equation (3). This summation encapsulates the discrepancies between the observed
values yi and the anticipated values obtained from the predictive model f (xi, θ).

y = ax + b (2)

where x is the independent variable, y is the dependent variable, a is the slope of the line,
and b is the intercept of the line.

E(θ) = ∑ (yi − f (xi, θ))
2 (3)

where yi(1, 2, 3 · · · ) is the actual observed value, f (xi, θ) is the predicted value, and θ is the
fitting parameter.

Trend-related factors predominantly encompass aspects related to heating and cooling.
Through error discrimination grounded in correlation testing, it becomes evident that
energy consumption and its corresponding duration do not conform entirely to linear cor-
relation. Analysis indicates that this deviation is primarily due to the fact that heating and
cooling energy consumption is influenced not only by the associated heating and cooling
time but also by the temperature’s fluctuation range. Upon delving into energy consump-
tion itself, a distinct correlation with monthly trends emerges, illustrated by a parabolic
scatter plot. This observation suggests the presence of a polynomial relationship [21].
Substantiated by the case study’s results, the existence of this polynomial relationship is
affirmed. Given these attributes, polynomial fitting is opted for as the suitable method
for carrying out the requisite error correction. This approach is rooted in Equation (4).
The Levenberg–Marquardt algorithm is employed to determine the optimal fitting pa-
rameters [22]. Widely utilized for solving nonlinear fitting problems, this algorithm is a
commonly employed nonlinear least squares optimization technique. It amalgamates the
steepest descent method with the Gauss–Newton method to expedite the search for the
best-fit solution. During the fitting process, the algorithm computes the residuals—the
discrepancies between actual data points and the polynomial function. By dynamically
adjusting the step size, direction of fitted parameters, and step size weights based on these
residuals, the algorithm navigates the parameter space. Its objective is to uncover the
paramount combination of fitting parameters that minimizes the sum of squared residuals.
Consequently, the fitting function aligns more closely with actual data, thus minimizing fit-
ting errors. This algorithm proves efficient in handling intricate nonlinear fitting problems,
including the complexities associated with polynomial fitting.

The LM algorithm updates the parameter θ using Equation (5). When the value of λk
is small [23], the LM algorithm exhibits behavior akin to the gradient descent method. This
characteristic enables it to converge more swiftly within flat regions of the parameter space.
On the other hand, when λk takes a larger value, the LM algorithm mirrors the behavior
of the Gauss–Newton method, making it adept at accommodating steep regions in the
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parameter space. Consequently, the LM algorithm dynamically fine-tunes the value of λk
based on the behavior of the residuals during each iteration. This adaptive adjustment of
λk ensures a more resilient optimization process.

y = a0 + a1x + a2x2 + · · ·+ anxn (4)

where xn(n = 1, 2, 3 · · ·) is the power of the independent variable x, y is the dependent
variable, and an is the fitting parameter.

θk+1 = θk − (JT
k Jk + λk I)

−1
JT
k rk (5)

where θk represents the parameter vector at step k, Jk signifies the Jacobian matrix (partial
derivative matrix) of the fitting function P(x; θ) concerning the parameter θ, rk denotes the
residual vector, λk is the parameter governing the control of step size, and I stands for the
identity matrix.

This method primarily accomplishes data mining and preprocessing for zero-carbon
buildings through error identification and correction (Figure 5). The data associated with
energy consumption factors and their corresponding environmental factors are extracted
from the database, and the nature of their data relationships is initially determined. The
abnormal data are identified using the correlation test-based error detection method. If
they are determined to be abnormal data, and the factor correlation type is linear, error
correction is performed through linear fitting; if the factor correlation type is trending,
polynomial fitting is applied for error correction. Subsequently, after error correction,
another abnormality assessment is conducted, and the correction results are fed back into
the database if the criteria for normality are met.
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variable, and na  is the fitting parameter. 
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where kθ  represents the parameter vector at step k , kJ  signifies the Jacobian matrix 

(partial derivative matrix) of the fitting function ( ; )P xθ  concerning the parameter θ , 

kr  denotes the residual vector, kλ  is the parameter governing the control of step size, 
and I stands for the identity matrix. 

This method primarily accomplishes data mining and preprocessing for zero-carbon 
buildings through error identification and correction (Figure 5). The data associated with 
energy consumption factors and their corresponding environmental factors are extracted 
from the database, and the nature of their data relationships is initially determined. The 
abnormal data are identified using the correlation test-based error detection method. If 
they are determined to be abnormal data, and the factor correlation type is linear, error 
correction is performed through linear fitting; if the factor correlation type is trending, 
polynomial fitting is applied for error correction. Subsequently, after error correction, an-
other abnormality assessment is conducted, and the correction results are fed back into 
the database if the criteria for normality are met. 
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Figure 5. Flow steps of error discrimination, correction, and inspection.

4. Case Study

This case study originates from an experimental zero-carbon initiative situated on the
premises of Beijing University of Technology—an endeavor known as the “zero-carbon
hut” (Figure 6). Spanning an area of approximately 50 m2 with a total building height
of 3 m, this hut comprises three distinct spaces: the power equipment room, the water
system equipment room, and the normal activity room. It includes specific features such
as rotatable solar panels with an embedded circulating water cooling system, rainwater
collection equipment with a water treatment system, dual energy storage cabinets and
power supply systems, scalable spaces, a running-based power generation device, and
a sensor-linked digital twin control system. The fundamental objective of this project is
to attain carbon neutrality. This is accomplished by leveraging high-precision sensing
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technology in conjunction with an intelligent display platform to dynamically regulate the
energy consumption throughout the hut.
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This project endeavors to realize the concept of achieving carbon neutrality through
a fully intelligent approach for cottage operations and maintenance. For instance, the
illumination system is designed to assess occupancy within the cottage as well as the ambi-
ent light levels. The heating and cooling strategy is fine-tuned to maintain temperatures
within the range of 18 ◦C to 26 ◦C. Furthermore, the water treatment system’s efficiency
is contingent on the number of occupants within the cottage. Drawing from these unique
characteristics, our study focuses on exploring data mining methodologies specifically
tailored to intelligent zero-carbon buildings.

During the data monitoring process, it has come to light that certain discrepancies arise
in the monitored data due to factors such as sensor accuracy and external environmental
challenges. These occasional inaccuracies in the collected data can subsequently lead to
unforeseen impacts on the dynamic regulation process. As a countermeasure, it becomes
imperative to subject the data to a screening and fine-tuning procedure to enhance the
integrity of the data structure. In light of the pertinent factors illustrated in Figure 3, a
collection of relevant characteristic data has been gathered. This data compilation serves
as the foundation for refining our understanding and establishing a robust framework for
subsequent analysis and optimization.

The perspective is held that, during the course of building operations, inherent errors
exist within the correlation of two ostensibly interconnected data types. These errors are
acknowledged and incorporated into the considerations. However, when these errors
deviate beyond their original scope, it becomes essential to devise an analytical methodol-
ogy aimed at rectifying these deviations. This measure is crucial to mitigate any potential
disruptions to the building’s operational and maintenance strategies. It is noteworthy
that certain datasets exhibit notably positive correlations, such as the relationship between
solar energy collection’s energy consumption and the duration of sun exposure. Similarly,
there is a correlation between daylight energy consumption and the duration of brightness
below 15 lux during working hours. However, there are still some data that show a trend
correlation. For instance, there is a correlation between refrigeration energy consumption
and the duration of temperature falling below 18 ◦C during working hours, along with the
average temperature within the corresponding timeframe (calculated as the cumulative
sum of hourly temperatures divided by the corresponding hours). This correlation follows
a monotonic trend.
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It is essential to highlight that, given the project’s limited operational timeframe, efforts
were directed towards amassing a comprehensive dataset to substantiate the data mining
methodologies outlined in this paper. To this end, an energy consumption model for the
zero-carbon hut was constructed using EnergyPlus. The subsequent validation of the data
mining techniques was conducted via the analysis of simulation results. To maintain data
consistency, it is pertinent to note that all the data employed for case verification were
exclusively simulated and did not involve real-time measurements. This approach was
adopted to ensure the accuracy and reliability of the validation process.

4.1. Error Discrimination and Data Mining of Linear Correlation Factors

As depicted in Table 1, the provided data show the factors associated with monthly
lighting energy consumption and solar power generation for the zero-carbon hut. These fac-
tors have been derived through EnergyPlus simulation utilizing the EPW file corresponding
to a standard year.

Table 1. Lighting energy consumption- and solar power generation-related factors.

Month
Lighting Energy

Consumption
(kwh/m2)

Lighting
Duration (h)

Solar Power
Generation

(kwh)

Sunshine
Duration (h)

1 0.176 166 606.615 140
2 0.160 152 715.56 128
3 0.151 147 1099.76 221
4 0.145 139 1336.359 260
5 0.151 144 1569.64 316
6 0.120 111 1526.885 305
7 0.124 114 1377.915 280
8 0.124 116 1269.254 255
9 0.146 140 1194.476 238
10 0.150 143 883.989 200
11 0.146 142 587.012 130
12 0.176 166 530.197 110

Before embarking on data mining efforts, simulated measurements on the pertinent
data are initiated. By conducting iterative measurements across multiple datasets, founda-
tional correlations are established. For instance, consider the correlation between lighting
energy consumption and lighting duration, resulting in a coefficient (a1) of 0.99608, ac-
companied by an associated error range of [0, 0.004). Similarly, the correlation between
solar power generation and sunshine duration yields a coefficient (a2) of 0.99078, with
a corresponding error range of [0, 0.01). Additionally, the utilization of Pearson correla-
tion analysis enables the computation of error degrees for linear correlation factors, as
elucidated in Table 2.

Given that this dataset is a product of simulation, the values are derived through
application of the pertinent energy consumption theory. This data collection adheres to a
relatively standardized methodology. The level of error in the “lighting energy consump-
tion” and “solar power generation” correlations adheres to the prescribed criteria, rendering
any correction unnecessary. Furthermore, this alignment underscores the feasibility and
applicability of the underlying theory.

Given the linear correlation attributes exhibited by the data, employing linear regres-
sion for data correction proves suitable. Below is presented the linear regression equation
alongside the corresponding residual diagram (Figure 7). Evidently, the depicted figures
reveal a fitting R2 value of 0.9848 for lighting-related factors and 0.9798 for solar power
generation-related factors. As observed through the distribution of corresponding resid-
uals, a uniform distribution prevails, meeting the criteria for normal distribution. This
substantiates the effectiveness of the fitting approach, rendering it a viable equation for
error correction purposes.
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Table 2. Error calculation.

Month
Lighting Energy

Consumption and
Lighting Time

Degree of Error
Solar Power

Generation and
Sunshine Duration

Degree of Error

1–7 0.99393 C11 0.002156792 0.99074 C21 4.0372 × 10−5

2–8 0.99602 C12 5.8563 × 10−5 0.99731 C22 0.006590769
3–9 0.99773 C13 0.001658169 0.99446 C23 0.003714245
4–10 0.99842 C14 0.002350886 0.98532 C24 0.005510809
5–11 0.99634 C15 0.000262697 0.99555 C25 0.004814389
6–12 0.99403 C16 0.002056398 0.99486 C26 0.004101079
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4.2. Error Discrimination and Data Mining of Trend Correlation Factors

The data table reflects the pertinent elements of cooling and heating energy consump-
tion for the zero-carbon hut (Table 3). These data are derived from EnergyPlus simulations
utilizing the EPW file for a standard year.
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Table 3. Related factors of cooling and heating energy consumption.

Month

Heating
Energy

Consumption
(kwh/m2)

Working
Hours
below

18 ◦C (h)

Average
Temperature within
the Time Range of

Less than 18 during
Working Hours (◦C)

Cooling
Energy

Consumption
(kwh/m2)

The Duration
of Working

Time Higher
than 26 ◦C (h)

Average
Temperature in the
Time Range above
26 ◦C during the

Working Time (◦C)

1 6.641 480 −2.74 0 0 26
2 3.738 420 1.42 3.307 × 10−7 0 26
3 1.604 353 6.43 0.0003 0 26
4 0.065 241 13.027 0.446 18 28.789
5 0.032 81 14.993 2.328 124 28.426
6 0 5 17.8 4.414 237 29.230
7 0 0 18 6.012 300 29.087
8 0 5 17.6 5.026 211 28.59
9 0.013 61 15.554 2.258 60 26.857
10 0.181 384 12.572 0.188 4 26.5
11 1.913 447 6.374 1.0235 × 10−6 0 26
12 4.842 465 0.454 0 0 26

Before commencing data mining efforts, preliminary simulated measurements are
conducted on the relevant data. By repeatedly measuring multiple sets of data, foundational
correlations are established. For instance, consider the correlation between heating energy
consumption and equipment heating duration, yielding a coefficient (b1) of 0.9806134,
accompanied by an associated error range of [0, 0.02). Similarly, the correlation between
cooling energy consumption and equipment cooling duration results in a coefficient (b2) of
0.9588279, with a corresponding error range of [0, 0.01). This was combined with Spearman
correlation analysis to calculate the error degree of trend-related factors (Table 4).

Table 4. Spearman correlation analysis.

Month
Heating Energy

Consumption and
Equipment Heating Time

Degree of Error
Refrigeration Energy

Consumption and
Equipment Cooling Time

Degree of Error

1–7 0.9910312 C11 0.010623759 0.9636241 C21 0.005002149
2–8 0.9723449 C12 0.008431967 0.9549937 C22 0.006590769
3–9 0.9723449 C13 0.008431967 0.9642857 C23 0.003998841

4–10 0.9723449 C14 0.008431967 0.9642857 C24 0.003998841
5–11 0.9723449 C15 0.008431967 0.9642857 C25 0.003998841
6–12 0.9723449 C16 0.008431967 0.9549937 C26 0.006590769

Based on the test results, the error degrees are generally in line with the prescribed
criteria. To further substantiate the data’s rationality, efforts were extended through logical
examination. A distinctive feature here lies in the collection of average temperatures for
heating energy consumption and refrigeration energy consumption. Unlike other data
types, the average temperature is calculated from hourly temperature monitoring data
extracted from the EPW file, combined with equipment operational hours. Consequently,
while the accuracy of these data might not meet the prerequisites for a Spearman correlation
test, it remains suitable for logical validation. As presented in Table 5, a negative correlation
ranging between −0.95 and −0.8 is observed between heating energy consumption and
the average temperature within the heating time frame. Conversely, a positive correlation
ranging between 0.6 and 0.9 emerges between refrigeration energy consumption and the
average temperature within the cooling time frame. This logical alignment aligns seamlessly
with typical data cognition, thereby affirming its conformity with the relevant requirements.
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Table 5. Spearman correlation analysis.

Month
Heating Energy Consumption and
Average Temperature within the

Heating Time Range

Cooling Energy Consumption and
Average Temperature within the

Cooling Time Range

1–7 −0.9636241 0.8894992
2–8 −0.9063270 0.7387687
3–9 −0.8017837 0.6428571

4–10 −0.8017837 0.6428571
5–11 −0.8017837 0.8928571
6–12 −0.9063270 0.8829187

Since the data being utilized originate from simulations, the capability to verify the
method’s accuracy is limited without undergoing a process of cross-referencing inaccurate
data. Therefore, in the conclusion of the methodology only, a corrective measure for
abnormal data is provided: the employment of Polynomial fitting for error rectification.

The fitting results (Figure 8) demonstrate that the R2 values for the fitting functions
concerning cooling energy consumption and heating energy consumption attain 0.9983
and 0.9951, respectively. Examining the distribution of the corresponding residuals reveals
a uniformly distributed pattern that adheres to the criteria of a normal distribution. Conse-
quently, this fitting function emerges as notably effective, serving as a solid foundation for
error correction.
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5. Results and Discussion

This method primarily addresses precision issues stemming from various error factors
in the measurement of data related to zero-carbon smart building operation and main-
tenance. Unlike most data anomaly detection and correction methods, this approach
seamlessly combines theoretical principles with domain knowledge. However, it does not
demand an extensive depth of expertise in either theoretical methods or domain knowl-
edge, making it more versatile. This method does not involve the application of complex
forecasting algorithms [3–6] or require a strong theoretical development background [7–11].
Its core lies in the calculation of the error degree “E” in Equation (1), the consideration of
energy consumption-environment related factors (Figure 3), and the correlation calculation
step (Figure 4). The synergy of these three components simplifies and streamlines data
mining and preprocessing, endowing it with robust explanatory capabilities.

Judging from its application effect on the case of the zero-carbon hut, this method can
be effectively adapted to associated data. There are corresponding detection methods for
various types of building energy consumption, and data mining and forecasting are carried
out on a monthly basis. Considering the limited number of data, this method establishes
appropriate correction functions tailored to the distinctive characteristics of different data
types. Based on the results, the correction functions have achieved significant precision,
with a coefficient of determination (R2) exceeding 0.99, outperforming the majority of
specially developed energy consumption prediction models.

6. Conclusions

This paper primarily delves into the preprocessing analysis of operational and mainte-
nance data from zero-carbon smart buildings. Through a meticulous examination of the
correlation between energy consumption data and environmental factors, the data’s valid-
ity is confirmed, aligning with the requisites of subsequent operational and maintenance
phases. The study primarily focuses on four key aspects: lighting energy consumption and
lighting duration, solar power generation and effective sunshine duration, heating energy
consumption and equipment heating operational hours, and cooling energy consumption
and equipment cooling operational hours.

It is worth noting that the specificities of distinct cases may lead to variations in the
standard correlation C0 between corresponding energy consumption and environmental
factors. Moreover, since the case data stem from simulations, the presence of simulated
abnormal data is absent. However, during real-world case verification, if the error range
criteria are not met, the establishment of fitting functions can be explored to effect further
adjustments, thus aligning with the necessary standards.

The primary focus of this method is to address errors that occur during the data
collection process of zero-carbon building energy consumption, encompassing tasks like
outlier removal and missing value interpolation. In the future, the widespread adoption of
data augmentation, transfer learning, and semi-supervised learning techniques for handling
extensive datasets related to building operations is anticipated [24]. However, challenges
are still presented by these methods, such as a heavy reliance on theory and limited
interpretability. The research findings presented in this paper effectively mitigate these
shortcomings and serve as valuable references within the realm of current preprocessing
technologies. This contribution has the potential to foster advancements in data-driven
research within the field of zero-carbon buildings.

Additionally, the approach substantiates the data’s rationality through correlation
analysis, anchoring it on the relationship between energy consumption factors and envi-
ronmental factors. The process is characterized by its simplicity and practicality, rendering
it apt for intelligent operation and facilitating data management across diverse zero-carbon
building scenarios. Ultimately, this method contributes valuable insights to the realm of
the operation and maintenance of zero-carbon buildings. Furthermore, the case presented
in this paper serves as a verification example, and its applicability can be expanded to
encompass general buildings equipped with self-regulating capabilities, provided that all
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pertinent factors are thoroughly explored and considered. Certainly, it can be stated that, in
the future, the more comprehensively the relationship between energy consumption factors
and environmental factors within buildings is explored, the broader the applicability of
this approach will become.
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