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Abstract: Transitioning from traditional energy sources to green and sustainable energy sources
can potentially reduce environmental problems. Many countries are gradually recording increasing
greenhouse gas (GHG) emissions as they develop their economies. As a result, this study aims to
use top GHG-emitting countries in its analysis to establish the role green energy and information
technology play in reducing their pollution levels. Data from 11 GHG-emitting countries from
1990–2020 were utilized. The Fully Modified Ordinary Least squares (FMOLS), Dynamic ordinary
least squares (DOLS), and Granger causality are used for the analysis. The empirical results revealed
that an increase in non-renewable energy usage of 1% increases GHG gas emissions by 0.6960%
(FMOLS) and 0.6119% (DOLS). On the impact of renewable energy, a 1% increase reduces GHG
emissions by 0.1145% (FMOLS) and 0.1957% (DOLS). Also, a 1% increase in information technology
increases GHG emissions by 0.0459% (FMOLS) and 0.0429% (DOLS) under the specifications of
FMOLS and DOLS. The directional causalities are established in the study as well. In light of this,
using “abundant” renewable energy sources is the gateway to reducing GHG emissions alongside
their tremendous economic growth and I.T. development. Other policy implications are outlined for
future research and policymakers.

Keywords: green energy; greenhouse gas emissions; sustainable development; green Africa; new energies

1. Introduction

Greenhouse gas emissions (GHG) have risen in the last two decades due to several
reasons. Its constituents include carbon dioxide, methane, and nitrous oxide emissions from
all sources, including agriculture and land use change. The most significant greenhouse
gas is carbon dioxide. Researchers measure greenhouse gas emissions in “carbon dioxide-
equivalents” (CO2eq) to account for all emissions. This accounts for all greenhouse gases,
not just CO2. Various studies have used CO2 to measure environmental pollution. However,
this study uses GHG because it intends to measure the impact of the chosen variables on
the overall ecological pollutants, not just CO2, as seen in many studies. In the climate
change space, significant policies that have been encouraged and advised in recent years
to reduce greenhouse gas (GHG) emissions have focused on enhancing clean energy [1,2].
The primary drivers of these policies are the extreme levels of CO2 emissions triggered by
intensive non-renewable energy (NRE) in the overall energy mix [3,4]. Over 80% of the
energy consumed worldwide comes from non-renewable sources [5]. This larger share has
continued to worsen the dire issues associated with environmental pollution [6,7].

The problem is worse for developing countries like Africa, which rely on fossil fuel
consumption and have relatively lower technological advancement [8]. For the green
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energy transition, mitigating climate change and its effects is desirable [9,10]. In this quest,
scholars and decision-makers have recently debated the subject. Two crucial initiatives have
been mentioned throughout the conversation as having a greater chance of reducing the rise
in CO2 emissions. Green energy promotion comes first, followed by the growth of informa-
tion and communication technology (ICT) [1]. In addition to benefitting the environment,
renewable energy (RE) sources have become a viable alternative to conventional energy
sources. These benefits also have a positive effect on the economy [11]. At least 0.4 billion
tonnes of CO2 emissions can be reduced by transitioning to cleaner or green energies [5].
Moreover, technological advancement is essential for GHG emissions to be lowered in a
sustainable manner [12]. Economies can realize the twin goals of developing their economy
and environmental sustainability through technological improvement [9]. Globally, infor-
mation and communications technology (ICT) contributes 1.5 gigatons, which represents
approximately 2% of the world’s (GHG) emissions annually [13]. The industry has also
contributed enormously towards environmental sustainability. Technologies aimed at
improving ecological sustainability have significantly reduced GHGs in various sectors. In
this regard, the ICT industry plays a more critical role in the fight against climate change.
The industry is already working to reduce various types of emissions through technological
innovation. As a result, its significant role in the GHG space within the African context
should be analysed corresponding to its efficient energy use.

Fossil fuel energy (mostly coal) has contributed to significant GHG emissions over
the ensuing years to meet the energy needs of developing nations like those in Africa [14].
As one of the developing regions, Africa contributed 3.9% of CO2 emissions worldwide
from industry and fossil fuels in 2021 [15]. The continent added the smallest amount of
GHG gases to the total emissions globally over the past two decades, varying between 3.4%
and 3.9% [15]. Until recently, studies examining the causes of CO2 emissions and energy
consumption have not focused on Africa due to its comparatively modest contribution
to global carbon emissions [9,16]. However, it is worth noting that CO2 emissions in the
area have significantly increased recently, with an average rise of 15.48% between 1995 and
2017 [9]. On the other hand, African economies have been growing tremendously in the
last decade compared to the previous due to trade openness, foreign direct investment,
technological advancement, and population growth. For example, Ghana was the fastest-
growing economy in the world in 2019 [17]. With this rapid growth, it is evident that if
measures are not put in place, Africa’s growth will lead to increased pollution, as seen
in advanced countries like China and the United States, because economic growth has
been associated with pollution problems [8]. According to the World Bank, Libya and
Botswana are among the top GHG emitters in Africa, but have the fastest and highest
rates of economic growth in Africa of 31.37% and 11.36%, respectively [18]. Unfortunately,
although some countries produce more CO2 emissions than others, the consequences
affect almost every region and the world. For instance, coal, which includes up to 45%
ash and 1.2% sulphur, produces more than 90% of the energy in South Africa [19]. Also,
the population has been argued as one of the significant influencers of GHG emissions.
Countries with a higher population or urban population density will likely contribute to
environmental pollution. These assertions and evidence led to the selection of variables to
aid the study. The top polluting countries have been investigated in this study because it is
necessary to identify mitigating factors to curb emissions, which will benefit the polluters
and the innocent countries that emit insignificant amounts of GHG. Without proper climate
change policy in place, Ref. [20] predicted that by 2100, Africa might contribute 5–20% of
the world’s CO2 emissions. Without effective mitigation measures, the anticipated trends
in CO2 emissions will cause a catastrophic situation for African countries, where most of
them are destitute. This problem is emerging and spreading throughout Africa and other
parts of the world.

Considering the above problem, it is imperative to conduct research that assesses the
specific impact of energy consumption, I.T., economic growth, and population using Top
GHG-emitting countries of the continent. In addition, Africa must immediately consider



Sustainability 2023, 15, 13685 3 of 19

strategies to reduce or stop any potential increases in atmospheric GHG emissions [21].
This article addresses this critical question using top GHG-emitting countries in the region.
Green energy sources like wind, solar, and hydropower can help Africa thrive in an
environmentally friendly way. Africa has access to various renewable energy sources [22].
Despite being unlimited and freely available in the area, these renewable energies are mostly
underdeveloped compared to non-renewable energy, emphasizing the important role of
technological implementation in the region’s transition to a greener economy. Thus, the
main focus of this study is to highlight the role green energy and I.T. can play in developing
Africa’s sustainability. Specifically, the objectives of this research are to: (1) Determine the
role of renewable energy on GHG emissions, (2) Determine the influence of non-renewable
energy on GHG emissions in top GHG-emitting countries in Africa, (3) Determine the
role played by economic growth in top GHG-emitting countries in Africa, (4) Establish
the impact of urban population on top GHG-emitting African countries. Compared with
earlier studies, this work’s novelty is threefold, and will make the following contributions
to the literature and policymakers. First, this study is one of the first to examine how
using green energy affects GHG emissions in the top African emitters of GHG gases,
according to the latest data from [15]. Most nations have high-energy needs and significant
possibilities for generating RE; analysing these top GHG-producing regions as a research
case is particularly fascinating. Second, most of the studies conducted in Africa considered
all countries, sub-Saharan Africa (SSA) or randomly selected countries, which may have
generalizability issues. Some countries produce more GHG emissions than others, and
thus placing them within the same category may create an unreliable result. This study
considers the top 11 (T-11) GHG emitters in Africa to measure the real impact of these
variables on others. This will provide more robust results. Lastly, this study adds to the
environmental literature by investigating the influence of information technology on the
GHG emissions of top GHG-emitting countries in Africa. By filling these gaps, the study
will significantly contribute to the body of literature and suggest meaningful and practical
policy implications that will help top GHG-emitting countries reduce pollution and assist
low GHG-emitting countries in guiding their way through environmental sustainability
as their economy grows. It will provide a strong foundation for future studies that intend
to investigate the relationship between energy structures and environmental pollution in
Africa and around the globe. The policy implications suggested in this study will equip
policymakers with the information necessary to provide great policies to enhance green
energy usage. Policymakers will identify the areas that need support and channel resources
to promote environmental sustainability and meet energy needs.

2. Literature Review
2.1. Green Energy and GHG Emissions Nexus

When discussing the energy consumption literature, few studies have focused on
African countries. These studies chose variables believed to influence GHG emissions and
made valuable conclusions for future studies. Many important factors affecting energy
consumption and, consequently, CO2 and GHG emissions include real GDP per capita,
energy losses, innovation, trade openness, total investment, population growth, political
stability, corruption, financial development, and renewable energy production [23,24].
Doskas [23] hypothesized a set of macro-financial, macro-environmental, and institutional
variables that causally affect energy and electricity consumption in a holistic model using
109 countries in a multivariate panel framework and found these factors to influence
energy consumption. Aside from these variables, monetary and fiscal variables have
been identified to influence GHG emissions. Similarly, this study has selected renewable
energy, non-renewable energy, information technology, GDP, and urban population to aid
its objectives and fill gaps.

The last several decades have seen the emergence of renewable energy as a new en-
ergy source supporting a sustainable environment [25]. According to numerous studies
conducted at various locations, it has the potential to lower CO2 emissions. Additionally,
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promoting and funding green energy has been linked to benefitting energy security and
environmental quality worldwide [12,26]. Promoting and financing renewable energy
sources helps countries with high GHG emissions reduce their reliance on fossil fuels in
their energy mix portfolio and increase economic diversity [27]. The role of corporations
also comes into play in building sustainable economies [28]. Several empirical studies have
examined how green promotion [29] or renewable energy might help increase environ-
mental sustainability [30]. There is strong evidence from multiple studies that suggest
that renewable energy benefits the environment by lowering CO2 levels [31]. For instance,
85 nations were chosen by [32] for their study on green energy and environmental pollution.
According to the study’s findings, using green or renewable energy lowers CO2 emissions,
which helps to enhance the environment.

Inglesi-Lotz and Dogan [33] set out on a journey to determine the distinct impact
of non-renewable and renewable energy use on the decrease of CO2 emissions. They
found that whereas non-renewable energy increases emissions, renewable energy decreases
emissions. This is an assertion that traditional energy sources can be substituted with
modern green ones. Using data from 25 developing countries [34] studied the effect RE
has on CO2 emissions and concluded that using RE lowers CO2 emissions and promotes
“green” growth in developing nations. Thus, green energies should be prioritized if green
economic development is to be achieved. According to [35], renewable energy consumption
is the primary reason for the drop in CO2 emissions in OECD nations. A study by [36]
that used a broader sample of 128 countries to determine the influence of RE on CO2
found that using RE can lower CO2 emissions. For the G20, Ref. [37] found that RE usage
reduces CO2 emissions. Ref. [38] discovered the opposite when they examined five North
African countries. The usage of RE reduced CO2 emissions for 16 E.U. countries, according
to [39]. They believe using sustainable energy technologies will contribute to attaining the
Sustainable Development Goals. The exact converse, however, was found for low-income
nations [40], where RE use was found to boost emissions.

Irandoust [41] found that RE use enhances environmental well-being by lowering
CO2 emissions in the study, which focused on four Nordic countries. Ref. [42] confirmed
that Pakistan’s CO2 emissions have decreased dramatically due to RE use. Ref. [43] study
supported this finding when they investigated the same relationship in Pakistan. China
produces the highest GHG emission in the world, and a study by [44] indicated that
consumption of RE lessens China’s exposure to the adverse impacts of CO2 emissions.
Similarly, Algeria makes the top five GHG emitters in Africa, and a study by [45] in
the region found RE to decrease their CO2 emissions. In Africa, research by [31] that
investigated the impact of RE on CO2 emission in more than 20 African nations revealed
that RE is an excellent substitute for NRE sources. In the same African space, Ref. [46]
investigated the connection between RE and CO2 emissions in SSA and established that
using RE reduces CO2 emissions. An earlier investigation into the relationship between the
two in 24 SSA countries by [47] found no evidence of a direct causal relationship between
CO2 emissions and RE consumption. Based on these significant findings, it can be seen that
green energy is potentially the lifesaver of energy crises and environmental pollution.

2.2. Information Technology and GHG Emissions Nexus

The advancement of today’s world can be credited to the development of Information
Technology (I.T.). Recent studies on I.T.’s impact on the modern world have stressed
ICT’s contribution to enhancing environmental sustainability through efficient energy
and conservatism promotion [1]. ICT will likely lower CO2 emissions via efficient energy
production and conservation [48]. The link between ICT and CO2 emissions is intricate and
multidimensional. On the one hand, numerous studies have shown the benefits of I.T. on
environmental quality [49,50]. The negative impact of I.T. on the environment has also been
established in the literature. For instance, Ref. [51] disclosed that I.T. drove environmental
pollution when studying ASEAN countries. Furthermore, multiple studies of empirical
investigations have shown that ICT, through the development and usage of equipment,
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raises the amount of air pollution and GHG emissions [52]. Some have also established
no relationship between the two. For example, Refs. [53,54] concluded an unnoticeable
connection between CO2 emissions and ICT. Specifically, studies on I.T. and CO2 emission
nexus are discussed below.

According to [55] regarding the effect of ICT on the global GHG footprint, smartphones
will make up about 11% of the entire ICT footprint by 2020 and double GHG emissions
from 2007 to 2020. Ref. [56] concluded that ICT use in sub-Saharan Africa is linked to
environmental pollution. According to Ref. [57], ICT has a more significant impact on
reducing CO2 emissions in the central part of China than in the east, but it has no discernible
effect on the West. ICT can help solve environmental problems, but can also make them
worse [58]. Also, an inverted U-shaped relationship between ICT and CO2 emissions was
confirmed in a study by [59]. Moreover, Ref. [60] discovered that ICT lowers CO2 emissions
in the long term but has no immediate connection. Ref. [50] looked into how ICT affected
CO2 emissions in the OECD and discovered that long-term Internet use significantly
reduced CO2 emissions, concluding that ICT does not pose an environmental threat to
the OECD region. When [61] examined how Internet use affects CO2 emissions, they
found evidence that it does so in some European Union countries. Ref. [62] demonstrated
that subscriptions of mobile phones and the Internet pose a hazard to the environment in
growing nations.

In a different study, Ref. [53] looked at the ICT and pollution nexus using 44 SSA
nations and discovered that, albeit having an insignificant effect, increasing ICT use reduced
CO2 emissions triggered by the consumption of liquefied fuel. Finally, Ref. [63] found an
adverse link connecting CO2 emissions and ICT and admonished developing countries to
embrace ICT.

3. Materials and Methods
3.1. Sources of Data and Processing

Data were gathered to aid the analysis relating to the top GHG-emitters in Africa
(Algeria, Botswana, Egypt, Equatorial Guinea, Gabon, Libya, Mauritius, Morocco, Sey-
chelles, South Africa, and Tunisia) from 1990 to 2020, and it is comprised of six variables
that have been taken into consideration. The sample size was selected based on the avail-
ability of data. The variables in this study were selected based on their alignment with
United Nations Sustainable Development Goals (SDGs), particularly Goal 7 (Clean and
affordable energy), Goal 8 (Decent work and economic growth), and Goal 13 (Climate
action). The variables, abbreviations, measurement units, and data sources have been pre-
sented in Table 1. Likewise, the trend graph for T-11 greenhouse gas emissions in Africa is
given in Figure 1.

Table 1. The data source and measurement units.

Variable Abbreviation Unit of Measurement Source

Greenhouse gas emissions GHG kt of CO2 equivalent WDI [64]
Renewable energy RE (% of total final energy consumption) WDI [64]

Non-renewable energy NRE Fossil fuel energy consumption (% of total) WDI [64]
Information Technology IT Individuals using the Internet (% of the population) WDI [64]

Economic Growth GDP Current (USD) WDI [64]
Urban population UP Urban population (% of the total population) WDI [64]

3.2. Descriptive Statistics

To prepare for the analysis using econometric models, it is crucial to first estimate the
properties of the sample data. This study focuses on Africa’s T-11 GHG-emitting countries
as a benchmark for sustainable development worldwide. Table 2 presents the descriptive
statistics of the variables. Based on these values, it is observed that information technology
has a mean of 0.4991 and a standard deviation of 1.2422, GDP has a mean of 10.2980 and a
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standard deviation of 0.7962, and greenhouse gas emissions have a mean of 4.4536 and a
standard deviation of 0.8606. Non-renewable energy has a mean of 1.8747 and a standard
deviation of 0.1977, renewable energy has a mean of 0.9244 and a standard deviation of
0.6898, and urban population has a mean of 1.7636 and a standard deviation of 0.0965.
Additionally, the lack of significant difference between the mean and standard deviation
indicates the absence of outliers in the data provided.
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Table 2. Descriptive statistics.

GHG GDP IT NRE RE UP

Mean 4.4536 10.2980 0.4991 1.8747 0.9244 1.7636
Median 4.5260 10.4073 0.8678 1.9429 1.0469 1.7658

Maximum 5.7446 11.6195 1.9249 1.9999 1.9548 1.9547
Minimum 2.2537 8.0035 −3.4429 1.1730 −1.2218 1.5409
Std. Dev. 0.8606 0.7962 1.2422 0.1977 0.6898 0.0965
Skewness −0.5982 −0.6315 −1.0389 −2.2269 −0.7493 −0.0635
Kurtosis 2.7442 2.9919 3.2651 6.9775 3.2446 2.0437

Jarque–Bera 21.2643 22.6666 62.3374 506.6112 32.7577 13.2225
Observations 341 341 341 341 341 341

The methodological structure for this research is shown in Figure 2. The first step
involved performing a panel unit root test to assess the stationary nature of the data.
Subsequently, the Pedroni and Kao co-integration tests were conducted to explore the
long-run interrelationship of the variables. In the third step, two estimation techniques,
FMOLS and DOLS, were used to examine the effect of various determinants on GHG
emissions. Finally, the study used the Dumitrescu–Hurlin panel causality test to identify
the causal relationships between different variables, a robust testing method.

3.3. Model Specification

The proposed econometric model in this research is based on the studies conducted
by [65,66]. This study extends their model by including information technology, non-
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renewable energy, renewable energy, and urban population in Africa’s T-11 greenhouse gas
emission. Equation (1) depicts the econometric approach of the research.

GHG =

$
(GDP, IT, NRE, RE, UP) (1)

where GHG represents GHG emissions, while GDP, IT, NRE, RE, and UP denote gross
domestic products, information technology, non-renewable energy, renewable energy,
and urban population, respectively. The study logarithmizes Equation (1) for time series
analysis as Equation (2) follows.
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LNGHGit = β0 + β1LNGDPit + β2LNITit + β3LNNREit + β4LNREit + β5βLNUPit + εit (2)

where L.N. denotes the natural log, β1–β5 signifies the parameters to be estimated. β0
denotes the intercept. i and t are equal to 1 and depict the countries and the period covering
30 years, t = 1990 to 2020, respectively. The εit is the stochastic error term and is considered
to be serially not correlated.

3.4. Unit Root Test

To test the stationarity of the data, panel unit root tests were performed in this study.
The simultaneous processing of time series and cross-sections requires good data. Therefore,
we used various panel unit root tests, including the Fisher augmented Dickey–Fuller
test [67] and the IPS unit root test developed by [68]. That is, the ADF regression is
estimated, and the residuals in the cross-section of each panel are computed as defined
by Equation (3):

∆y = ai + piyi,t−j + γ1yt−1 + ∑k
j γij∆ yi,t−j + ∑k

j=0 ∆ yi,t−j + εit (3)
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where yt−1 =
(

1
N

)
∑N

i=1 yi,t−1, ∆yt =
(

1
N

)
∑N

i=1 yit and ti (N, T) is the t-statistics of the
estimates, and P’ is the individual ADF statistics.

3.5. Co-Integration Test
The next step is to investigate the long-run co-integration among selected variables using

the integrated data. Given that each variable is integrated at the difference, the co-integration
tests by Padroni and Kao [69] are more appropriate. Moreover, Pedroni’s co-integration
analysis allows more than one explanatory variable, so it is an appropriate technique for the
present study. The general form of the specified test is given as Equation (4),

LNGHGit = αit + δit + β1LNGDPit + β2LNITit + β3LNNREit + β4LNREit + β5βLNUPit + µit

µit = piµit − µit (4)

whereas, i = 1, . . ., N present the panel number, t = 1, . . ., T refers to time period. Similarly,
αit and δit allow the presence of country-specific and deterministic effects, respectively. µit
represents the error term. Therefore, to test the hypothesis for no eco-integration, Pedroni
has proposed panel and group tests. Within the dimension consists of four statistics, and
between the dimensions includes three statistics [69].

3.6. Long-Run Estimates

With solid evidence of long-run co-integration, the next step is to test the long-run con-
nection between the variables. Therefore, this study employed two estimation techniques:
the Fully Modified Ordinary Least Squares (FMOLS) and Dynamic Ordinary Least Squares
(DOLS). The FMOLS technique, initially developed by Pedroni [70], is residual-based and
is more robust in cointegrated constructs. It is deemed reliable in estimation, especially in a
relatively smaller sample size, and handles endogeneity and serial correlation issues in the
variables very well [71]. On the other hand, DOLS, developed by [72], is argued to provide
more reliable results than FMOLS and eliminate associated regressors’ correlations [73].
These econometric techniques are helpful when the panel data have endogeneity problems
and autocorrelation between the variable and the error term. Therefore, the present re-
search has employed the panel FMOLS & DOLS tests, and their general forms are shown in
Equations (5) and (6) as follows

βFMOLS =

 1
N

N

∑
i=1

(
T

∑
t=1

(Ait − bar Ai)

)2
−1

×
T

∑
t−1

(Ait − bar Ai)
2barYit − Tbar∆eµ (5)

βDOLS =

 1
N

N

∑
i=1

(
T

∑
t=1

(
Ait A′ it

))2
−1

N

∑
i=1

(
T

∑
t−1

(AitYit)

)
(6)

where Y is the dependent variable, and A represents the independent variables in the
proposed model.

3.7. Dumitrescu–Hurlin (D-H) Panel Causality Test

The basic requirement for performing the causality test is that all variables must be
stationary, as discussed in reference [74,75]. Dumitrescu and Hurlin [76] extend the existing
Granger causality test to estimate causality in panel data. This specific test is referred to
as the D-H panel causality test. It is applicable when the number of time periods (T) is
greater than the number of cross-sectional units (N), and when integrated variables are
measured at the first difference [75]. The Dumitrescu–Hurlin test calculates two distinct
statistics: W-bar and Z-bar. The W-bar statistic determines the mean test, whereas the Z-bar
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statistic represents a standardized normal distribution. The generic form of causality can
be described as Equation (7)

yit = αi +
K

∑
K=1

θik yi,t−k =
K

∑
K=1

ϕik Xi,t−k + εit (7)

The null hypothesis that there is no causal relationship between the variables can be
formulated as follows:

H0 : ψi1 = · · · = ψik = 0∇i = 1 . . . , N

The null hypothesis of uniform non-causality can be represented as

H1 : ψi1 = · · · = ψik = 0∇i = 1 . . . , N1

ψi1 6= 0 or . . . orψik 6= 0∇i = N1 + 1 . . . , N

This is related to the causality at the individual countries level and is shown
in Equation (8):

WHnc
N,T = N−1

N

∑
i=t

WI,T (8)

On the other hand, Z = harmonized statistics includes N = infinity and T = infinity
and adheres to the standard normal distribution as in Equation (9):

Z =

√
N
2K

.
(

WHnc
N,T −M

)
→ N(0, 1) (9)

4. Results and Discussion
4.1. Panel Unit Root Test

This study conducted panel unit root tests before proceeding with further analysis.
Two different unit root tests, IPS and ADF-Fisher, were conducted. The variables were tested
in their level and first differences to establish their stationarity. Al level, the null hypothesis
could not be rejected for most variables. However, when they were tested in their first
difference, they all satisfied the requirements of the study and can be considered stationary
with a 95% confidence interval. This gives the green light to conduct the regression analysis
for the study further. Variables that are not integrated can result in unreliable regression
analyses [77]. The results are presented in Table 3.

Table 3. Panel unit root test.

IPS- W-Stat ADF-Fisher

Level 1st Difference Level 1st Difference

Items Statistic Prob. ** Statistic Prob. ** Statistic Prob. Statistic Prob.
GDP 0.1936 0.5767 −6.9315 0.0000 *** 16.2748 0.8020 89.8302 0.0000 ***
GHG −3.0046 0.0013 *** −9.4100 0.0000 *** 50.3341 0.0005 125.8238 0.0000 ***

IT −0.5889 0.2780 −7.9166 0.0000 *** 32.0649 0.0763 * 105.6873 0.0000 ***
NRE −1.0612 0.1443 −9.7760 0.0000 *** 29.9676 0.1193 133.3991 0.0000 ***
RE 0.3246 0.6272 −6.8975 0.0000 *** 14.6542 0.8766 91.4663 0.0000 ***
UP −2.9923 0.0014 *** −4.6424 0.0000 *** 64.3328 0.0000 *** 70.2625 0.0000 ***

H0: series contains the unit root, and data is not stationary. Rejection of null Hypothesis at *** 1%, ** 5%, and * 10%.

The study moved ahead to assess the long-run co-integration connection within the
variables. To accomplish this, the Pedroni co-integration test by [78], is employed in this
study. This test utilizes eleven different statistics and operates within parametric and
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non-parametric frameworks. The analysis conducted within and between dimensions has
supported 6 out of the 11 tests. It can be concluded that all selected T-11 GHG African
countries exhibit long-term co-integration for the variables under investigation. Therefore,
it can be concluded that the selected T-11 GHG African countries demonstrate long-run co-
integration among all the variables. Additionally, to validate the results obtained through
the Pedroni test, the study employs the Kao panel co-integration technique developed by
Kao [79]. The outcome further confirms the Pedroni test. The results of the Pedroni and
Kao tests are displayed in Table 4.

Table 4. Pedroni and Kao Residual Co-integration Test.

Alternative Hypothesis: Common A.R. Coefs. (Within-Dimension)
Statistic Prob. Statistic Prob.

Panel v-Statistic 0.0354 0.4859 −0.6357 0.7375
Panel rho-Statistic −0.8204 0.2060 0.6856 0.7535
Panel PP-Statistic −7.2671 0.0000 *** −4.7823 0.0000 ***

Panel ADF-Statistic −7.8761 0.0000 *** −2.2296 0.0129 **
Alternative Hypothesis: individual A.R. Coefs. (Between-Dimension)

Statistic Prob.
Group rho-Statistic 1.5565 0.9402
Group PP-Statistic −6.5821 0.0000 ***

Group ADF-Statistic −2.0491 0.0202 **
Kao Residual Co-Integration Test

ADF −8.8741 0.0000 ***
H0: No co-integration among the variables. Note: *** 1%, and ** 5%. Reject null at 5%.

4.2. The Outcomes of DOLS and FMOLS Estimators

The subsequent stage involves calculating the long-term co-integration vector between
GHG emissions and their determining factors. This study’s FMOLS and DOLS estimations
used a pooled weighted estimating method that considered deterministic trends and constants.
The findings of the panel FMOLS and DOLS estimators for the chosen T-11 GHG African
countries are presented in Table 5 to see the effects of economic growth (GDP), information
technology (I.T.), non-renewable energy (NRE), renewable energy (RE), and urban population
(UP) on GHG emissions. All the variables are in their natural log form L.N.

Table 5. Regression results of FMOLS and DOLS.

Panel Fully Modified Least Squares (FMOLS) Panel Dynamic Least Squares (DOLS)

Variable Coefficient Prob. Outcome Coefficient Prob. Outcome

GDP 0.1708 0.0003 *** Significance 0.1294 0.0001 *** Significance
IT 0.0459 0.0000 *** Significance 0.0429 0.0000 *** Significance

NRE 0.6960 0.0000 *** Significance 0.6119 0.0000 *** Significance
RE −0.1145 0.0363 *** Significance −0.1957 0.0005 *** Significance
UP −0.6562 0.0147 ** Significance −0.7462 0.0022 *** Significance

R-squared 0.9915 0.9986
Adjusted R-squared 0.9911 0.9965

Note: Standard deviations are in parenthesis. *** 1%, and ** 5%. Reject at 5%.

Based on the statistical analysis, a positive correlation between the coefficient values
of NRE and GHG emissions was recorded. This means that if the non-renewable energy
factor increases by 1%, there will be a corresponding increase in GHG emissions by 0.6960%
(FMOLS) and 0.6119% (DOLS). The evidence suggests a strong relationship between NRE
and GHG emissions in selected T-11 GHG African countries. It strongly indicates that these
countries’ dependence on NRE has been detrimental to their sustainability levels. NRE
sources such as coal, oil, and natural gas contribute to the emission of GHG in several ways.
Firstly, the extraction, refining, and transportation of these fuels require heavy machinery
and vehicles emitting CO2 emissions and other greenhouse gases. Secondly, when these
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fuels are burned to generate electricity or for transport, they release CO2, methane, and
other poisonous gases into the atmosphere. Finally, producing and disposing of products
made from non-renewable sources also contributes to greenhouse gas emissions. Overall,
the continued use of NRE sources is a significant contributor to GHG emissions and
the associated consequences on the environment. This evidence is in line with a study
by [33,39,80,81], in contrast with [71,82], who found that NRE reduces GHG emissions.

The study found an adverse correlation linking the coefficient of urban population
and GHG emissions. This means that if the urban population factor increases by 1%, there
will be a corresponding reduction in GHG emissions by FMOLS (0.6562%) and DOLS
(0.7462%). A strong link between the urban population and GHG emissions was revealed.
The density of these countries has contributed to reducing their GHG emissions. An urban
population can significantly impact greenhouse gas emissions, which is not always positive.
Consequently, in the case of T-11 emissions countries, urban areas tend to have higher
energy consumption per capita than rural areas. This is due to factors such as increased
use of air conditioning and heating, more travel by car, and higher demand for goods
and services that require energy to produce and transport. In addition, urbanization can
lead to deforestation and loss of natural habitats, contributing to climate change. When
forests are destroyed to pave the way for the development of cities, the carbon stored
in the trees is released into the atmosphere. Furthermore, urbanization can disrupt the
water cycle and lead to soil erosion, further exacerbating climate change’s effects. This
trend in T-11 emissions urban areas will often result in higher levels of air pollution than
rural areas, which can contribute to respiratory and other health problems. This can lead
to increased healthcare costs, lost productivity, and increased greenhouse gas emissions
from healthcare facilities and transportation. This evidence is consistent with research
by [83,84], but contrary to [16,85], who demonstrated that urban population positively
influences CO2 emissions.

Considering the impact of RE, the coefficient is adversely correlated with GHG emis-
sions at a 5% significant level. Inferences can be drawn that a 1% increase in RE triggers
a decline in GHG emissions by 0.1145% (FMOLS) and 0.1957% (DOLS). Consequently,
RE sources can have a significant positive impact on reducing greenhouse gas emissions.
This indicates that these countries are greatly reducing their pollution levels. By replacing
fossil fuels with renewable energy, we can reduce the amount of carbon dioxide and other
harmful gases released into the atmosphere. However, there are some negative impacts to
consider. One potential downside is that renewable energy technologies require significant
energy and resources to manufacture, transport, and install. In addition, some renewable
energy projects can negatively impact local ecosystems and wildlife. Despite these chal-
lenges, renewable energy remains a critical tool in the fight against climate change. The
results are consistent with those of [1,9,85], who revealed that using RE causes a significant
reduction in CO2 emissions. A related finding is identified by [86], who found that RE
benefits the environment by reducing CO2 emissions. Furthermore, the findings corrob-
orate with those of [11,87], who showed that the utilization of RE lowers CO2 emissions.
Nevertheless, these results contradict those of [3,88], who demonstrated that RE does not
contribute to reducing CO2 emissions.

Furthermore, information technology positively influences GHG emissions. This
means that a 1% rise in information technology raises GHG emissions by 0.0459% (FMOLS)
and 0.0429% (DOLS). Therefore, the energy required to power data centres and other I.T.
infrastructure can be quite substantial, and if that energy comes from fossil fuels, it will
contribute to GHG emissions. A shift to producing green technologies is a necessity for
these countries to combat environmental pollution. Moreover, the production and disposal
of electronic devices can also impact the environment. Finally, increased remote work and
digital communication can reduce transportation and emissions from commuting and busi-
ness travel. This result is consistent with [1,62,89], who found that I.T. positively influences
CO2 emissions. Ref. [61] revealed that using the Internet reduces environmental quality.
Moreover, this finding corresponds to that of [90], who confirmed ICT to be detrimental to
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the environment in a study conducted in South and Southeast Asian countries. However,
these findings contradict the study of [53], who revealed that ICT helps to reduce the
probable harmful effects on the environment.

Lastly, according to the results, GDP (economic growth) positively influences GHG
emissions. The implication is that whenever GDP rises by 1%, there will be an up-
surge in GHG emissions by 0.1708% (FMOLS) and 0.1294% (DOLS). Studies includ-
ing [16,84,85,91,92] have also found a positive link between GDP and GHG emissions.
The impact of economic growth on GHG emissions can be explained in three ways. Firstly,
the effect of GDP on GHG emissions is through increased consumption. As GDP increases,
people tend to consume more goods and services, leading to more greenhouse gas emissions
from the production, transportation, and disposal of these goods and services. Furthermore,
the correlation between GDP and greenhouse gas emissions arises due to the rise in indus-
trialization and urbanization. As countries become more industrialized and urbanized,
they tend to emit more greenhouse gases due to increased energy use, transportation, and
waste generation. Finally, one important factor contributing to greenhouse gas emissions
is using energy-intensive technologies, which a nation’s GDP can influence. As nations
become more developed, they tend to rely on energy-intensive technologies such as fossil
fuels, which contribute significantly to greenhouse gas emissions. In summary, the essential
results discussed and signs (+/−) are highlighted in Figure 3.
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The study presented the results of the Variance Inflation Factor (VIF) analysis in Table 6.
O’Brien [93] indicated that the model is free from multicollinearity if the average VIF value
is less than 10. Based on the analysis, the study found that the average VIF value in our
model is less than three, which further solidifies the absence of multicollinearity. Therefore,
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based on these findings, we can confidently conclude that our model does not suffer from
the problem of multicollinearity.

Table 6. VIF outcomes.

Variable VIF

LNGDP 1.3801
LNIT 1.0875

LNNRE 2.5432
LNRE 2.0496
LNUP 1.3817

4.3. Dumitrescu–Hurlin Panel Causality Results

The essential requirement for performing the causality test is that all variables must
be stationary, as discussed in references [74,75]. In this study, the selected determinants
were stationary after applying the first difference. An extended version of the Granger
co-integration test described in Dumitrescu–Hurlin [76] is used to estimate the causal link
among the selected variables. The Dumitrescu–Hurlin test calculates two distinct statistics:
W-bar and Z-bar. The W-bar statistic determines the mean test, whereas the Z-bar statistic
represents a standardized normal distribution. Establishing the direction of causality is
beneficial for policymaking, as it will allow them to suggest appropriate sustainable policies
and environmental strategies for the selected T-11 GHG African countries.

Table 7 shows the causal relationships between GHG emissions and their determinants.
All determinants are in their natural logarithmic form. It shows a bi-directional causality
between GDP and GHG emissions in T-11 GHG African countries. This implies that
any variation in GDP would lead to a variation in GHG emissions and reciprocally. Put
simply, environmental development policies and GDP work together. This result supports
the findings of [1,94–96], where the authors found a bidirectional relationship between
urban population and GDP. However, this result corresponds with [84]. They also found
bidirectional causality between I.T. and GHG emissions, with corresponding feedback from
GHG emissions to I.T. There is also bidirectional causality between I.T. and GDP. This
relationship between the variables suggests that I.T. and GDP are Granger causes of each
other. This result is consistent with [84,97,98]. A bidirectional causal link between RE and
GHG emissions was recorded, with corresponding feedback from GHG emissions to RE.
This result is consistent with [99]. In addition, there is a bi-directional causality between
RE and GDP. This relationship between the variables in question shows that RE and GDP
Granger cause each other. This result is consistent with [47,100].

The study finds a bidirectional causality between NRE and GHG emissions, with
corresponding feedback from GHG emissions to NRE. There is also a bidirectional causality
between RE and GDP. This relationship between the variables suggests that RE and GDP
Granger cause each other. This result is consistent with [44]. Also, bidirectional causal links
between RE and GHG emissions were observed, with corresponding feedback from GHG
emissions to NRE. This finding is in tandem with [44,99]. In addition, there is a bidirectional
causality between UP and NRE. This relationship between the variables suggests that UP
and NRE Granger cause each other. There is bidirectional causality between UP and RE.
This relationship between the variables indicates that UP and RE Granger cause each other.
This evidence corroborates with [85]. A unidirectional link is recorded from RE to I.T.,
which signifies that RE Granger causes I.T. while I.T. does not Granger cause it. Similarly,
GDP does not Granger cause UP, but UP causes GDP. This describes that UP supports GDP,
but GDP does not support UP. This result is in tandem with [84]. The one-way causal link
from RE to I.T. is also examined. Lastly, RE Granger causes NRE.
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Table 7. Pairwise Dumitrescu–Hurlin Panel Causality Tests.

No Null Hypothesis: W-Stat. Z-Bar Outcome

1 LNGDP ——> LNGHG 4.0755 0.0086 Yes
2 LNGHG ——> LNGDP 3.7737 0.0272 Yes
3 LNIT ——> LNGHG 4.5849 0.0009 Yes
4 LNGHG ——> LNIT 4.7591 0.0003 Yes
5 LNNRE ——> LNGHG 8.0344 0.0000 Yes
6 LNGHG ——> LNNRE 3.5226 0.0628 Yes
7 LNRE ——> LNGHG 6.3518 0.0000 Yes
8 LNGHG ——> LNRE 4.4259 0.0018 Yes
9 LNUP ——> LNGHG 5.4818 0.0000 Yes
10 LNGHG ——> LNUP 5.0082 0.0001 Yes
11 LNIT ——> LNGDP 4.7435 0.0004 Yes
12 LNGDP ——> LNIT 3.4674 0.0744 Yes
13 LNNRE ——> LNGDP 6.0795 0.0000 Yes
14 LNGDP ——> LNNRE 5.3937 0.0000 Yes
15 LNRE ——> LNGDP 5.1344 0.0000 Yes
16 LNGDP ——> LNRE 5.0752 0.0001 Yes
17 LNUP ——> LNGDP 7.5896 0.0000 Yes
18 LNGDP ——> LNUP 3.0941 0.2055 No
19 LNNRE ——> LNIT 4.4782 0.0014 Yes
20 LNIT ——> LNNRE 4.8833 0.0002 Yes
21 LNRE ——> LNIT 5.0302 0.0001 Yes
22 LNIT ——> LNRE 2.6459 0.5196 No
23 LNUP ——> LNIT 9.5478 0.0000 Yes
24 LNIT ——> LNUP 3.0224 0.2434 No
25 LNRE ——> LNNRE 3.8657 0.0195 Yes
26 LNNRE ——> LNRE 3.1314 0.1876 No
27 LNUP ——> LNNRE 5.0329 0.0001 Yes
28 LNNRE ——> LNUP 5.6135 0.0000 Yes
29 LNUP ——> LNRE 3.8915 0.0177 Yes
30 LNRE ——> LNUP 7.7129 0.0000 Yes

5. Conclusions and Policy Implications
5.1. Conclusions

This study provides an in-depth examination into the role of energy structures on
environmental pollution in Africa. Specifically, the study examines the impact of RE, NRE,
and I.T. on GHG emissions using T-11 GHG-emitting countries in Africa from 1990–2020.
This study further investigates the effects of economic growth and urban population on
greenhouse gas emissions. To examine the impact of selected factors on GHG emissions for
the T-11 GHG countries in Africa, this paper applies panel co-integration, i.e., Pedroni and
Kao. Similarly, DOLS and FMOLS estimation are used to examine the long-run associations
of the explanatory variables. In addition, this study adopts the D-H panel causality test
to test the causal association between variables. The empirical results indicate that non-
renewable energy boosts greenhouse gas emissions in T-11 GHG African countries. The
finding indicates that the urban population decreases the degree of GHG emissions in the
long run. Therefore, in the case of T-11 emissions countries, their urban areas tend to have
higher energy consumption per capita than rural areas. The finding reveals that RE reduces
the degree of GHG emissions in the long run. Again, the study found that information
technology causes GHG emissions to rise in T-11 GHG-emitting African countries. Lastly,
the finding shows that GDP increases GHG emissions. Based on the D-H panel causality
test, the study shows bi-directional causality between GDP and GHG emissions in T-11
GHG African countries. The finding also indicates bidirectional causality between I.T.
and GHG emissions, with corresponding feedback from GHG emissions to I.T. Again,
a bidirectional causal link was identified between GHG emissions and RE, with related
feedback from GHG emissions to RE. Finally, the study discovers a bidirectional causality
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between NRE and GHG emissions, with corresponding feedback from GHG emissions to
NRE. Based on these findings, this study proposes the following policy implications.

5.2. Managerial Policy Implications/Recommendations

To begin with, the results indicated that non-renewable energy performs well in
boosting greenhouse gas emissions in T-11 GHG African countries. The study recommends
that policymakers in these countries focus on achieving a diversified energy mix and
transitioning to cleaner and renewable energy sources. This may include promoting
research and development of renewable energy technologies, encouraging investment in
renewable energy infrastructure, and setting targets for renewable energy consumption.
Governments in these countries should implement stricter regulations and enforce emission
reduction targets for industries that rely heavily on non-renewable energy sources. This
could include setting limits on GHG emissions and imposing penalties for non-compliance.

Again, it is recommended that policymakers in these nations seek to facilitate the
transition from NRE to RE sources in a way that considers the economic impact. This may
include creating job training programs for workers in non-renewable energy industries to
transition to clean energy sectors and providing financial support to communities that rely
heavily on non-renewable energy.

Moreover, the finding reveals that renewable energy decreases the degree of GHG
emissions in the long run. Policymakers in these countries should prioritize the develop-
ment of renewable energy sources by establishing supportive policies and programs. These
may include incentives for investment in renewable technologies, the establishment of
funds to support research and development, and the provision of financial incentives for
adopting RE sources.

In addition, the study recommends that policymakers in these countries must de-
velop and/or strengthen regulatory frameworks to support the transition to renewable
energy. Governments must establish policies that incentivize a shift toward renewable
energy and discourage conventional power generation. This may include setting emission
limits, ensuring compliance, and rigorously enforcing renewable energy targets. Poli-
cymakers in these countries should prioritize educating the public about the benefits of
renewable energy and reducing greenhouse gas emissions. Public awareness campaigns,
energy-efficiency programs, and school education to promote sustainable and clean energy
sources are great avenues. The need to encourage and support innovation in renewable
energy technologies must be prioritized in these countries. R&D efforts should focus on
improving the efficiency and effectiveness of RE sources, as highlighted in the studies
of [101–104]. Green innovation can eradicate the energy crisis, which eventually affects
GHG. This may include researching and promoting fuel cells, solar power generation, wind,
and wave power.

Lastly, the study found that information technology increases GHG emissions in T-11
GHG-emitting African countries. Governments of these countries should foster the use of
sustainable practices and policies among information technology companies by implement-
ing programs such as recycling, refurbishing, and disposing of electronic equipment. In
this quest, funding for research and development to enhance the use of green technology
must be provided. This may include research into new technological solutions to reduce
GHG emissions associated with information technology, such as IoT technologies that
help monitor and conserve energy. This study recommends that policymakers promote
international cooperation and collaboration to develop standards and policies that reduce
technology-related GHG emissions.
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