An In Vitro Study of the Effects of Temperature and pH on Lead Bioremoval Using Serratia marcescens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample
2.3. S. marcescens Culture and Inoculum
2.4. Tolerance Test by Determination of Minimum Inhibitory Concentration (MIC)
2.5. Lead Bioremoval Treatments Using S. marcescens
2.6. Analysis of Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grizzetti, B.; Liquete, C.; Pistocchi, A.; Vigiak, O.; Zulian, G.; Bouraoui, F.; De Roo, A.; Cardoso, A.C. Relationship between ecological condition and ecosystem services in European rivers, lakes, and coastal waters. Sci. Total Environ. 2019, 671, 452–465. [Google Scholar] [CrossRef]
- Aznar, J.A.; Velasco, J.F.; Belmonte, L.J.; Manzano, F. The worldwide research trends on water ecosystem services. Ecol. Indic. 2019, 99, 310–323. [Google Scholar] [CrossRef]
- Cañón, S.F.C. Biorremediación: Un proceso eficaz para la descontaminación de ecosistemas. Rev. Neuronum 2022, 8, 47–50. [Google Scholar]
- García, A.; Rimaycuna, J.; Herrera, E.; Bermejo, L.; Cruz, G. Correlation between the Concentration of Heavy Metals in Drinking Water and Their Concentration in the Surface Water of the Tumbes River, Peru. Manglar 2022, 19, 137–142. [Google Scholar] [CrossRef]
- Li, L.; Jiang, M.; Liu, Y.; Shen, X. Heavy metals inter-annual variability and distribution in the Yangtze River estuary sediment, China. Mar. Pollut. Bull. 2019, 141, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Kobielska, P.A.; Howarth, A.J.; Farha, O.K.; Nayak, S. Metal organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 2018, 358, 92–107. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Ren, G.; Jin, Y.; Zhang, C.; Gu, H.; Qu, J. Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb (II). Ecotoxicol. Environ. Saf. 2015, 117, 141–148. [Google Scholar] [CrossRef]
- Kellett, N.C.; Rocha, G.O. Graciela: One Woman’s Story of War, Survival, and Perseverance in the Peruvian Andes; University of New Mexico Press: Albuquerque, NM, USA, 2022. [Google Scholar]
- Lecca Cballero, D.A.; Vega Moreno, E.J. Influencia de la Temperatura y pH con Serratia Marcescens en Biorremoción de Plomo (Pb) de la Quebrada La Victoria, Santiago de Chuco. 2020. Available online: https://repositorio.ucv.edu.pe/handle/20.500.12692/46691 (accessed on 24 August 2023).
- Vasquez, C.N. Groundfall Hazards Assessment Methodology to Minimize the Number of Fatal Accidents in Artisanal and Small-Scale Mining (ASM): A Case Study of Peruvian Mining. Ph.D. Thesis, Colorado School of Mines, Golden, CO, USA, 2021. [Google Scholar]
- Rojas-Flores, S.; Ramirez-Asis, E.; Delgado-Caramutti, J.; Nazario-Naveda, R.; Gallozzo-Cardenas, M.; Diaz, F.; Delfin-Narcizo, D. An Analysis of Global Trends from 1990 to 2022 of Microbial Fuel Cells: A Bibliometric Analysis. Sustainability 2023, 15, 3651. [Google Scholar] [CrossRef]
- Wang, N.; Qiu, Y.; Xiao, T.; Wang, J.; Chen, Y.; Xu, X.; Kang, Z.; Fan, L.; Yu, H. Comparative studies on Pb (II) biosorption with three spongy microbe based biosorbents: High performance, selectivity and application. J. Hazard. Mater. 2019, 373, 39–49. [Google Scholar] [CrossRef]
- Sahmoune, M.N. Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem. J. Devoted Appl. Microtech. All Branches Sci. 2018, 141, 87–95. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Faidah, H.S.; Ashgar, S.S.; Barhameen, A.A.A.; El-Said, H.M.; Elsawy, A. Serratia marcescens as opportunistic pathogen and the importance of continuous monitoring of nosocomial infection in Makah city, Saudi Arabia. Open J. Med. Microbiol. 2015, 5, 107–112. [Google Scholar] [CrossRef]
- Queiroz, P.S.; Barboza, N.R.; Cordeiro, M.M.; Leao, V.A.; Guerra-Sá, R. Rich growth medium promotes an increased on Mn (II) removal and manganese oxide production by Serratia marcescens strains isolates from wastewater. Biochem. Eng. J. 2018, 140, 148–156. [Google Scholar] [CrossRef]
- Quian, Y.; Huang, L.; Zhou, P.; Tian, F.; Puma, G.L. Reduction of Cu (II) and simultaneous production of acetate from inorganic carbon by Serratia marcescens biofilms and plankton cells in microbial electrosynthesis systems. Sci. Total Environ. 2019, 666, 114–125. [Google Scholar] [CrossRef]
- Govin, A.; Leal, G.; Bello, C.M.; Fernández, S. Caracterizacion de cepas de Serratia marcescens resistentes a metales pesados aisladas del yacimiento laterítico de Moa, Cuba. Rev. CENIC 2020, 51, 196–206. [Google Scholar]
- Sayyadi, S.; Ahmady-Asbchin, S.; Kamali, K.; Tavakoli, N. Thermodynamic, equilibrium and kinetic studies on biosorption of Pb+2 from aqueous solution by Bacillus pumilus sp. AS1 isolated from soil at abandoned lead mine. J. Taiwan Inst. Chem. Eng. 2017, 80, 701–708. [Google Scholar] [CrossRef]
- Hadiani, M.R.; Darani, K.K.; Rahimifard, N.; Younesi, H. Biosorption of low concentration levels of lead (II) and Cadmium (II) from aqueus solution by Saccharomyces cerevisiae: Response surface methodology. Biocatal. Agric. Biotechnol. 2018, 15, 25–34. [Google Scholar] [CrossRef]
- Yusta-García, R.; Orta-Martínez, M.; Mayor, P.; González-Crespo, C.; Rosell-Melé, A. Water Contamination from Oil Extraction Activities in Northern Peruvian Amazonian Rivers. Environ. Pollut. 2017, 225, 370–380. [Google Scholar] [CrossRef]
- Tello-Galarreta, F.A.; Durand-Paz, J.H.; Rojas-Villacorta, W.; Cabanillas-Chirinos, L.; De La Cruz-Noriega, M.; Nazario-Naveda, R.; Benites, S.M.; Rojas-Flores, S. In Vitro Effect of Molasses Concentration, PH, and Time on Chromium Removal by Trichoderma spp. from the Effluents of a Peruvian Tannery. Processes 2023, 11, 1557. [Google Scholar] [CrossRef]
- Ministerio de Deesarrollo Agrario y Riego. Protocolo Nacional para el Monitoreo de la Calidad de los Recursos Hídricos Superficiales. 2016. Available online: https://www.ana.gob.pe/publicaciones/protocolo-nacional-para-el-monitoreo-de-la-calidad-de-los-recursos-hidricos-0 (accessed on 9 August 2023).
- Aprueban Estándares de Calidad Ambiental (ECA) Para Agua y Establecen Disposiciones Complementarias. Available online: https://sinia.minam.gob.pe/normas/aprueban-estandares-calidad-ambiental-eca-agua-establecen-disposiciones (accessed on 12 August 2023).
- Choinska-Pulit, A.; Sobolczyk-bednarek, J.; Laba, W. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken desing. Ecotoxicol. Environ. Saf. 2018, 149, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Huang, Z.; Li, X.; Liu, M.; Cheng, Y. Bioremediation of acephate Pb (II) compound contaminants by Bacillus subtilis FZUL-33. J. Environ. Sci. 2016, 45, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Cristani, M.; Naccari, C.; Nostro, A.; Pizzimenti, A.; Trombetta, D.; Pizzimenti, F. Posible uso de Serratia marcescens en la biosorción (remoción) de metales tóxicos. Environ. Sci. Pollut. Res. Int. 2012, 19, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Su, W.T.; Tsou, T.Y.; Liu, H.L. Optimizacion de la superficie de respuesta de la produccion de prodigiosina microbiana de Serratia marcescens. Rev. Inst. Ing. Químicos Taiwan 2011, 42, 217–222. [Google Scholar]
- dos Reis Ferreira, G.M.; Pires, J.F.; Ribeiro, L.S.; Carlier, J.D.; Costa, M.C.; Schwan, R.F.; Silva, C.F. Impact of Lead (Pb2+) on the Growth and Biological Activity of Serratia Marcescens Selected for Wastewater Treatment and Identification of Its ZntR Gene—A Metal Efflux Regulator. World J. Microbiol. Biotechnol. 2023, 39, 91. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, M.; Śliwakowski, W.; Kowalczyk, P.; Kramkowski, K.; Dobrzyński, J. Bioremediation of Heavy Metals by the Genus Bacillus. Int. J. Environ. Res. Public Health 2023, 20, 4964. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Xiong, G.; Zhou, F.; Li, X.; Zhang, X.; Zhang, J. Absorption of three different forms of arsenic in water by three aquatic plants and their bioremediation potential. Mater. Express 2022, 12, 1116–1125. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef]
- Vaid, N.; Sudan, J.; Dave, S.; Mangla, H.; Pathak, H. Insight Into microbes and plants ability for bioremediation of heavy metals. Curr. Microbiol. 2022, 79, 141. [Google Scholar] [CrossRef]
- Dammak, M.; Hlima, H.B.; Tounsi, L.; Michaud, P.; Fendri, I.; Abdelkafi, S. Effect of heavy metals mixture on the growth and physiology of Tetraselmis sp.: Applications to lipid production and bioremediation. Bioresour. Technol. 2022, 360, 127584. [Google Scholar] [CrossRef]
- Kumar, H.; Ishtiyaq, S.; Varun, M.; Favas, P.J.; Ogunkunle, C.O.; Paul, M.S. Bioremediation: Plants and microbes for restoration of heavy metal contaminated soils. In Bioenergy Crops; CRC Press: Boca Raton, FL, USA, 2022; pp. 37–70. [Google Scholar]
- Rojas-Flores, S.; De La Cruz-Noriega, M.; Nazario-Naveda, R.; Benites, S.M.; Delfín-Narciso, D.; Angelats-Silva, L.; Murga-Torres, E. Use of Banana Waste as a Source for Bioelectricity Generation. Processes 2022, 10, 942. [Google Scholar] [CrossRef]
- Rojas-Villacorta, W.; Rojas-Flores, S.; De La Cruz-Noriega, M.; Chinchay Espino, H.; Diaz, F.; Gallozzo Cardenas, M. Microbial Biosensors for Wastewater Monitoring: Mini-Review. Processes 2022, 10, 2002. [Google Scholar] [CrossRef]
- Lv, Y.; Zhu, X.; Zhang, M.; Liu, X.; Wang, J. In-situ Bioremediation of Multiple Heavy Metals Contaminated Farmland Soil by Sulfate-Reducing Bacteria. Pol. J. Environ. Stud. 2022, 31, 1747–1755. [Google Scholar] [CrossRef]
- Otiniano, N.M.; De La Cruz-Noriega, M.; Cabanillas-Chirinos, L.; Rojas-Flores, S.; Muñoz-Ríos, M.A.; Rojas-Villacorta, W.; Robles-Castillo, H. Arsenic Biosorption by the Macroalgae Chondracanthus chamissoi and Cladophora sp. Processes 2022, 10, 1967. [Google Scholar] [CrossRef]
- Tavares-Carreon, F.; De Anda-Mora, K.; Rojas-Barrera, I.C.; Andrade, A. Serratia marcescens antibiotic resistance mechanisms of an opportunistic pathogen: A literature review. PeerJ 2023, 11, e14399. [Google Scholar] [CrossRef]
- Díaz, A.; Marrero, J.; Cabrera, G.; Coto, O.; Gómez, J.M. Optimization of nickel and cobalt biosorption by native Serratia marcescens strains isolated from serpentine deposits using response surface methodology. Environ. Monit. Assess. 2022, 194, 167. [Google Scholar] [CrossRef]
- Feng, K.; Li, W.; Tang, X.; Luo, J.; Tang, F. Termicin silencing enhances the toxicity of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki). Pestic. Biochem. Physiol. 2022, 185, 105120. [Google Scholar] [CrossRef]
- Adedoyin, F.T.; Sridhar, B.B.M.; Rosenzweig, J.A. Impact of metal exposure on environmentally isolated Serratia marcescens’ growth, oxidative-stress resistance, biofilm formation, and proliferation in eukaryotic co-culture models. Ecotoxicol. Environ. Saf. 2023, 253, 114677. [Google Scholar] [CrossRef]
- Salas-Villalobos, U.A.; Santacruz, A.; Castillo-Reyna, J.; Aguilar, O. An in-situ approach based in mineral oil to decrease end-product inhibition in prodigiosin production by Serratia marcescens. Food Bioprod. Process. 2022, 135, 217–226. [Google Scholar] [CrossRef]
Treatments | Independent Variables + | Combinations | |
---|---|---|---|
pH | Temperature | ||
1 | P1 | T1 | P1T1 |
2 | P1 | T2 | P1T2 |
3 | P1 | T3 | P1T3 |
4 | P2 | T1 | P2T1 |
5 | P2 | T2 | P2T2 |
6 | P2 | T3 | P2T3 |
Total combinations | 3(P) | 3(T) | 3 × 3 |
Tests | Culture Media | Result |
---|---|---|
Gram Staining | - | Gram-negative |
Sugars fermentation | TSI Agar | A/A a |
H2S production | TSI Agar | − |
Gas production | TSI Agar | + |
Decarboxylation production | LIA Agar | K/K b |
Citrate test | Citrate Agar | − |
Urease test | Urea Agar | − |
Methyl Red (MR) test | MR Broth | − |
Voges–Proskauer (VP) Test | PV Broth | + |
Motility test | SIM Agar | + |
Indole test | Tryptone | − |
Pb Concentration | Growth | Pigmentation Production |
---|---|---|
0.5 mg/L | + | + |
1.5 mg/L | + | + |
3.0 mg/L | + | + |
10.0 mg/L | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecca-Caballero, D.; Vega-Moreno, E.; Cabanillas-Chirinos, L.; Diaz Del Aguila, K.; Rojas-Villacorta, W.; Salvatierra-Espinola, W.; Naveda, R.N.; Rojas-Flores, S.; De La Cruz-Noriega, M. An In Vitro Study of the Effects of Temperature and pH on Lead Bioremoval Using Serratia marcescens. Sustainability 2023, 15, 14048. https://doi.org/10.3390/su151914048
Lecca-Caballero D, Vega-Moreno E, Cabanillas-Chirinos L, Diaz Del Aguila K, Rojas-Villacorta W, Salvatierra-Espinola W, Naveda RN, Rojas-Flores S, De La Cruz-Noriega M. An In Vitro Study of the Effects of Temperature and pH on Lead Bioremoval Using Serratia marcescens. Sustainability. 2023; 15(19):14048. https://doi.org/10.3390/su151914048
Chicago/Turabian StyleLecca-Caballero, Dafne, Eyber Vega-Moreno, Luis Cabanillas-Chirinos, Karen Diaz Del Aguila, Walter Rojas-Villacorta, Waldo Salvatierra-Espinola, Renny Nazario Naveda, Segundo Rojas-Flores, and Magaly De La Cruz-Noriega. 2023. "An In Vitro Study of the Effects of Temperature and pH on Lead Bioremoval Using Serratia marcescens" Sustainability 15, no. 19: 14048. https://doi.org/10.3390/su151914048
APA StyleLecca-Caballero, D., Vega-Moreno, E., Cabanillas-Chirinos, L., Diaz Del Aguila, K., Rojas-Villacorta, W., Salvatierra-Espinola, W., Naveda, R. N., Rojas-Flores, S., & De La Cruz-Noriega, M. (2023). An In Vitro Study of the Effects of Temperature and pH on Lead Bioremoval Using Serratia marcescens. Sustainability, 15(19), 14048. https://doi.org/10.3390/su151914048