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Abstract: Supply chain management is the basis for the operations in an organization. The devel-
opment of realistic supply chain designs that work effectively in the presence of disturbances in a
stochastic environment and incorporate sustainability factors, is a complex challenge being investi-
gated in recent years. However, the inclusion of a methodological structured framework to evaluate
environmental impacts constitutes a knowledge gap in the literature on supply chain design. This
study developed a model for sustainable supply chain design, integrating Life Cycle Assessment and
based on a robust optimization approach. The study follows a 4-stage methodology beginning with
data collection and the execution of a Life Cycle Assessment. Then, the deterministic modeling is
proposed, concluding with a robust model. A bi-objective model is proposed to maximize utility and
minimize environmental impact based on demand scenarios. The model was validated with real
data from a medium-sized enterprise that produces antibacterial gel, generating as a result, different
configuration alternatives for the supply chain to transport the products and raw materials between
its elements. The conclusions of this work highlight the importance of including sustainability factors
during supply chain design, the consequences and costs of its inclusion, as well as the priority actions
that promote sustainable designs.

Keywords: sustainable supply chain; dynamic network design; robust optimization; life cycle
assessment; bi-objective model

1. Introduction

The design of a supply chain (SC) is an area of decision-making that considers pa-
rameters such as planning, demand, time and costs [1]. These designs have traditionally
and mostly been based on economic factors [2]; however, increasing globalization and
decreasing profit margins, among other causes, prompted modern SC to focus on providing
quality products to consumers consistently and quickly. This, in turn, drove a research
trend that considers non-cost metrics in network design [3]. Currently, several studies focus
on developing realistic SC designs that can operate effectively in the presence of external
and/or internal disruptions by incorporating deterministic and, stochastic variables [4].

On the other hand, nowadays, factors such as the decrease in natural resources,
the search for competitive advantages, the pressure to reduce environmental impacts
of products and processes, and global laws and agreements have generated a greater
interest in sustainable development. According to the 1987 Brundtland report, sustainable
development “meets the needs of the present without compromising the ability of future
generations to meet their own needs” [5]. Sustainability is a broad concept, encompassing
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environmental, economic and social aspects [6], requiring methods and tools to quantify
and compare the environmental impacts of supplying products and services.

For achieving sustainable development, industries need to design, plan and operate
their SC considering a sustainability path [7], which needs to be considered as a business
opportunity rather than a constraint [8]. A widely used tool is the Life Cycle Assess-
ment (LCA), structured as a methodological framework to identify, quantify, interpret
and evaluate the environmental impact of a product, process, or service in a systematic
manner [9].

Quantitative mathematical programming models constitute a convenient tool to deal
with strategic decisions of sustainable supply chain (SSC) design and the deterministic
and stochastic variables required [10]. Deterministic models are used when the parameters
are known with certainty. If parameters are unknown, stochastic models are required,
where uncertainty can be encompassed in a robust optimization approach [11]. Robust
optimization represents uncertainty by setting up different scenarios aiming to find a robust
solution that ensures that all specified scenarios are “close” to the optimum in response to
changes in the input data [12].

In this context, the objective of this study is to develop a model for SSC design, integrating
LCA and based on a robust optimization approach. For the validation of the model, the
antibacterial gel product has been selected and data from a Mexican company is used. The
model will serve to support decision-making and recommend SC configuration alternatives
to maximize economic performance and minimize the organizations’ environmental impacts.

A large increase in the global production of antibacterial gel, and its current relevance,
make the product a case study of academic and industrial interest. The production of
antibacterial gel in Mexico has grown exponentially since 2020 due to the COVID-19
pandemic [13]. Therefore, determining the environmental impact throughout the SC of this
product will allow companies to establish immediate strategies to reduce these impacts,
generate competitive advantages, improve their sustainability and, in general, contribute to
goal 12 of the Sustainable Development Goals (responsible production and consumption).

For a better understanding, the document is structured as follows: Section 2 sum-
marizes the state of the art of the study. Section 3 explains the methodology and some
assumptions for the development of the model. Section 4 describes the mathematical
formulation of the model. Section 5 shows the main results. Finally, Section 6 summarizes
the conclusions.

2. Literature Review

Realistic SC designs incorporate critical parameters modeled as random variables
with known probability distributions. One classic approach to deal with the uncertainty of
these variables is the concept of scenario-based stochastic robust optimization proposed by
Mulvey et al. [14], which aims to generate a series of solutions that are progressively less
sensitive to the realization of the model data from a scenario set.

In recent years, many authors applied robust optimization to firm-specific problems,
such as inventory management, manufacturing, production planning, facility location
and network design problems. For example, Pan and Nagi [15] formulated a robust
optimization model for an agile manufacturing SC under uncertain demand. Likewise,
Baghalian et al. [16] presented a stochastic formulation for designing a multi-product SC
network based on a robust optimization concept. Mahdi et al. [17] propose a robust multi-
objective framework to improve the robustness of the water supply system in accordance
with the uncertainty of rainfall and water demand. Li et al. [18] develop a robust opti-
mization approach for prismatic lithium-ion cells, aiming to limit thermal performance
uncertainties to the optimal manufacturing cost.

In addition to optimizing SC, companies develop strategies to allow adapting its
dynamics and controlling disruptions. In the study of Ivanov and Sokolov [19], a control
approach is presented to model SCs as multi-structural dynamic systems. Sawik [20] devel-
oped a stochastic programming model for integrated supplier selection, order quantity allo-



Sustainability 2023, 15, 14039 3 of 16

cation, and customer order scheduling in the presence of SC disruption risks. Ali et al. [21]
model SC disruption analysis with insufficient data in order to identify supplier disrup-
tion risks that can severely impact SC performance. Ghavamifar et al. [22] redesign a
competitive SC network under operational risks and disruptions, using a multi-objective
programming approach.

Regarding sustainability in SC, the last decade presented a remarkable increase in
research [23], including topics such as supplier selection [24], green network designs [25]
and low carbon production [26]. Considering optimization models for the design of an SSC,
Mota et al. [27] present a mixed-integer linear programming model with multiple objectives
that integrates LCA with economic and social decisions. Wang et al. [28] design the net-
work of a green SC by simultaneously considering carbon emissions and inter-competitor
pricing. Jaber et al. [29] studied the problem of joint emission reduction between manu-
facturers and retailers in a two-stage SC. Ghelichi et al. [30] use a stochastic programming
approach towards the optimal design and planning of an integrated green biodiesel SC net-
work. Mele et al. [31] employ a multi-objective model for SSC fuel, carrying out a parallel
LCA study.

When coupled with the robust optimization approach and SSC network design, the
literature review yields some novel results. For example, Yousefi-Babadi et al. [32] use a
robust optimization approach in the redesign of a three-tier wheat, flour and bread SC to
meet sustainable development considerations. Geon Kim et al. [33] develop a robust opti-
mization model for a closed-loop SC with uncertain demand and uncertain carbon tax rates.
Krishnan et al. [34] present a robust integrated multi-objective optimization model to design
a food SC network considering three dimensions (economic, social and environmental).

It can be evidenced then that there is extensive literature on SC management and SSC
design, highlighting the use of mathematical, linear, integer, mixed, stochastic, fuzzy and
robust programming. In order to understand how quantitative models have been used
in the design of SSCs and what are the main sustainability pillars addressed within the
decision process, the systematic literature review (SLR) performed by Flores et al. [35] is
used as a base reference.

The main SLR results show that deterministic studies prevail over stochastic studies.
Regarding the solution approach, mathematical programming models with uncertainty mostly
use stochastic programming, and to a lesser extent robust optimization. Concerning sustain-
ability strategies, studies on carbon and greenhouse gas emissions prevail over LCA, which
are based on deterministic data and are developed as parallel studies to the SC design.

Based on the SLR [35], current gaps such as the lack of full inclusion of LCA in the
design of a SSC, were identified. This means that indicators resulting from LCA are not
included in the mathematical formulation of robust optimization, which would allow
estimating and evaluating the environmental impacts attributable to the entire life cycle of
a product and its interaction and influence on the network design.

The relevance of LCA is recognized by several authors, especially for the environ-
mental dimension. LCA is acknowledged as a comprehensive technique to assess the
environmental impacts of products and processes [36], which still needs more in-depth
research to become a sound decision-making tool for each stage of a product life-cycle [37].
Until now, the two main sectors where LCA has been most frequently applied are construc-
tion [38] and renewable energies [39].

3. Methodology

In order to develop the model for SSC design, 4 stages are proposed, as shown in
Figure 1. Stages 2 to 4 are detailed in Sections 3.1 and 3.2.

Input Data refer to the necessary information that must be acquired to prepare both
the LCA and the mathematical formulation of the model. This information corresponds to
the characteristics of the raw materials, energy and waste flows present in the production
process. Also, data on the characteristics of the SC, logistics management, production and
demand are incorporated.
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3.1. Life Cycle Assessment

With the information acquired in ‘stage 1, the LCA is prepared based on the ISO 14044
methodology, which consists of four steps. An additional step was included for integrating
the resulting environmental impacts in a mathematical function:

(1) Goal and Scope: The objective of the proposed LCA is to quantify the environ-
mental impacts generated by the antibacterial gel product throughout its SC (raw material
extraction, production and distribution). A 120 mL bottle is defined as a functional unit.
The final disposal of the product is not considered since no data was available. Likewise,
a closed-loop SC is not considered since no recovery processes are implemented in the
assessed company.

(2) Lifecycle Inventory: Information is collected on the raw materials used in the
production of antibacterial gel (quantity and origin), energy used in the production stage
and characteristics of the transportation used for product distribution.

(3) Lifecycle Impact Assessment: This step translates the emissions and resource
extractions into environmental impact scores. Gabi software 10.5.1 is used, where the
entire SC of the antibacterial gel and previously collected information is modeled. The
modeling and the Recipe 2016 method allow for estimating 17 midpoint environmental
impact categories and three final impact categories including (a) human health damage,
(b) ecosystem diversity and (c) resource availability.

(4) Interpretation: performs an analysis of the midpoint environmental impact cat-
egories with the highest values in the extraction, production and transport stages. In
the first two stages (extraction and production) the end-point environmental impacts are
calculated following the methodology of Hauschild and Huijbregts [40]. The resulting
end-point environmental impacts for the extraction and production stages according to
the impact area are human health damage (IAFH) = 1.63 × 10−7, ecosystem diversity
(IAFE) = 6.06 × 10−9 and resource availability (IAFR) = 4.60 × 10−1.

(5) Integration: The coefficients IAFH, IAFE and IAFR are included in the objective
function 2 of the mathematical model (Min EI) (Equations (6) and (8)). For the transport
stage, a linear regression model (Equation (1)) is used to express the relationship between
the quantity transported, the distance traveled and the environmental impact generated
(Y = climate change category).

Y = −1.60529 + 0.00704×Kg + 0.02967×Millas (1)

The coefficients of Equation (1): b0 (IAPIN) = −1.60529, b1 (IAPKG) = 0.00704, and b2
(IAPMI) = 0.02967, are also included in the objective function 2 of the mathematical model
(Min EI) (Equations (7), (9) and (10)).
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A complete description of the LCA can be found in [41].

3.2. Conceptual Framework for the Mathematical Formulation

The mathematical formulation of the model is divided into two parts, deterministic
and robust.

Deterministic modeling: considers the data acquired in stage 1 and the results ob-
tained from stage 2, and uses only deterministic data to optimize two objective functions:
(1) Utility maximization (Max UTI), and (2) minimization of environmental impact (Min
EI). This stage also includes the definition of capacity restrictions and flow balance between
the network arcs.

Robust modeling: The demand uncertainty variable is added to the deterministic
formulation, considering the approach described by Jabbarzadeh et al. [42] and Mulvey
et al. [14]. A set of uncertain scenarios with their respective probabilities is built and the
model of stage 3 is transformed into a robust one, which will generate global results and
results per scenario.

In addition, the mathematical formulation is based on a four-layered SC encompassing
multiple raw material suppliers, production plants, distribution centers and customers (see
Figure 2).
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Finally, the following assumptions were made during model formulation.

• A single product is produced and distributed throughout the network;
• Only one transport mean is considered in the entire network. Only a one-way trip is

considered (the return trip of trucks is omitted).
• Products use diversified raw materials.
• No direct shipments can be made from the plant to the customer.
• Supplier locations and customer zones are fixed.
• Production plant and distribution center locations are fixed.
• Suppliers have a maximum availability of raw materials.
• Production plants and distribution centers have a maximum capacity.
• The cost of raw materials depends on the supplier.
• The environmental impact generated in each production plant depends on the type of

raw material used.

4. Mathematical Formulation of the Model

The indexes, parameters and variables used during mathematical formulation (Stage
3 and 4 of the Methodology) are illustrated below.

Indices:
s supplier locations, s = 1, 2 . . .. S
m raw materials, m = 1, 2 . . .. M
i manufacturing plant locations, i = 1, 2 . . .. I
j distribution center locations, j = 1, 2 . . .. J
n customer locations, n = 1, 2 . . .. N
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Parameters:
ks fixed cost of selecting a supplier s
rms maximum capacity of raw material m provided by supplier s
prpms price per unit of raw material m provided by supplier s
tm rate of conversion of raw material m to finished product
ctpm transportation cost per mile of one unit of raw material m
ρpsi distance from supplier s to plant i

IAPIN
coefficient b0 of the EI generated from transporting the raw material from the
supplier to the plant (LCA)

IAPKG
coefficient b1 of the EI generated from transporting the raw material from the
supplier to the plant (LCA)

IAPMI
coefficient b2 of the EI generated from transporting the raw material from the
supplier to the plant (LCA)

fi fixed cost of producing in plant i
li maximum production capacity of plant i
pi production cost per unit of product in plant i

ctw
transportation cost per mile of one unit of finished product from the plant to the
distribution center

gelkg weight in kilograms of one unit of finished product
ρwij distance from plant i to distribution center j

IAFHi
EI on human health of raw material extraction and production processes of plant i
(LCA)

IAFEi
EI on the ecosystem of raw material extraction and production processes of plant i
(LCA)

IAFRi
EI on resource availability of raw material extraction and production processes of
plant i (LCA)

IAPCIN
coefficient b0 of the EI generated by transporting the finished product from the plant
to the distribution center (LCA)

IAPCKG
coefficient b1 of the EI generated by transporting the finished product from the plant
to the distribution center (LCA)

IAPCMI
coefficient b2 of the EI generated by transporting the finished product from the plant
to the distribution center (LCA)

gj fixed cost of using a distribution center j
ϕj storage capacity of distribution center j
hj maintenance cost per product unit in distribution center j

ctc
transportation cost per mile of one unit of product from the distribution center to the
customer

ρcjn distance from distribution center j to customer n

IACCIN
coefficient b0 of the EI generated from transporting the product from the
distribution center to the customer (LCA)

IACCKG
coefficient b1 of the EI generated from transporting the product from the
distribution center to the customer (LCA)

IACCMI
coefficient b2 of the EI generated from transporting the product from the
distribution center to the customer (LCA)

dn demand of customer n
V selling price per product unit

Decision variables:

Xs =

{
1, if supplier s is selected
0, otherwise

Zi =

{
1, if a plant is selected at location i
0, otherwise

Yj =

{
1, if a distribution center is selected at location j
0, otherwise
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QSmsi quantity of raw material m provided by supplier s and shipped to plant i
QPPsi total quantity of raw materials provided by supplier s and shipped to plant i
QPij quantity of products produced at plant i and shipped to distribution center j
QW jn quantity of products shipped from distribution center j to customer n

The three sets of variables (X, Y, Z) are binary, while the rest of variables take positive
real values only.

4.1. Deterministic Mathematical Model

Objective functions of the deterministic model:

(1) Max UTI = sales revenue—total cost

Max UTI = ∑J
j=1 ∑N

n=1 QW jn·V − (CP + CM + CT) (2)

The first OF refers to profit maximization, composed of sales revenue minus a total
cost. The total cost is divided into three parts. The first (Equation (3)) refers to the cost
of acquiring raw materials (CP), the second part (Equation (4)) covers production and
storage costs (CM), and the third (Equation (5)) refers to transportation costs throughout
the network (CT).

CP = ∑M
m=1 ∑S

s=1 ∑I
i=1 prpms·QSmsi + ∑S

s=1 ks·Xs (3)

CM = ∑I
i=1 fi·Zi + ∑I

i=1 ∑J
j=1 pi·QPij + ∑J

j=1 gj· Yj + ∑J
j=1 ∑N

n=1 hj·QW jn (4)

CT = ∑M
m=1 ∑S

s=1 ∑I
i=1 ρpsi·ctpm·QSmsi + ∑I

i=1 ∑J
j=1 ρwij· ctw·QPij + ∑J

j=1 ∑N
n=1 ρcjn· ctc·QW jn (5)

(2) Min EI = sum of the environmental impact generated in each stage of the SC.

Min EI = IAP + IAF + IAPC + IACC (6)

The second OF refers to the minimization of the environmental impact generated
throughout the chain, which is composed of four sections. The first (Equation (7)) calculates
the environmental impact with respect to the climate change caused during the transport of
raw material from the supplier to the plant (IAP). The second part of this OF (Equation (8))
refers to the environmental impact of the processes of extraction of raw material and
production of the product (IAF), considering all the impact categories of the Recipe LCA
method. The third part (Equation (9)) represents the environmental impact of the climate
change category generated during transporting of finished product from the plant to the
distribution center (IAPC). Finally, the fourth section (IACC) encompasses the climate
change environmental impact from transporting the product from the distribution center
to the customer (Equation (10)).

IAP = ∑S
s=1 ∑I

i=1[ (IAPKG·QPPsi) + (ρpsi· IAPMI) + IAPIN ] (7)

IAF = ∑I
i=1 ∑J

j=1 QPij·IAFHi + ∑I
i=1 ∑J

j=1 QPij·IAFEi + ∑I
i=1 ∑J

j=1 QPij·IAFRi (8)

IAPC = ∑I
i=1 ∑J

j=1

[ (
IAPCKG·gelkg· QPij

)
+
(

ρwij· IAPCMI
)
+ IAPCIN

]
(9)

IACC = ∑J
j=1 ∑N

n=1

[ (
IACCKG·gelkg· QW jn

)
+
(

ρcjn· IACCMI
)
+ IACCIN

]
(10)
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Restrictions of the deterministic model:
The first three constraints (Equations (11)–(13)) represent the capacity limitations of

suppliers, plants and distribution centers. Equation (11) ensures that the amount of raw
material m provided by each supplier s does not exceed its capacity. Equation (12) allows
the production of each plant to be less than the designed capacity. Equation (13) limits the
shipment of products to the distribution centers, which must be less than their capacity.

∑I
i=1 QSmsi ≤ rms· Xs ∀ m ∈ M, s ∈ S (11)

∑J
j=1 QPij ≤ li· Zi ∀ i ∈ I (12)

∑N
n=1 QW jn ≤ ϕj· Yj ∀ j ∈ J (13)

The equations for material flow balance are represented by 5 constraints
(Equations (14)–(18)). Equation (14) ensures that the amount of raw material needed
to manufacture the amount of product ordered is provided. Equation (15) calculates the
total amount of raw material shipped by each supplier to the plant. Equation (16) formu-
lates the balance of incoming and outgoing products at each storage facility. Equation (17)
establishes that product output from warehouse j satisfies the demand of customer n.
Equation (18) guarantees that the total product output from all plants must satisfy the
total demand.

∑S
s=1 QSmsi = ∑J

j=1 QPij· tm ∀ m ∈ M, i ∈ I (14)

∑M
m=1 QSmsi = QPPsi ∀ s ∈ S, i ∈ I (15)

∑I
i=1 QPij = ∑N

n=1 QW jn ∀ j ∈ J (16)

∑J
j=1 QW jn = dn ∀ n ∈ N (17)

∑I
i=1 ∑J

j=1 QPij = ∑N
n=1 dn ∀ n ∈ N (18)

The formulation was developed to allow the model to make decisions regarding
five general categories: (1) quantity of raw material to be used, (2) selection of suppliers,
(3) selection of production plants, (4) selection of distribution centers and (5) calculation of
the flow for each arc. The model seeks to maximize profitability, minimize environmental
impact and satisfy 100% of the demand.

4.2. Robust Mathematical Model

In robust optimization, there are two types of constraints: structural and control, The
latter differ from the former in that they are influenced by noisy data. Similarly, two types
of variables are established: design and control. The value of the design variables can be
determined prior to the realization of the scenario, while the value of the control variables
can be changed according to various simulations of the uncertain parameters [10].

The scenario analysis method has been widely adopted to deal with SC uncertainties,
and the wait-and-see approach is the most discussed one for assuming the realization of
different scenarios and making decisions in each scenario [43]. Mulvey et al. [14] were
the pioneers in introducing a robust linearization method when the scenario is adopted to
describe uncertainty. Over time, several authors have improved Mulvey’s proposal, where
Jabbarzadeh et al. [42] stands out and serves as a reference for the proposed model.
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An example of a linear programming model to separate the design and control vari-
ables is explained as follows:

MIN cTx + dTy,

Ax = b,

Bx + Cy = e,

x, y ≥ 0,

(19)

where x denotes the vector of design variables and y denotes the vector of control variables;
B, C and e represent the uncertain parameters; Ax = b denotes the constraints whose
coefficients are free of uncertainties; Bx + Cy = e denotes the constraints whose coefficients
are subject to uncertainties.

The robustness approach includes two aspects: the robustness of the solution and the
robustness of the model. In this case, solution robustness means that the solution remains
“close” to the optimum for any scenario, while model robustness implies that the solution
is “almost” feasible [44]. Therefore, solution robustness can be measured by evaluating
how close a solution is to the optimal value in each scenario, while model robustness can
be measured by evaluating constraint violations.

We define Ω = {1, 2, . . ., ξ} as a set of uncertain scenarios to describe the uncertainty
of certain variables and assume that each scenario occurs with probability pξ ; where
∑ξ∈Ω pξ = 1. A control variable yξ is introduced for each scenario ξ ε Ω, this means that
the objective function of a model (Equation (19)) would become a random variable taking
the value ψξ = cTx + dTyξ with probability pξ under scenario ξ ε Ω. Similarly, an error
vector δξ is introduced to measure the infeasibility allowed in the control constraints under
scenario ξ ε Ω. In addition, Bξ , Cξ , eξ represent random variables in scenario ξ. With
these changes, the robust optimization model for the mathematical programming problem
(Equation (19)) can be formulated as follows (Equation (20)).

MIN σ
(
x, y1, y2, . . . , yξ

)
+ ωp(δ 1, δ2, . . . , δξ

)
,

Ax = b,

Bξ x + Cξyξ + δξ = eξ , ∀ξ ∈ Ω,

x ≥ 0, yξ ≥ 0, δξ ≥ 0, ∀ξ ∈ Ω

(20)

The first term σ
(
x, y1, y2, . . . , yξ

)
is a measure of solution robustness, which evaluates

the closeness of a solution to optimality for any realization of the scenario ξ ε Ω. The second
term p(δ 1, δ2, . . . , δξ

)
is a measure of model robustness, which penalizes violations of control

constraints in some scenarios. The model (Equation (20)) adopts a multi-criteria objective
form, where the weighting penalty Ω (called risk aversion weight) is used to express the
trade-off between the robustness of the solution and the robustness of the model.

The choice of suitable functions for σ
(
x, y1, y2, . . . , yξ

)
and for p(δ 1, δ2, . . . , δξ

)
, is

not straightforward, so typically the mean values ∑ξ∈Ω pξ ψξ and ∑ξ∈Ω pξ δξ are chosen
in each case. Mulvey et al. [14] suggest that a better selection for σ

(
x, y1, y2, . . . , yξ

)
would

be the mean plus a constant (λ) multiplied by the variance, as shown in Equation (21).

σ(x, y1, y2, . . . , yξ) = ∑ξ∈Ω pξ ψξ + λ ∑ξ∈Ω pξ
(
ψξ −∑ξ’∈Ω pξ’ ψξ′

)2
(21)

The objective value is less sensitive to the change of input data in all scenarios as λ (the
variability weight) increases [14]. Due to the complexity represented by the squared term,
Yu & Li [45] proposed a technique to transform Equation (20) into a linear programming
model. Using the Yu and Li approach, the robust optimization model (Equation (20)) can
be transformed into the following linear model (Equation (22)).
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MIN ∑ξ∈Ω pξ ψξ + λ ∑ξ∈Ω pξ
[(
ψξ −∑ξ’∈Ω pξ’ ψξ′

)
+ 2θξ

]
+ ω ∑ξ∈Ω pξ δξ ,

ψξ −∑ξ∈Ω pξ ψξ + θξ ≥ 0, ∀ξ ∈ Ω,

θξ ≥ 0, ∀ξ ∈ Ω

Ax = b,

Bξ x + Cξyξ + δξ = eξ , ∀ξ ∈ Ω,

x ≥ 0, yξ ≥ 0, δξ ≥ 0, θξ ≥ 0 ∀ξ ∈ Ω

(22)

Following these steps, the robust formulation of the model proposed in this study is
as follows.

Objective functions of the robust model:

Max UTI = ∑ξ∈Ω pξ ·
(

∑J
j=1 ∑N

n=1 QWξ
jn ·V − CPξ − CMξ − CTξ

)
+ λ ∑ξ∈Ω pξ

[
∑J

j=1 ∑N
n=1 QWξ

jnV − CPξ − CMξ−

CTξ −∑ξ ′∈Ω pξ ′

(
∑J

j=1 ∑N
n=1 QWξ′

jnV − CPξ ′ − CMξ ′ − CTξ ′
)
+ 2θξ

]
+ ω ∑ξ∈Ω pξ δξ

(23)

MinEI = ∑ξ∈Ω pξ ·
(

IAPξ + IAFξ + IAPCξ + IACCξ
)
+ λ ∑ξ∈Ω pξ

[
IAPξ + IAFξ + IAPCξ + IACCξ−

∑ξ ′∈Ω pξ ′

(
IAPξ ′ + IAFξ ′ + IAPCξ ′ + IACCξ ′

)
+ 2τξ

]
+ ω ∑ξ∈Ω pξ δξ

(24)

Restrictions of the robust model:

∑J
j=1 ∑N

n=1 QWξ
jnV − CPξ − CMξ − CTξ −∑ξ∈Ω pξ

(
∑J

j=1 ∑N
n=1 QWξ

jnV − CPξ − CMξ − CTξ
)
+ θξ > 0 ∀ ξ ε Ω (25)

IAPξ + IAFξ + IAPCξ + IACCξ −∑ξ∈Ω pξ
(

IAPξ + IAFξ + IAPCξ + IACCξ
)
+ τξ > 0 ∀ ξ ε Ω (26)

∑I
i=1 QSξ

msi ≤ rms· Xξ
s ∀ m ∈ M, s ∈ S, ξ ε Ω (27)

∑J
j=1 QPξ

ij ≤ li·Z
ξ
i ∀ i ∈ I, ξ ε Ω (28)

∑N
n=1 QWξ

jn ≤ ϕj· Y
ξ
j ∀ j ∈ J, ξ ε Ω (29)

∑S
s=1 QSξ

msi = ∑J
j=1 QPξ

ij· tm ∀ m ∈ M, i ∈ I, ξ ε Ω (30)

∑M
m=1 QSξ

msi = QPPξ
si ∀ s ∈ S, i ∈ I, ξ ε Ω (31)

∑I
i=1 QPξ

ij = ∑N
n=1 QWξ

jn ∀ j ∈ J, ξ ε Ω (32)

∑J
j=1 QWξ

jn + δξ = dξ
n ∀ n ∈ N, ξ ε Ω (33)

∑I
i=1 ∑J

j=1 QPξ
ij + δξ = ∑N

n=1 dξ
n ∀ n ∈ N, ξ εΩ (34)

5. Validation Results and Discussion
5.1. Description of the Case Study

The case study company is a medium-sized enterprise with 100 workers, located in
Guadalajara, Mexico. The company manufactures and sells personal care products and one
of its best-selling items is the 120 mL antibacterial gel. Its production process involves three
mixing machines and a bottling plant, while a fleet of trucks with a capacity of 22.6 tons is
used for transportation.



Sustainability 2023, 15, 14039 11 of 16

The antibacterial gel is made up of seven raw materials (carbomer, distilled water, ethanol,
triethanolamine, glycerin, tocopherol and perfume) while its packaging consists of three parts
(PET bottle, cap and label). The company currently has eight approved suppliers, which have
availability of one or more raw materials. Demand is considered a control variable and three
demand scenarios are generated (pessimistic, normal and optimistic).

The SC case study of the antibacterial gel used to validate the model consists of several
suppliers, a single production plant, two distribution centers and five wholesale customers
(see Figure 3).
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5.2. Results and Discussion

For the generation of results, the model was programmed in the GAMS 40 software
and, in order to obtain results of the individual functions, the MIP function of the Cplex
solver is applied, which uses the Branch and Bound method. Likewise, for the bi-objective
problem, Cplex is applied in the same manner through the combination of multiple objec-
tives and the ε constraint generation method.

For the execution of the algorithm, three runs of the robust model are carried out. For
Run 1, only the Max UTI OF is considered. Run 2 considers only the Min EI OF. Finally,
Run 3 takes into account both OF simultaneously. Table 1 shows the differences for each
execution of the algorithm, detailing the overall results as well as the results for each
demand scenario.

Table 1. Comparison of the results obtained with the robust model development, per run and per
demand scenario.

Category OF Max UTI
(Run 1)

OF Min EI
(Run 2)

Max and Min Bi-Objective
(Run 3)

Robustness solution (UTI) (MXN) $1,838,225 $1,761,742 $1,830,066
Pessimistic scenario $1,686,786 $1,458,043 $1,546,165
Normal scenario $1,779,928 $1,657,086 $1,705,841
Optimistic scenario $1,873,071 $1,850,010 $1,865,517

Robustness solution (EI) (Eco points) 197,668 197,662 197,666
Pessimistic scenario 168,792 168,782 168,790
Normal scenario 187,542 187,535 187,539
Optimistic scenario 206,291 206,289 206,292

Units shipped to customers
Pessimistic scenario 364,950 364,950 364,950
Normal scenario 405,500 405,500 405,500
Optimistic scenario 446,050 446,050 446,050
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The data in Table 1 show that the model reflects robustness in the solution since its
values remain “close” to the optimum for any demand scenario. Furthermore, in terms
of model robustness, the solution is feasible for all demand scenarios. As for the values
obtained for both utility and environmental impact, based on the results in Table 1, it can
be generalized that the values of Run 3 are in the middle of Run 1 and Run 2. This indicates
that the model tries to find a balance between these two opposing objectives.

As for the general environmental impact, there is a slight change between the values of
the three columns, due to the fact that there is only one production plant with only one method
to manufacture the product. This means that the only way to reduce this environmental impact
is by selecting the shortest routes between the SC arcs. This slight decrease in environmental
impact generates an average decrease of 7.2% in profit. Finally, for all demand scenarios, 100%
of the demand is met for all the algorithm executions, implying that all the products requested
by customers are delivered. Regarding product flows through each arc, Tables 2–4 show the
quantity of products sent from the distribution centers to the customers and the variations
that exist for each demand scenario and model run.

Table 2. Flow between distribution center j and customer n—Robust model—Pessimistic demand.

Category OF Max UTI
(Run 1)

OF Min EI
(Run 2)

Max and Min Bi-Objective
(Run 3)

Pessimistic Scenario (Units Shipped)
D. Center_1—Customer_1 51,750 51,750
D. Center_1—Customer_2 7650 76,500
D. Center_1—Customer_3 134,300
D. Center_1—Customer_4 40,500 40,500 40,500
D. Center_1—Customer_5 25,200 25,200
D. Center_2—Customer_1 51,750
D. Center_2—Customer_2 76,500
D. Center_2—Customer_3 171,000 171,000 36,700
D. Center_2—Customer_4
D. Center_2—Customer_5 25,200
Utilization D. Center_1 84.38% 96.98% 100.00%
Utilization D. Center_2 78.48% 68.40% 65.98%

Table 3. Flow between distribution center j and customer n—Robust model—Normal demand.

Category OF Max UTI
(Run 1)

OF Min EI
(Run 2)

Max and Min Bi-Objective
(Run 3)

Normal Scenario (Units Shipped)
D. Center_1—Customer_1 57,500 57,500
D. Center_1—Customer_2 69,500
D. Center_1—Customer_3 114,500 190,000
D. Center_1—Customer_4 45,000
D. Center_1—Customer_5 28,000 28,000
D. Center_2—Customer_1 57,500
D. Center_2—Customer_2 85,000 15,500 85,000
D. Center_2—Customer_3 75,500 190,000
D. Center_2—Customer_4 45,000 45,000
D. Center_2—Customer_5 28,000
Utilization D. Center_1 100.00% 100.00% 95.00%
Utilization D. Center_2 82.20% 82.20% 86.20%

According to the data shown in Tables 2–4, in the three demand scenarios, during Run
1, the distribution centers are selected, giving preference to those with lower costs. In Run 2,
the focus is on selecting the distribution centers closest to plants as well as to the customers,
in order to reduce the environmental impact resulting from transportation. Finally, in the
bi-objective run (Run 3), the aim is to balance costs and proximity. Another noteworthy



Sustainability 2023, 15, 14039 13 of 16

aspect of the results obtained refers to the percentages of utilization of the distribution
centers, where center 1 is the most used in most cases. Therefore, consideration should be
given to expanding the capacity of this center as it would increase the value of the utility
and reduce environmental impact.

Table 4. Flow between distribution center j and customer n—Robust model—Optimistic demand.

Category OF Max UTI
(Run 1)

OF Min EI
(Run 2)

Max and Min Bi-Objective
(Run 3)

Optimistic Scenario (Units Shipped)
D. Center_1—Customer_1 57,000 63,250
D. Center_1—Customer_2 93,500 56,450 93,500
D. Center_1—Customer_3 57,000
D. Center_1—Customer_4 49,500 49,500 49,500
D. Center_1—Customer_5 30,800
D. Center_2—Customer_1 6250 63,250
D. Center_2—Customer_2 37,050
D. Center_2—Customer_3 209,000 209,000 152,000
D. Center_2—Customer_4
D. Center_2—Customer_5 30,800 30,800
Utilization D. Center_1 100.00% 100.00% 100.00%
Utilization D. Center_2 98.42% 98.42% 98.42%

The results obtained also reflect the importance of including an OF that minimizes
environmental impact in SSC management, agreeing with similar studies that show that
the application of tools to analyze LCA, carbon emissions, carbon footprint or greenhouse
gases, allows industries to guide its SC towards a path of sustainability [8,10,27,46]. A
priori, these efforts do not generate economic benefits and increase SC complexity but, it
is the path to follow, considering the current government pressures, regulations, global
standards and consumer demands [6].

According to the data obtained, the decisions that contribute the most to building an
SSC design are:

• During the selection and qualification of suppliers, it is recommended to consider
aspects such as location with respect to the production plants, the means of transporta-
tion and the shipment capacity of the raw material to be used;

• Investigate the use of alternative raw materials, especially raw materials that generate
less environmental impact throughout the SC;

• Investigate the application of new technology, focused on reducing the environmental
impact of the production stage;

• Be willing to sacrifice a percentage of the current profit for a higher profit in the
near future.

The validation results of the model allow the case study to analyze different situations
occurring in the SSC design of its antibacterial gel product considering demand scenarios.
Therefore, the model becomes a decision support tool that provides organizations with
different alternatives for configuring their SC to move their finished products or raw
materials according to their economic or environmental interests.

6. Conclusions

An SSC has been designed through the execution of a robust optimization model
that considers LCA indicators, which has allowed generating and analyzing the results
of different demand scenarios. The design of a dynamic network is also evaluated since
the model allows the selection of different suppliers, production plants and distribution
centers. In the event of internal or external disruptions that force the partial closure of one
of the SC elements, the model will select the second-best option, avoiding the paralyzation
of the entire SC.
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The validation of the model has been carried out with data from a particular company
and one of its main products, the antibacterial gel. The model has been structured in a
generic way, as it considers an unlimited number of suppliers, production plants, distri-
bution centers and customers in its mathematical formulation, so it could be adapted to
other conflicting industries conflicting industries such as wood, paper, food processing
and textiles [34,47], which also require tools to promote the implementation of sustainable
strategies in their SCs. To adapt the model, it is necessary to start by performing the LCA
of the new product of interest, gathering information on its operational processes and SC
and integrating them into the model proposed.

In Section 5, special attention was paid to the comparison between the classical models
that consider only costs versus the developed model that considers LCA-based environ-
mental impact indicators. Results showed that the average percentage of profit reduction is
7.2%; however, this value will depend on the managers, who should study and analyze
how much they are willing to reduce their profit, what are the future benefits and what
sustainability measures are feasible to implement in their respective SCs.

The decision of whether or not to implement these alternatives should consider in
parallel the economic benefits generated by SSC such as market positioning, competitive
advantage, the attraction of new customers, access to new markets, demand increase,
acquisition of certifications, strengthening of the corporate image and customer loyalty [48].
In this manner, the initial reduction in profit is compensated [49].

In addition, the actions simulated in this work, which are oriented towards an SSC,
are just examples of the wide variety of options available. Companies must take a proac-
tive approach to reduce sources of waste or pollution and implement measures such as
ecological design, green purchases, environmental collaboration of suppliers, saving re-
sources, reducing harmful materials, and recycling or reusing products. If these initiatives
are carried out jointly, they can have a significant relationship with environmental and
economic performance [48,49]. These authors demonstrated that a SSC can generate both
environmental and economic benefits, without sacrificing its efficiency.

However, there are also limitations of the study. The designed SC is not a closed-loop,
since it does not allow identifying the environmental impact in the post-use phase of the
product. Also, only the uncertainty caused by the demand is considered and other variables
such as costs are omitted. These limitations show the direction to follow in future research.
In addition, the model can be further enhanced by considering a closed-loop SC with a
more stochastic environment.
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