Recent Studies and Technologies in the Separation of Polyvinyl Chloride for Resources Recycling: A Systematic Review
Abstract
:1. Introduction
2. Review Methods
3. Selective Comminution
4. Gravity Separation
5. Magnetic Separation
6. Electrical Separation
Separators | Charging Mechanism | Moving Mechanism | Samples | Size [mm] | Purity [%] | Recovery [%] | Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PVC | PP | PE | PET | PA | PC | ABS | Others | Metals | |||||||
Tribo-electric separator | Fluidized bed | Free fall | √ | √ | 3.0–5.0 | N/A | 98 | [34] | |||||||
√ | 0.01–0.1 | N/A | 90 | [38] | |||||||||||
√ | √ | 2.0–2.5 | N/A | 90 | [39] | ||||||||||
√ | √ | 2.0–2.5 | N/A | 92 | [39] | ||||||||||
√ | √ | 6.5–10 | 98 | 66 | [41] | ||||||||||
√ | √ | 3.5–6.5 | 91 | 77 | [41] | ||||||||||
√ | √ | √ | 3.5–10 | N/A | 77 | [41] | |||||||||
Drum-type | √ | √ | 2.0–2.8 | N/A | 96 | [42] | |||||||||
√ | √ | 0.02 | N/A | 95 | [43] | ||||||||||
√ | √ | √ | 2.7–4.0 | N/A | <50 | [44] | |||||||||
Belt-type | √ | √ | √ | √ | 1.0–2.0 | 93 | N/A | [40] | |||||||
Propeller charging | Free fall | √ | √ | 3.0–5.0 | N/A | 97 | [34] | ||||||||
Cyclone charging | Free fall | √ | √ | √ | √ | √ | √ | <5.0 | N/A | N/A | [35] | ||||
Vibrating charging | Free fall | √ | √ | √ | √ | √ | √ | <5.0 | N/A | N/A | [35] | ||||
√ | √ | 3.0–5.0 | N/A | 85 | [34] | ||||||||||
Corona charging | Belt-type | √ | √ | √ | 1.6–3.2 | N/A | 50–100 | [36] | |||||||
√ | √ | √ | √ | 1.6–3.2 | 96 | 99 | [36] | ||||||||
Friction rotating drum charging | Drum-type | √ | √ | √ | 4.0–8.0 | 97 | 41 | [37] | |||||||
Electrostatic adhesion | No charging | Vibrating inclined plane-type | √ | √ | √ | 0.5–5.0 | 99 | 95–100 | [45] | ||||||
Electrostatic separator | No charging | Drum-type | √ | √ | 2.0–5.0 | N/A | 100 | [46] |
7. Sorting Using Electromagnet Wave Sorting
8. Flotation
8.1. Flotation with Surfactants
8.2. Flotation without Surfactants
8.2.1. Pretreatment Using Reagents
8.2.2. Pretreatment with Fenton Reaction
8.2.3. Pretreatment with Thermal heat Treatment (Mild Heat and Microwave)
8.2.4. Pretreatment with Corona Discharge
9. Density-Surface-Based Separation
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Key Figures of the European Plastics Industry. In Plastics—The Facts 2022; Plastics Europe: Brussels, Belguim, 2022; Available online: https://plasticseurope.org/wp-content/uploads/2021/09/Plastics_the_facts-WEB-2020_versionJun21_final.pdf (accessed on 25 June 2023).
- Rafey, A.; Pal, K.; Bohre, A.; Modak, A.; Pant, K.K. A State-of-the-Art Review on the Technological Advancements for the Sustainable Management of Plastic Waste in Consort with the Generation of Energy and Value-Added Chemicals. Catalysts 2023, 13, 420. [Google Scholar] [CrossRef]
- Miliute-Plepiene, J.; Fråne, A.; Almasi, A.M. Overview of polyvinyl chloride (PVC) waste management practices in the Nordic countries. Clean. Eng. Technol. 2021, 4, 100246. [Google Scholar] [CrossRef]
- Onwudili, J.A.; Insura, N.; Williams, P.T. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. J. Anal. Appl. Pyrol. 2009, 86, 293–303. [Google Scholar] [CrossRef]
- Miandad, R.; Barakat, M.A.; Aburiazaiza, A.S.; Rehan, M.; Nizami, A.S. Catalytic pyrolysis of plastic waste: A review. Process Saf. Environ. 2016, 102, 822–838. [Google Scholar] [CrossRef]
- Xia, Y.; Niu, S.; Yu, J. Microplastics as vectors of organic pollutants in aquatic environment: A review on mechanisms, numerical models, and influencing factors. Sci. Total Environ. 2023, 887, 164008. [Google Scholar] [CrossRef]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B 2009, 364, 2115–2126. [Google Scholar] [CrossRef]
- Xu, S.-Y.; Zhang, H.; He, P.-J.; Shao, L.-M. Leaching behavior of bisphenol A from municipal solid waste under landfill environment. Environ. Technol. 2011, 32, 1269–1277. [Google Scholar] [CrossRef]
- Tsunekawa, M.; Ito, M.; Yuta, S.; Tomoo, S.; Hiroyoshi, N. Removal of lead compounds from polyvinylchloride in electric wires and cables using cation-exchange resin. J. Hazard. Mater. 2011, 191, 388–392. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/post2015/summit (accessed on 29 June 2023).
- Andrady, A.L.; Neal, M.A.; Ji, R. Applications and societal benefits of plastics. Philos. Trans. R. Soc. B 2019, 374, 20180198. [Google Scholar] [CrossRef]
- Lange, J.-P. Managing Plastic Waste—Sorting, Recycling, Disposal, and Product Redesign. ACS Sustain. Chem. Eng. 2021, 9, 15722–15738. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Park, I.; Phengsaart, T.; Jeon, S.; Villacorte-Tabelin, M.; Alonzo, D.; Yoo, K.; Ito, M.; Hiroyoshi, N. Copper and critical metals production from porphyry ores and E-wastes: A review of resources availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recy. 2021, 170, 105610. [Google Scholar] [CrossRef]
- Silwamba, M.; Ito, M.; Hiroyoshi, N.; Tabelin, C.B.; Fukushima, T.; Park, I.; Jeon, S.; Igarashi, T.; Sato, T.; Nyambe, I.; et al. Detoxification of lead-bearing zinc plant leach residues from Kabwe, Zambia by coupled extraction-cementation method. J. Environ. Chem. Eng. 2020, 8, 104197. [Google Scholar] [CrossRef]
- Wu, P.; Tang, Y.; Jin, H.; Song, Y.; Liu, Y. Consequential fate of bisphenol-attached PVC microplastics in water and simulated intestinal fluids. Environ. Sci. Ecotechnol. 2020, 2, 100027. [Google Scholar] [CrossRef] [PubMed]
- Jordan, V.C. The New Biology of Estrogen-induced Apoptosis Applied to Treat and Prevent Breast Cancer. Endocr. Relat. Cancer 2023, 22, R1–R31. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Y.; Huang, X.; Li, S.; Zhang, Z.; Zhan, A. Incorporating adaptive genomic variation into predictive models for invasion risk assessment. Environ. Sci. Ecotechnol. 2024, 18, 100299. [Google Scholar] [CrossRef]
- Lewandowski, K.; Skórczewska, K.A. Brief Review of Poly(Vinyl Chloride) (PVC) Recycling. Polymers 2022, 14, 3035. [Google Scholar] [CrossRef]
- Lu, L.; Li, W.; Cheng, Y.; Liu, M. Chemical recycling technologies for PVC waste and PVC-containing plastic waste: A review. Waste Manag. 2023, 166, 245–258. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Wang, H. Surface Reactions in Selective Modification: The Prerequisite for Plastic Flotation. Environ. Sci. Technol. 2020, 54, 9742–9756. [Google Scholar] [CrossRef]
- Jehanno, C.; Alty, J.W.; Roosen, M.; Meester, S.D.; Dove, A.P.; Chen, E.Y.; Leibfarth, F.A.; Sardon, H. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022, 603, 803–814. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R. The place of systematic reviews in education research. Br. J. Educ. Stud. 2005, 53, 399–416. [Google Scholar] [CrossRef]
- Jindal-Snape, D.; Hannah, E.F.S.; Cantali, D.; Barlow, W.; MacGillivray, S. Systematic literature review of primary–secondary transitions: International research. Rev. Educ. 2020, 8, 526–566. [Google Scholar] [CrossRef]
- Kumar, H.; Kumagai, S.; Kameda, T.; Saito, Y.; Yoshioka, T. Highly efficient recovery of high-purity Cu, PVC, and phthalate plasticizer from waste wire harnesses through PVC swelling and rod milling. React. Chem. Eng. 2020, 5, 1805–1813. [Google Scholar] [CrossRef]
- Quelal, W.O.M.; Velázquez-Martí, B.; Gisbert, A.F. Separation of virgin plastic polymers and post-consumer mixed plastic waste by sinking-flotation technique. Environ. Sci. Pollut. Res. 2022, 29, 1364–1374. [Google Scholar] [CrossRef]
- Yuan, H.; Fu, S.; Tan, W.; He, J.; Wu, K. Study on the hydrocyclonic separation of waste plastics with different density. Waste Manag. 2015, 45, 108–111. [Google Scholar] [CrossRef]
- Gent, M.; Sierra, H.M.; Menéndez, M.; de Cos Juez, F.J. Evaluation of ground calcite/water heavy media cyclone suspensions for production of residual plastic concentrates. Waste Manag. 2018, 71, 42–51. [Google Scholar] [CrossRef]
- Lupo, E.; Moroni, M.; Marca, F.L.; Fulco, S.; Pinzi, V. Investigation on an innovative technology for wet separation of plastic wastes. Waste Manag. 2016, 51, 3–12. [Google Scholar] [CrossRef]
- Pita, F.; Castilho, A. Influence of shape and size of the particles on jigging separation of plastics mixture. Waste Manag. 2016, 48, 89–94. [Google Scholar] [CrossRef]
- Phengsaart, T.; Ito, M.; Kimura, S.; Azuma, A.; Hori, K.; Tanno, H.; Jeon, S.; Park, I.; Tabelin, C.B.; Hiroyoshi, N. Development of a restraining wall and screw-extractor discharge system for continuous jig separation of mixed plastics. Miner. Eng. 2021, 168, 106918. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Xie, J.; Zhang, C.; Fu, J.; Fu, J.; Zhao, P. Automatic magnetic projection for one-step separation of mixed plastics using ring magnets. Sci. Total Environ. 2021, 786, 147217. [Google Scholar] [CrossRef] [PubMed]
- Boukhoulda, M.F.; Rezoug, M.; Aksa, W.; Miloudi, M.; Medles, K.; Dascalescu, L. Triboelectrostatic separation of granular plastics mixtures from waste electric and electronic equipment. Part. Sci. Technol. 2017, 35, 621–626. [Google Scholar] [CrossRef]
- Li, J.; Wu, G.; Xu, Z. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation. Waste Manag. 2015, 35, 36–41. [Google Scholar] [CrossRef]
- Li, J.; Gao, K.; Xu, Z. Charge-decay electrostatic separation for removing Polyvinyl chloride from mixed plastic wastes. J. Clean. Prod. 2017, 157, 148–154. [Google Scholar] [CrossRef]
- Li, T.; Yu, D.; Zhang, H. Triboelectrostatic separation of polypropylene, polyurethane, and polyvinylchloride used in passenger vehicles. Waste Manag. 2018, 73, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Brahami, Y.; Tilmatine, A.; Bendimerad, S.-E.; Miloudi, M.; Zelmat, M.E.-M.; Dascalescu, L. Tribo-aero-electrostatic Separation of Micronized Mixtures of Insulating Materials using “Back-and-Forth” Moving Vertical Electrodes. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2. [Google Scholar] [CrossRef]
- Fekir, D.E.; Miloudi, M.; Kimi, I.; Miloua, F.; Tilmatine, A. Experimental and numerical analysis of a new tribo-electrostatic separator with coaxial cylindrical electrodes for plastic binary granular mixtures. J. Electrostat. 2020, 108, 103523. [Google Scholar] [CrossRef]
- Messafeur, R.; Mahi, I.; Ouiddir, R.; Medles, K.; Dascalescu, L.; Tilmatine, A. Tribo-electrostatic separation of a quaternary granular mixture of plastics. Part. Sci. Technol. 2019, 37, 764–769. [Google Scholar] [CrossRef]
- Rodrigues, B.M.; Saron, C. Electrostatic separation of polymer waste by tribocharging system based on friction with PVC. Int. J. Environ. Sci. Technol. 2022, 19, 1293–1300. [Google Scholar] [CrossRef]
- Silveira, A.V.M.; Cella, M.; Tanabe, E.H.; Bertuol, D.A. Application of tribo-electrostatic separation in the recycling of plastic wastes. Process Saf. Environ. Prot. 2018, 114, 219–228. [Google Scholar] [CrossRef]
- Zelmat, M.E.-M.; Tilmatine, A.; Touhami, S.; Bendaoud, A.; Medles, K.; Ouiddir, R.; Dascalescu, L. Experimental investigation of a new Tribo-Aeroelectrostatic separation process for micronized plastics from WEEE. IEEE Trans. Ind. Appl. 2017, 53, 4950–4956. [Google Scholar] [CrossRef]
- Żenkiewicz, M.; Żuk, T.; Pietraszek, J.; Rytlewski, P.; Moraczewski, K.; Stepczyńska, M. Electrostatic separation of binary mixtures of some biodegradable polymers and poly(vinyl chloride) or poly(ethylene terephthalate). Polimery 2016, 61, 835–843. [Google Scholar] [CrossRef]
- Louati, H.; Zouzou, N.; Tilmatine, A.; Zouaghi, A.; Ouiddir, R. Experimental investigation of an electrostatic adhesion device used for metal/polymer granular mixture sorting. Powder Technol. 2021, 391, 301–310. [Google Scholar] [CrossRef]
- Richard, G.; Salama, A.; Medles, K.; Zeghloul, T.; Dascalescu, L. Comparative study of three high-voltage electrode configurations for the electrostatic separation of aluminum, copper and PVC from granular WEEE. J. Electrostat. 2017, 88, 29–34. [Google Scholar] [CrossRef]
- Duan, Q.; Li, J. Classification of common household plastic wastes combining multiple methods based on near-infrared spectroscopy. ACS EST Eng. 2021, 1, 1065–1073. [Google Scholar] [CrossRef]
- Peng, X.; Xu, B.; Xu, Z.; Yan, X.; Zhang, N.; Qin, Y.; Ma, Q.; Li, J.; Zhao, N.; Zhang, Q. Accuracy improvement in plastics classification by laser-induced breakdown spectroscopy based on a residual network. Opt. Express 2021, 29, 33269–33280. [Google Scholar] [CrossRef]
- Truc, N.T.T.; Lee, B.-K. Sustainable and selective separation of PVC and ABS from a WEEE plastic mixture using microwave and/or mild-heat treatment with froth flotation. Environ. Sci. Technol. 2016, 50, 10580–10587. [Google Scholar] [CrossRef]
- Guney, A.; Poyraz, M.I.; Kangal, O.; Burat, F. Investigation of thermal treatment on selective separation of postconsumer plastics prior to froth flotation. Waste Manag. 2013, 33, 1795–1799. [Google Scholar] [CrossRef]
- Guney, A.; Ozdilek, C.; Kangal, M.O.; Burat, F. Flotation characterization of PET and PVC in the presence of different plasticizers. Sep. Purif. Technol. 2015, 151, 47–56. [Google Scholar] [CrossRef]
- Yenial, U.; Kangal, O.; Guney, A. Selective flotation of PVC using gelatin and lignin alkali. Waste Manag. Res. 2013, 31, 613–617. [Google Scholar] [CrossRef]
- Negari, M.S.; Movahed, S.O.; Ahmadpour, A. Separation of polyvinylchloride (PVC), polystyrene (PS) and polyethylene terephthalate (PET) granules using various chemical agents by flotation technique. Sep. Purif. Technol. 2018, 194, 368–376. [Google Scholar] [CrossRef]
- Yuce, A.E.; Killic, M. Separation of PVC/PET mixture from plastic waste using column flotation technique. J. Environ. Prot. Ecol. 2015, 16, 705–715. [Google Scholar]
- Yenial, U.; Burat, F.; Yuce, A.E.; Guney, A.; Kangal, M.O. Separation of PET and PVC by flotation technique without using alkaline treatment. Miner. Process. Extr. Metall. Rev. 2013, 34, 412–421. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.Q.; Fu, J.G.; Gu, G.H. Flotability and flotation separation of polymer materials modulated by wetting agents. Waste Manag. 2014, 34, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Pita, F.; Castilho, A. Separation of plastics by froth flotation. The role of size, shape and density of the particles. Waste Manag. 2017, 60, 91–99. [Google Scholar] [CrossRef]
- Pita, F.; Castiho, A. Plastics floatability: Effect of saponin and sodium lignosulfonate as wetting agents. Polimeros 2019, 29, e2019035. [Google Scholar] [CrossRef]
- Ghinea, C.; Paduret, S. Separation of waste plastic resulting from electrical products by forced aeration flotation. Ovidius Univ. Ann. Chem. 2021, 32, 104–109. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Wang, L.; Wang, H. Application of froth flotation in the separation of polyvinyl chloride and polycarbonate for recycling of waste plastic based on a novel surface modification. Waste Manag. 2020, 110, 43–52. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Yue, D. Optimizing green ferrate (VI) modification towards flotation separation of waste polyvinylchloride and acrylonitrile-butadiene-styrene mixtures. Waste Manag. 2020, 101, 83–93. [Google Scholar] [CrossRef]
- Wang, C.-Q.; Wang, H.; Huang, L.-L. A novel process for separation of polycarbonate, polyvinyl chloride and polymethyl methacrylate waste plastics by froth flotation. Waste Manag. 2017, 65, 3–10. [Google Scholar] [CrossRef]
- Huang, L.; Wang, H.; Wang, C.; Zhao, J.; Zhang, B. Microwave-assisted surface modification for the separation of polycarbonate from polymethylmethacrylate and polyvinyl chloride waste plastics by flotation. Waste Manag. Res. 2017, 35, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, Y.; Guo, C.; Zhong, Y.; Wang, K.; Wang, H. Separation of polyvinyl chloride from waste plastic mixtures by froth flotation after surface modification with sodium persulfate. J. Clean. Prod. 2019, 21, 167–172. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Wang, H.; Luo, M. Separation of polyvinylchloride and acrylonitrile-butadiene-styrene combining advanced oxidation by S2O82−/Fe2+ system and flotation. Waste Manag. 2019, 91, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, H.; Wang, H.; Wang, C. Separation of hazardous polyvinyl chloride from waste plastics by flotation assisted with surface modification of ammonium persulfate: Process and mechanism. J. Hazard. Mater. 2020, 389, 121918. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, Y.; Zhong, Y.; Luo, M.; Du, Y.; Wang, L.; Wang, H. Flotation separation of polyethylene terephthalate from waste packaging plastics through ethylene glycol pretreatment assisted by sonication. Waste Manag. 2020, 105, 309–316. [Google Scholar] [CrossRef]
- Pita, F.; Castilho, A. Separation of PET from other plastics by flotation combined with alkaline pretreatment. Polímeros 2020, 30, e2020026. [Google Scholar] [CrossRef]
- Carvalho, M.T.; Ferreira, C.; Santos, L.R.; Paiva, M.C. Optimization of Froth Flotation Procedure for Poly(ethylene terephthalate) Recycling Industry. Polym. Eng. Sci. 2012, 52, 157–164. [Google Scholar] [CrossRef]
- Shafeeq, M.; Aslam, R.; Shahid, S.A.; Muhammad, A.; Ijaz, A.; Ali, A.M.; Ullah, I.; Mushtaq, M.; Rashid, U. Poly(vinyl alcohol): An Economical Substitute to Calcium Lignosulphonate for PVC/PET Separation by Froth Flotation. Asian J. Chem. 2013, 25, 7509–7512. [Google Scholar] [CrossRef]
- Saisinchai, S. Separation of PVC from PET/PVC Mixtures Using Flotation by Calcium Lignosulfonate Depressant. Eng. J. 2014, 18, 45–53. [Google Scholar] [CrossRef]
- Wang, C.Q.; Wang, H.; Liu, Y.N. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry. Waste Manag. 2015, 35, 42–47. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Fu, J.; Zhang, L.; Luo, C.; Liu, Y. Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling. Waste Manag. 2015, 45, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, H.; Lui, Y.; Huang, L. Optimization of surface treatment for flotation separation of polyvinyl chloride and polyethylene terephthalate waste plastics using response surface methodology. J. Clean. Prod. 2016, 139, 866–872. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Wang, K.; Wang, H.; Wang, C. Green flotation of polyethylene terephthalate and polyvinyl chloride assisted by surface modification of selective CaCO3 coating. J. Clean. Prod. 2020, 242, 118441. [Google Scholar] [CrossRef]
- Truc, N.T.T.; Le, H.A.; Nguyen, D.T.; Pham, T.-D. Novel method for sustainable and selective separation of PVC and PET by the homogeneous dissociation of H2O2 using ultrasonication. J. Mater. Cycles Waste Manag. 2019, 21, 1085–1094. [Google Scholar] [CrossRef]
- Truc, N.T.T.; Lee, B.-K. Sustainable hydrophilization to separate hazardous chlorine PVC from plastic wastes using H2O2/ultrasonic irrigation. Waste Manag. 2019, 88, 28–38. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Wang, C.; Wang, H. A clean and efficient flotation towards recovery of hazardous polyvinyl chloride and polycarbonate microplastics through selective aluminum coating: Process, mechanism, and optimization. J. Environ. Manag. 2021, 299, 113626. [Google Scholar] [CrossRef]
- Mallampati, S.R.; Heo, J.H.; Park, M.H. Hybrid selective surface hydrophilization and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite. J. Hazard. Mater. 2016, 306, 13–23. [Google Scholar] [CrossRef]
- Mallampati, S.R.; Lee, B.H.; Mitoma, Y.; Simom, C. Selective sequential separation of ABS/HIPS and PVC from automobile and electronic waste shredder residue by hybrid nano-Fe/Ca/CaO assisted ozonisation process. Waste Manag. 2017, 60, 428–438. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Wang, C.; Zhang, L.; Wang, T.; Zheng, L. A novel process for separation of hazardous poly(vinyl chloride) from mixed plastic wastes by froth flotation. Waste Manag. 2017, 69, 59–65. [Google Scholar] [CrossRef]
- Wang, J.-C.; Wang, H. Fenton treatment for flotation separation of polyvinyl chloride from plastic mixtures. Sep. Purif. Technol. 2017, 187, 415–425. [Google Scholar] [CrossRef]
- Wang, J.-C.; Wang, H.; Huang, L.-L.; Wang, C.-Q. Surface treatment with Fenton for separation of acrylonitrile-butadienestyrene and polyvinylchloride waste plastics by flotation. Waste Manag. 2017, 67, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, H.; Wang, H.; Wang, C.; Du, Y.; Wang, L. Flotation separation of polystyrene and polyvinyl chloride based on heterogeneous catalytic Fenton and green synthesis of nanoscale zero valent iron (GnZVI). J. Clean. Prod. 2020, 267, 122116. [Google Scholar] [CrossRef]
- Truc, N.T.T.; Lee, C.-H.; Lee, B.-K.; Mallampati, S.R. Development of hydrophobicity and selective separation of hazardous chlorinated plastics by mild heat treatment after PAC coating and froth flotation. J. Hazard. Mater. 2017, 321, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Mallampati, S.R.; Lee, C.-H.; Park, M.H.; Lee, B.-K. Processing plastics from ASR/ESR waste: Separation of poly vinyl chloride (PVC) by froth flotation after microwave-assisted surface modification. J. Mater. Cycles Waste Manag. 2018, 20, 91–99. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, F.; Guo, L.; Singh, S.; Zhang, H.; Zhang, J. Flotation separation of hazardous polyvinyl chloride from waste plastics based on green plasma modification. J. Clean. Prod. 2021, 318, 128569. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, F.; Guo, L.; Zhang, J.; Zhang, H.; Abdelaziz, I.I.M.; Ghazali, K.H. Flotation separation of poly (ethylene terephthalate and vinyl chloride) mixtures based on clean corona modification: Optimization using response surface methodology. Waste Manag. 2021, 136, 184–194. [Google Scholar] [CrossRef]
- Baigabelov, A.; Das, A.; Young, C. Integrated density concentration and surface treatment for selective separation of plastics from a mixture. J. Mater. Cycles Waste Manag. 2021, 23, 2162–2178. [Google Scholar] [CrossRef]
- Ito, M.; Takeuchi, M.; Saito, A.; Murase, N.; Phengsaart, T.; Tabelin, C.B.; Hiroyoshi, N.; Tsunekawa, M. Improvement of hybrid jig separation efficiency using wetting agents for the recycling of mixed-plastic wastes. J. Mater. Cycles Waste Manag. 2019, 21, 1376–1383. [Google Scholar] [CrossRef]
- Ito, M.; Saito, A.; Murase, N.; Phengsaart, T.; Kimura, S.; Kitajima, N.; Takeuchi, M.; Tabelin, C.B.; Hiroyoshi, N. Estimation of hybrid jig separation efficiency using a modified concentration criterion based on apparent densities of plastic particles with attached bubbles. J. Mater. Cycles Waste Manag. 2020, 22, 2071–2080. [Google Scholar] [CrossRef]
Technique | Density [g/cm3] | Size [mm] | Conditioning Details | Purity [%] | Recovery [%] | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PVC | PP | PE | PET | PS | PC | ABS | ||||||
Sink–float | 1.35 | 0.91 | 0.95 | 1.35 | 1.04 | 1.20 | 1.07 | 3.0 | Tap water (Density = 1.00 g/cm3) | N/A | 84.6 | [27] |
Cyclone with suspension media | 1.44 | – | – | 1.34 | – | – | – | 0.75 | NaOH (Density = 1.09; 1.10; 1.18 g/cm3) | 94.6 | 87.5 | [28] |
Cyclone with suspension media (LARCODEMS) | 1.44 | – | – | 1.36 | 1.05 | 1.20 | 1.05 | 2.0–4.0 | Suspension prepared from CaCl2 (Density = 1.30 g/cm3) | 100.0 | 100.0 | [29] |
Hydraulic separator | 1.61 | – | – | – | – | 1.21 | – | 2.0–4.8 | Suspension prepared from ground calcite (Density = 1.09; 1.18; 1.27 g/cm3) | 99.9 | 99.7 | [30] |
Jig | 1.28 | – | – | – | 1.05 | – | – | 1.0–5.6 | Frequency of diaphragm movement 30 cycles/min; water displacement 30 mm | 99.3 | 82.2 | [31] |
1.38 | – | – | 1.31 | – | – | – | 2.0–8.0 | Vary the water flowrate in multidune (700–1400 cm3/s) | 94.3 | N/A | [32] |
Flotation Type | Reagents | Concentration | Condition Time [min] | Samples | Size [mm] | Purity [%] | Recovery [%] | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PVC | PET | PS | PC | ABS | Others | ||||||||
Direct | LA Gelatin | 250 g/t 1250 g/t | 3 | √ | √ | 2.0–3.4 | 98.9 | 57.0 | [52] | ||||
PVA PEG MC TA | 800 mg/L 2000 mg/L 2000 mg/L 1200 mg/L | N/A | √ | √ | √ | N/A | N/A | N/A | [53] | ||||
Reverse | Diisooctyl Azelate | 600 g/t | 10 | √ | √ | 2.0–3.4 | 52.0 | 99.0 | [50] | ||||
LA DIB | 0–500 g/t 0–1500 g/t | 2 | √ | √ | 2.0–3.4 | – | – | [51] | |||||
LA | 25–55 g/t | 5 | √ | √ | 2.0–3.4 | 99.4 | 90.1 | [54] | |||||
Triton XL-100N DIB | 1000 g/t 1000 g/t | 3 | √ | √ | 2.0–3.4 | 86.4 | 100.0 | [55] | |||||
LS TA MC Triton X-100 | N/A | 10 | √ | √ | √ | √ | √ | √ | <5 | 98.7 | 98.9 | [56] | |
TA | 0–10 mg/L | 5 | √ | √ | √ | √ | 1.0–5.6 | 95.8 | 94.4 | [57] | |||
Saponin SL | 10–30 mg/L 100–300 mg/L | 5 | √ | √ | √ | √ | N/A | 95.7 | 72.8 | [58] | |||
CaCl2 | 30% | 4 | √ | √ | √ | √ | 2.0–5.0 | N/A | 99.8 | [59] |
Flotation Type | Mechanism | Reagents | Concentration | Treatment Temperature | Treatment Time | Sample | Size [mm] | Purity [%] | Recovery [%] | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PVC | PET | PS | PC | ABS | PMMA | ||||||||||
Direct | Surface oxidation | ClO2 | 0.5 g/L | 70.0 | 70 | √ | √ | 0.8–5.0 | N/A | 100.0 | [60] | ||||
K2FeO4 | 0.18 M/L | 75.0 | 11.5 | √ | √ | 3.0–4.0 | 98.4 | 98.4 | [61] | ||||||
KMnO4 | 5 mM/L | 60.0 | 10.0 | √ | √ | √ | 2.0–3.2 | 98.4 | 98.7 | [62] | |||||
KMnO4 | 2 mM/L | N/A | 1.0 | √ | √ | √ | 3.2–4.0 | 95.0 | 98.6 | [63] | |||||
Na2S2O8 | 0.1 M/L | 70.0 | 30.0 | √ | √ | √ | 0.9–4.0 | 99.8 | 100.0 | [64] | |||||
Na2S2O8 | 0.1 M | 20–70 | 10 | √ | √ | 2.0–4.0 | 99.7 | 100 | [65] | ||||||
(NH4)2S2O8 | 0.2 M | 70.0 | 30.0 | √ | √ | √ | √ | 3.0–4.0 | 100.0 | 99.7 | [66] | ||||
KOH and (CH2OH)2 | 2 g (KOH) and 10 mL (CH2OH)2 | 25.0 | 5.0 | √ | √ | √ | √ | 3.0–4.0 | N/A | N/A | [67] | ||||
Surface hydrolysis | NaOH | 10% | 70.0 | 20.0 | √ | √ | 2.0–4.0 | 94.6 | 94.9 | [68] | |||||
NaOH | 40 g/l | 90 | 20 | √ | √ | √ | 2.0–4.0 | N/A | 95.9 | [69] | |||||
NaOH | 1 M | N/A | 10 | √ | √ | 2.0–3.4 | N/A | N/A | [70] | ||||||
NaOH | N/A | 60 | 20 | √ | √ | 5.0 | N/A | 100 | [71] | ||||||
NaOH | 10% | 70 | 20 | √ | √ | 0.9–3.2 | 98.22 | 93.98 | [72] | ||||||
Reverse | Surface oxidation | KMnO4 | 1.25 mM/L | 60.0 | 50.0 | √ | √ | 0.9–4.0 | 99 | 99.7 | [73] | ||||
KMnO4 | 4.6 mM/L | 66.5 | 38.0 | √ | √ | 2.5–3.2 | 96.6 | 97.9 | [74] | ||||||
Surface coating | CaCO3 | 0.11 g | 50.6 | 20.0 | √ | √ | 2.0–4.0 | 100.0 | 99.0 | [75] | |||||
H2O2 | 3% | 30.0 | 30.0 | √ | √ | 5.0 | 99.8 | 100.0 | [76] | ||||||
H2O2 | 3% | 30.0 | 30.0 | √ | √ | √ | √ | 5.0 | 99.5 | 100.0 | [77] | ||||
AlCl3 | 0.2 M | 25.0 | 1.7 | √ | √ | 1.0–2.0 | 100.0 | 99.7 | [78] | ||||||
Ca/CaO | 5% | N/A | 30 | √ | √ | √ | √ | √ | 5.0 | 96.4 | 100 | [79] | |||
Fe/Ca/CaO | 0.5% | 25.0 | N/A | √ | √ | √ | √ | √ | 5.0 | 99 | 100 | [80] | |||
Direct and reverse | Surface oxidation | Ca(ClO)2 | 0.2–0.5 g/L | 70.0 | 30–50 | √ | √ | √ | √ | √ | √ | 2.0–2.5 | 73.0 | 99.6 | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phengsaart, T.; Julapong, P.; Manositchaikul, C.; Srichonphaisarn, P.; Rawangphai, M.; Juntarasakul, O.; Aikawa, K.; Jeon, S.; Park, I.; Tabelin, C.B.; et al. Recent Studies and Technologies in the Separation of Polyvinyl Chloride for Resources Recycling: A Systematic Review. Sustainability 2023, 15, 13842. https://doi.org/10.3390/su151813842
Phengsaart T, Julapong P, Manositchaikul C, Srichonphaisarn P, Rawangphai M, Juntarasakul O, Aikawa K, Jeon S, Park I, Tabelin CB, et al. Recent Studies and Technologies in the Separation of Polyvinyl Chloride for Resources Recycling: A Systematic Review. Sustainability. 2023; 15(18):13842. https://doi.org/10.3390/su151813842
Chicago/Turabian StylePhengsaart, Theerayut, Pongsiri Julapong, Chaiwat Manositchaikul, Palot Srichonphaisarn, Monthicha Rawangphai, Onchanok Juntarasakul, Kosei Aikawa, Sanghee Jeon, Ilhwan Park, Carlito Baltazar Tabelin, and et al. 2023. "Recent Studies and Technologies in the Separation of Polyvinyl Chloride for Resources Recycling: A Systematic Review" Sustainability 15, no. 18: 13842. https://doi.org/10.3390/su151813842
APA StylePhengsaart, T., Julapong, P., Manositchaikul, C., Srichonphaisarn, P., Rawangphai, M., Juntarasakul, O., Aikawa, K., Jeon, S., Park, I., Tabelin, C. B., & Ito, M. (2023). Recent Studies and Technologies in the Separation of Polyvinyl Chloride for Resources Recycling: A Systematic Review. Sustainability, 15(18), 13842. https://doi.org/10.3390/su151813842