Investigation of a SWAT Model for Environmental Health Management Based on the Water Quality Parameters of a Stream System in Central Anatolia (Türkiye)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Model Application
- SWt: Final soil water content (mm)
- SW0: Initial soil water content (mm)
- Rday: Amount of precipitation (mm)
- Qsurf: Amount of runoff (mm)
- Ea: Evapotranspiration amount (mm)
- Wseep: Amount of water passing through the vadose zone (mm)
- Qgw: Return flow amount (mm)
2.3. Model Setup
2.3.1. Data Definition
2.3.2. Watershed Delineations
2.3.3. HRU Definition
2.4. Climatic Parameters
3. Results
Sensitivity Analysis, Calibration and Validation
- Oi: Observed value
- Pi: Calculated value
- Oi: Observed value
- Pi: Calculated value
- : Variance of observed value
- Oi: Observed value
- Pi: Calculated value
4. Discussion
4.1. Flow Model
4.2. Model Findings Regarding Nutrient (TN and TP) Pollution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saha, P.P.; Zeleke, K.; Hafeez, M. Streamflow modeling in a fluctuant climate using SWAT: Yass River catchment in south eastern Australia. Environ. Earth Sci. 2014, 71, 5241–5254. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Zhan, C.; Xuan, Y.; Ye, M.; Xu, C. Global Sensitivity Analysis in Hydrological Modeling: Review of Concepts, Methods, Theoretical Framework, and Applications. J. Hydrol. 2015, 523, 739–757. [Google Scholar] [CrossRef]
- WHO. Mortality Rate Attributable to Unsafe Water, Sanitation, and Hygiene. 2022. Available online: https://ourworldindata.org/grapher/mortality-rate-attributable-to-wash (accessed on 10 November 2022).
- Germeç, E.; Ürker, O. Hydrological Modeling in Environmental Health: Role, Significance and Comparative Analysis of Application Methods. Review. Turk. J. Health Sci. Life 2020, 3, 12–18. [Google Scholar]
- Gleick, P.H. Water resources. In Encyclopedia of Climate and Weather; Oxford University Press: New York, NY, USA, 1996; pp. 42–86. [Google Scholar]
- Singh, V.P.; Frevert, D.K. Watershed Models; CRC Press: New York, NY, USA, 2010; Volume 28, p. 678. [Google Scholar]
- Federal Interagency Stream Corridor Restoration Working Group. Stream Corridor Restoration: Principles, Processes, and Practices. 2001, p. 653. Available online: https://www3.uwsp.edu/cnr-ap/UWEXLakes/PublishingImages/resources/restoration-project/StreamRestorationHandbook.pdf (accessed on 10 August 2023).
- Gleick, P.H. Water in Crisis: A Guide to the World’s Fresh Water Resources; Oxford University Press: New York, NY, USA, 1993; p. 504. [Google Scholar]
- Wang, G.; Li, S.B.; Qi, C.; Ding, F. A Review of Surface Water Quality Models. Sci. World J. 2013, 2013, 231768. [Google Scholar] [CrossRef] [PubMed]
- Abell, J.M.; Hamilton, D.P.; Rutherford, J.C. Quantifying temporal and spatial variations in sediment, nitrogen and phosphorus transport in stream inflows to a large eutrophic lake. Environ. Sci. Process. Impacts 2013, 15, 1137–1152. [Google Scholar] [CrossRef] [PubMed]
- Serengil, Y.; Augustaitis, A.; Bytnerowicz, A.; Grulke, N.; Kozovitz, A.R.; Matyssek, R.; Müller-Starck, G.; Schaub, M.; Wieser, G.; Aydin Coskun, A.; et al. Adaptation of forest ecosystems to air pollution and climate change: A global assessment on research priorities. iForest 2011, 4, 44–48. [Google Scholar] [CrossRef]
- Wu, H.; Chen, B. Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecol. Eng. 2015, 76, 110–121. [Google Scholar] [CrossRef]
- Wang, G.; Jager, H.I.; Baskaran, L.M.; Baker, T.F.; Brandt, C.C. SWAT Modeling of Water Quantity and Quality in the Tennessee River Basin, Spatiotemporal Calibration and Validation. Hydrol. Earth Syst. Sci. Discuss. 2016, 1, 33. [Google Scholar] [CrossRef]
- Koltsida, E.; Mamassis, N.; Kollioras, A. Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: The case of Kifisos experimental subbasin (Athens, Greece). Hydrol. Earth Syst. Sci. 2023, 27, 917–931. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. SWAT (Soil and Water Assessment Tool) Theoretical Documentation Version 2009; Texas Water Resources Institute Technical Report No. 406; Texas A&M University System: College Station, TX, USA, 2011. [Google Scholar]
- Qiu, L.; Zheng, F.; Yin, R. SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China: Capabilities and challenges. Int. J. Sediment Res. 2012, 27, 226–234. [Google Scholar] [CrossRef]
- Jalowska, A.M.; Yuan, Y. Evaluation of SWAT Impoundment Modeling Methods in Water and Sediment Simulations. J. Am. Water Resour. Assoc. 2018, 55, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section, Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Saddiqi, M.M.; Karpuzcu, M.E. Modeling of Lesser Meander Sub-Basin with SWAT. Çukurova Univ. J. Fac. Eng. Archit. 2019, 34, 55–69. (In Turkish) [Google Scholar]
- Guse, B.; Reusser, D.E.; Fohrer, N. How to improve the representation of hydrological processes in SWAT for a lowland catchment—Temporal analysis of parameter sensitivity and model performance. Hydrol. Process. 2014, 28, 2651–2670. [Google Scholar] [CrossRef]
- Me, W.; Abell, J.M.; Hamilton, D.P. Effects of hydrologic conditions on SWAT model performance and parameter sensitivity for a small, mixed land use catchment in New Zealand. Hydrol. Earth Syst. Sci. 2015, 19, 4127–4147. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Makropoulos, C.; Baltas, E.; Mimikou, M. SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations. Ecol. Model. 2011, 222, 3500–3512. [Google Scholar] [CrossRef]
- Irvem, A.; El-Sadek, A. Evaluation of Streamflow Simulation by SWAT Model for The Seyhan River Basin Seyhan. Çukurova J. Agric. Food Sci. 2018, 33, 99–110. [Google Scholar]
- DSI (General Directorate of Water Affairs). Kızılırmak Basin Master Plan Report Preparation; Basin Master Plan Final Report; Dolsar Engineering: Çankaya/Ankara, Türkiye, 2019; pp. 186–213. (In Turkish) [Google Scholar]
- Soil&Water Resources of DSI (General Directorate of Water Affairs). Available online: https://www.dsi.gov.tr/Sayfa/Detay/754 (accessed on 1 October 2022). (In Turkish)
- Zhang, N.; He, H.M.; Zhang, S.F.; Jiang, X.H.; Xia, Z.Q.; Huang, F. Influence of Reservoir Operation in the Upper Reaches of the Yangtze River (China) on the Inflow and Outflow Regime of the TGR-Based on the Improved SWAT Model. Water Resour. Manag. 2012, 26, 691–705. [Google Scholar] [CrossRef]
- Her, Y.; Frankenberger, J.; Chaubey, I.; Srinivasan, R. Threshold Effects in HRU Definition of the Soil and Water Assessment Tool. Trans. Am. Soc. Agric. Biol. Eng. 2015, 58, 367–378. [Google Scholar] [CrossRef]
- Raes, D. Reference Manual—ETo (Evapotranspiration from a Reference Surface) Calculator; Version 3.2; FAO: Rome, Italy, 2012; Available online: https://www.ipcinfo.org/fileadmin/user_upload/faowater/docs/ReferenceManualV32.pdf (accessed on 1 August 2023).
- Nachtergaele, F.O.; van Velthuizen, H.T.; Verelst, L. Harmonized World Soil Database; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2009; Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 1 August 2023).
- FAO-UNESCO. Digital Soil Map of the World (DSMW), and Derived Soil Properties; FAO: Rome, Italy, 2003; Available online: https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1026564/ (accessed on 1 August 2023).
- TUIK. Türkiye 2040 Population Projections. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Nufus-Projeksiyonlari-2018-2080-30567#:~:text=Demografik%20g%C3%B6stergelerdeki%20mevcut%20e%C4%9Filimler%20devam,bin%20233%20ki%C5%9Fiye%20ula%C5%9Fmas%C4%B1%20beklenmektedir (accessed on 1 December 2022).
- TUIK. Address Based Population Registration System Results. Available online: https://data.tuik.gov.tr/Bulten/Index?p=49685 (accessed on 1 December 2022).
- USGS. Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global 2017, Rev.2021. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1?qt-science_center_objects=0#qt-science_center_objects (accessed on 10 June 2023).
- EEA. CORINE Land Cover (CLC) 2018, Version 2020_20u1. 2020. Available online: https://www.copernicus.eu/en/access-data/copernicus-services-catalogue/corine-land-cover-2018-vector-version-202020u1-may-2020 (accessed on 1 August 2023).
- Athira, P.; Sudheer, K.P. Calibration of distributed hydrological models considering the heterogeneity of the parameters across the basin: A case study of SWAT model. Environ. Earth Sci. 2021, 80, 131. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vejdani, M.; Haghighat, S. SWATCUP calibration and uncertainty programs for SWAT. In Proceedings International Congress on Modelling and Simulation (MODSIM’07); Oxley, L., Kulasiri, D., Eds.; Modelling and Simulation Society of Australia and New Zealand: Melbourne, VIC, Australia, 2007; pp. 1603–1609. [Google Scholar]
- Abbaspour, K.C. Calibration of hydrologic models: When is a model calibrated? In MODSIM 2005 International Congress on Modeling and Simulation; Zerger, A., Argent, R.M., Eds.; Modelling and Simulation Society of Australia and New Zealand: Melbourne, VIC, Australia, 2005; pp. 2449–12445. ISBN 0-9758400-2-9. Available online: http://www.mssanz.org.au/modsim05/papers/abbaspour.pdf (accessed on 10 December 2022).
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Model. Part 1—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Zeckoski, R.W.; Arnold, J.G.; Baffaut, C.B.; Malone, R.W.; Daggupati, P.; Guzman, J.A.; Saraswat, D.; Yuan, Y.; Wilson, B.W.; et al. Hydrologic and Water Quality Models: Key Calibration and Validation Topics. Trans. ASABE 2015, 58, 1609–1618. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Hasan, M.A.; Pradhanang, S.M. Estimation of flow regime for a spatially varied Himalayan watershed using improved multi-site calibration of the Soil and Water Assessment Tool (SWAT) model. Environ. Earth Sci. 2017, 76, 787. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, F.; Shi, J.; Johnson, V.C.; Ahmed, Z.; Wang, J.; Wang, W. Enhancing SWAT model with modified method to improve Eco-hydrological simulation in arid region. J. Clean. Prod. 2023, 403, 136891. [Google Scholar] [CrossRef]
- Rathjens, H.; Kiesel, J.; Winchell, M.; Arnold, J.; Ratchens, R.S. Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow. Hydrol. Earth Syst. Sci. 2023, 27, 159–167. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration, Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; 300p. [Google Scholar]
- Sharma, A.; Patel, P.L.; Sharma, P.J. Influence of climate and land-use changes on the sensitivity of SWAT model parameters and water availability in a semi-arid river basin. CATENA 2022, 215, 106298. [Google Scholar] [CrossRef]
TN | Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg/month | 2016 | 52,472.0 | 13,913.1 | 18,519.5 | 4743.8 | 14,692.7 | 3631.6 | 4535.1 | 3714.9 | 1179.2 | 5156.9 | 6834.9 | 4705.9 |
kg/month | 2017 | 44,479.1 | 11,604.6 | 12,848.0 | 4466.5 | 9031.1 | 7401.7 | 7191.4 | 4562.0 | 3504.0 | 3135.5 | 1556.0 | 3887.8 |
kg/month | 2018 | 17,790.6 | 3115.9 | 3449.8 | 4017.6 | 3448.7 | 6158.6 | 9450.4 | 5422.3 | 864.1 | 5009.0 | 9319.4 | 5558.9 |
kg/month | 2019 | 31,058.7 | 10,818.0 | 11,977.1 | 4466.5 | 9031.1 | 12,347.0 | 7191.4 | 4562.0 | 6414.7 |
TP | Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg/month | 2016 | 14,337.2 | 1026.8 | 1165.2 | 241.2 | 316.3 | 64.6 | 96.0 | 1129.7 | 10.4 | 28.1 | 9.6 | 226.6 |
kg/month | 2017 | 6598.6 | 359.5 | 398.0 | 150.4 | 130.1 | 144.3 | 86.4 | 699.9 | 91.9 | 14.9 | 8.6 | 350.3 |
kg/month | 2018 | 121.6 | 73.0 | 80.8 | 79.3 | 24.8 | 82.1 | 14.3 | 27.9 | 3.3 | 0.8 | 22.1 | 45.5 |
kg/month | 2019 | 4376.3 | 499.2 | 552.7 | 150.4 | 130.1 | 18.8 | 86.4 | 699.9 | 320.2 |
Data Name | Type | Source |
---|---|---|
Digital elevation model | Raster | Shuttle Radar Topography Mission (STRM 30) |
Land cover | Vector | CORINE 2018 |
Soil data | Vector | FAO soil data [30,31] |
Climate data | Table | General Directorate of Meteorology (MGM) |
Hydrological data | Table | General Directorate of State Hydraulic Works (DSI) |
Point pollutant sources | Table | Turkish Statistical Institute [32,33] |
Flow (m3/s) | Table | DSI |
Total nitrogen load (TN) | Table | DSI |
Total phosphorus load (TP) | Table | DSI |
No | Parameter | Data | Explanation |
---|---|---|---|
1 | ALPHA_BF | .gw | Base flow alpha value (1/day) |
2 | GWQMN | .gw | Necessary threshold water depth for a return flow to a shallow aquifer due to irrigation (mm H2O) |
3 | GW_DELAY | .gw | Groundwater delay (days) |
4 | SLSUBSN | .hru | Soil depth from surface to lowest level (mm) |
5 | HRU_SLP | .hru | HRU mean slope steepness (m/m) |
6 | ESCO | .hru | Soil evaporation equilibration factor |
No | Parameter Name | Min_Value | Max_Value | Fit Value |
---|---|---|---|---|
1 | r__ALPHA_BF.gw | −0.2 | 0.2 | −0.1642 |
2 | v__GW_DELAY.gw | 200 | 300 | 264.55 |
3 | r__GWQMN.gw | −0.2 | 0.2 | 0.161 |
5 | r__SLSUBBSN.hru | −0.2 | 0.2 | 0.0782 |
6 | r__HRU_SLP.hru | −0.2 | 0.2 | 0.1498 |
7 | r__ESCO.hru | −0.2 | 0.2 | 0.011 |
Parameter | Model Success | |||
---|---|---|---|---|
Very Good | Good | Satisfactory | Failed | |
Flow model | ||||
R2 | R2 > 0.85 | 0.75 < R2 ≤ 0.85 | 0.60 < R2 ≤ 0.75 | R2 ≤ 0.60 |
NSE | NSE > 0.80 | 0.70 < NSE ≤ 0.80 | 0.50 < NSE ≤ 0.70 | NSE ≤ 0.50 |
PBIAS | PBIAS < ±10 | ±10 < PBIAS ≤ ±15 | ±15< PBIAS ≤ ±25 | PBIAS ≥ ±25 |
Nutrient model (N, P) | ||||
R2 | R2 > 0.70 | 0.60 < R2 ≤ 0.70 | 0.30 < R2 ≤ 0.60 | R2 ≤ 0.30 |
NSE | NSE > 0.65 | 0.50 < NSE ≤ 0.65 | 0.35 < NSE ≤ 0.50 | NSE ≤ 0.35 |
PBIAS | PBIAS < ±25 | ±25 < PBIAS ≤ ±40 | ±40 < PBIAS ≤ ±70 | PBIAS ≥ ±70 |
Flow | TN | TP | ||||
---|---|---|---|---|---|---|
Calibration | R2 | 0.64 | R2 | 0.56 | R2 | 0.63 |
NSE | 0.60 | NSE | 0.55 | NSE | 0.60 | |
PBIAS | 15.4 | PBIAS | 7.2 | PBIAS | 29.8 | |
Validation | R2 | 0.81 | R2 | 0.39 | R2 | 0.34 |
NSE | 0.66 | NSE | 0.04 | NSE | 0.17 | |
PBIAS | −2.1 | PBIAS | −10.0 | PBIAS | −43.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Germeç, E.; Ürker, O. Investigation of a SWAT Model for Environmental Health Management Based on the Water Quality Parameters of a Stream System in Central Anatolia (Türkiye). Sustainability 2023, 15, 13850. https://doi.org/10.3390/su151813850
Germeç E, Ürker O. Investigation of a SWAT Model for Environmental Health Management Based on the Water Quality Parameters of a Stream System in Central Anatolia (Türkiye). Sustainability. 2023; 15(18):13850. https://doi.org/10.3390/su151813850
Chicago/Turabian StyleGermeç, Eren, and Okan Ürker. 2023. "Investigation of a SWAT Model for Environmental Health Management Based on the Water Quality Parameters of a Stream System in Central Anatolia (Türkiye)" Sustainability 15, no. 18: 13850. https://doi.org/10.3390/su151813850
APA StyleGermeç, E., & Ürker, O. (2023). Investigation of a SWAT Model for Environmental Health Management Based on the Water Quality Parameters of a Stream System in Central Anatolia (Türkiye). Sustainability, 15(18), 13850. https://doi.org/10.3390/su151813850