Impacts of Polylactic Acid Microplastics on Performance and Microbial Dynamics in Activated Sludge System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactor Setup
2.2. Operational Conditions
2.3. Biological Activity Batch Tests
2.3.1. Enhanced Biological Phosphorus Removal (EBPR) Activity Batch Tests
2.3.2. Nitrification Activity Batch Tests
2.4. Microbial Community Analysis
2.5. Chemical Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effects of PLA MPs on Pollutant Removal Performance
3.1.1. COD Removal Performance
3.1.2. Phosphorus Removal Performance
3.1.3. Nitrogen Removal Performance
3.2. Effects of PLA MPs on Metabolic Activity
3.2.1. EBPR Activity
Reactor | Prel (mg P/(g VSS·h)) | Pup (mg P/(g VSS·h)) | Pup/Prel | P/HAc (P-mol/C-mol) | PHA/HAc (C-mol/C-mol) | Glyc/HAc (C-mol/C-mol) | References |
---|---|---|---|---|---|---|---|
R0 | 29.1 | 7.5 | 0.26 | 0.41 | 0.83 | 0.21 | This study |
R1 | 37.7 | 7.4 | 0.20 | 0.60 | 0.71 | 0.18 | |
R2 | 28.2 | 7.2 | 0.26 | 0.49 | 0.54 | 0.26 | |
R3 | 23.1 | 6.3 | 0.27 | 0.48 | 0.68 | 0.14 | |
Other systems a | 2.8–31.9 | 1.9–11.0 | 0.2–0.7 | 0.11–0.66 | 0.67–2.10 | 0.02–0.82 | [21,44,45,46] |
3.2.2. Nitrification Activity
3.3. Effects of PLA MPs on EPS
3.4. Effect of PLA MPs on Microbial Community
3.4.1. Microbial Community Diversity
3.4.2. Microbial Composition
3.4.3. Functionally Relevant Microbial Populations
4. Conclusions
- (1)
- The low concentration of PLA MPs (50 particles/(g TS)) had little effect on the pollutant removal performance in the activated sludge system. A high concentration of PLA MPs (200 particles/(g TS)) reduced TN removal performance by 5.5%, while improving P removal performance by 3.9%. The PLA MPs had no significant effects on COD removal.
- (2)
- The addition of PLA MPs had various effects on the activity of specific functional micro-organisms, such as PAOs, AOB, and NOB. After high PLA MP exposure, Prel and Pup decreased by 20.62% and 16.00%, respectively. It also resulted in a 70.19% decrease in AOR and a 14.78% decrease in NOR, indicating the higher sensitivity of AOB to PLA MP exposure than NOB. Increased PLA MP dosage also led to a 32.95% decrease in total EPS content in sludge flocs.
- (3)
- PLA MPs can be used as biocarriers and slow-release carbon sources to enrich or screen functional micro-organisms. With the increase in the PLA MP dosage, the relative abundance of potential heterotrophic PAO (Acinetobacter) increased to 12.57%, while the relative abundance of denitrifying bacteria (Pseudomonas) decreased to 58.98%, which, in turn, affected the P and N removal performance.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, M.; Cao, Y.; Chen, T.; Li, H.; Tong, Y.; Fan, W.; Xie, Y.; Tao, Y.; Zhou, J. Characteristics and source-pathway of microplastics in freshwater system of China: A review. Chemosphere 2022, 297, 134192. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Carnevale Miino, M.; Caccamo, F.M.; Milanese, C. Microplastics in Sewage Sludge: A Known but Underrated Pathway in Wastewater Treatment Plants. Sustainability 2021, 13, 12591. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, L.; Cizdziel, J.; Huang, Y. Research progress on microplastics in wastewater treatment plants: A holistic review. J. Environ. Manag. 2023, 325, 116411. [Google Scholar] [CrossRef]
- Jeong, C.B.; Won, E.J.; Kang, H.M.; Lee, M.C.; Hwang, D.S.; Hwang, U.K.; Zhou, B.; Souissi, S.; Lee, S.J.; Lee, J.S. Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (Brachionus koreanus). Environ. Sci. Technol. 2016, 50, 8849–8857. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environ. Sci. Technol. 2013, 47, 1646–1654. [Google Scholar] [CrossRef] [PubMed]
- Mohammad Mirsoleimani Azizi, S.; Hai, F.I.; Lu, W.; Al-Mamun, A.; Ranjan Dhar, B. A review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion. Bioresour. Technol. 2021, 329, 124894. [Google Scholar] [CrossRef]
- He, Y.; Li, L.; Song, K.; Liu, Q.; Li, Z.; Xie, F.; Zhao, X. Effect of microplastic particle size to the nutrients removal in activated sludge system. Mar. Pollut. Bull. 2021, 163, 111972. [Google Scholar] [CrossRef]
- Wei, W.; Huang, Q.S.; Sun, J.; Wang, J.Y.; Wu, S.L.; Ni, B.J. Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A. Environ. Sci. Technol. 2019, 53, 2509–2517. [Google Scholar] [CrossRef]
- Sheng, G.-P.; Yu, H.-Q.; Li, X.-Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010, 28, 882–894. [Google Scholar] [CrossRef]
- Tang, S.; Qian, J.; Wang, P.; Lu, B.; He, Y.; Yi, Z.; Zhang, Y. Exposure to nanoplastic induces cell damage and nitrogen inhibition of activated sludge: Evidence from bacterial individuals and groups. Environ. Pollut. 2022, 306, 119471. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, S.; Wu, L.; Guo, Y.; Shi, W.; Lens, P.N. Micro(nano)plastic size and concentration co-differentiate the treatment performance and toxicity mechanism in aerobic granular sludge systems. Chem. Eng. J. 2023, 457, 141212. [Google Scholar] [CrossRef]
- Qin, R.; Su, C.; Liu, W.; Tang, L.; Li, X.; Deng, X.; Wang, A.; Chen, Z. Effects of exposure to polyether sulfone microplastic on the nitrifying process and microbial community structure in aerobic granular sludge. Bioresour. Technol. 2020, 302, 122827. [Google Scholar] [CrossRef] [PubMed]
- Bretas Alvim, C.; Castelluccio, S.; Ferrer-Polonio, E.; Bes-Piá, M.A.; Mendoza-Roca, J.A.; Fernández-Navarro, J.; Alonso, J.L.; Amorós, I. Effect of polyethylene microplastics on activated sludge process—Accumulation in the sludge and influence on the process and on biomass characteristics. Process Saf. Environ. Prot. 2021, 148, 536–547. [Google Scholar] [CrossRef]
- Wang, M.J.; Li, Q.Q.; Shi, C.Z.; Lv, J.; Xu, Y.D.; Yang, J.J.; Chua, S.L.; Jia, L.R.; Chen, H.W.; Liu, Q.; et al. Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation. Nat. Nanotechnol. 2023, 18, 403–411. [Google Scholar] [CrossRef]
- Havstad, M.R. Chapter 5—Biodegradable plastics. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 97–129. [Google Scholar]
- Döhler, N.; Wellenreuther, C.; Wolf, A. Market dynamics of biodegradable bio-based plastics: Projections and linkages to European policies. EFB Bioeconomy J. 2022, 2, 100028. [Google Scholar] [CrossRef]
- Hu, Y.; Daoud, W.A.; Cheuk, K.K.L.; Lin, C.S.K.; Kowalczuk, M. Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid). Materials 2016, 9, 133. [Google Scholar] [CrossRef]
- Auras, R.A.; Lim, L.T.; Selke, S.E.; Tsuji, H. Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, Applications, and End of Life; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022. [Google Scholar]
- Swetha, T.A.; Ananthi, V.; Bora, A.; Sengottuvelan, N.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A review on biodegradable polylactic acid (PLA) production from fermentative food waste—Its applications and degradation. Int. J. Biol. Macromol. 2023, 234, 123703. [Google Scholar] [CrossRef]
- Vieira, T.L.; Vitor, B.J.; Almeida, O.F.d.; Andrade, C.P.L.d. The Diffusion of Bioplastics: What Can We Learn from Poly(Lactic Acid)? Sustainability 2023, 15, 4699. [Google Scholar]
- Wang, D.; Tooker, N.B.; Srinivasan, V.; Li, G.; Fernandez, L.A.; Schauer, P.; Menniti, A.; Maher, C.; Bott, C.B.; Dombrowski, P.; et al. Side-stream enhanced biological phosphorus removal (S2EBPR) process improves system performance—A full-scale comparative study. Water Res. 2019, 167, 115109. [Google Scholar] [CrossRef]
- Lares, M.; Ncibi, M.C.; Sillanpää, M.; Sillanpää, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 2018, 133, 236–246. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Liu, H.; Guo, X.; Zhang, X.; Yao, X.; Cao, Z.; Zhang, T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environ. Int. 2021, 146, 106277. [Google Scholar] [CrossRef] [PubMed]
- Rolsky, C.; Kelkar, V.; Driver, E.; Halden, R.U. Municipal sewage sludge as a source of microplastics in the environment. Curr. Opin. Environ. Sci. Health 2020, 14, 16–22. [Google Scholar] [CrossRef]
- Zhang, C.; Guisasola, A.; Oehmen, A.; Baeza, J.A. Benefits and drawbacks of integrating a side-stream sludge fermenter into an A2O system under limited COD conditions. Chem. Eng. J. 2023, 468, 143700. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, J.; Xu, P.; Liu, Y.; Jing, X.; Liu, L.; Zhang, Z.; Qin, L.; Chai, G.; Lv, T.; et al. Performance and microbial dynamics of side-stream activated sludge hydrolysis process at different influent food-to-microorganism (F/M) ratios. Int. J. Environ. Sci. Technol. 2022, 20, 11029–11040. [Google Scholar] [CrossRef]
- Shen, N.; Chen, Y.; Zhou, Y. Multi-cycle operation of enhanced biological phosphorus removal (EBPR) with different carbon sources under high temperature. Water Research 2017, 114, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. (Eds.) Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF), APHA: Washington, DC, USA, 2012. [Google Scholar]
- Li, H.; Wen, Y.; Cao, A.; Huang, J.; Zhou, Q. The influence of multivalent cations on the flocculation of activated sludge with different sludge retention times. Water Res. 2014, 55, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Frølund, B.; Palmgren, R.; Keiding, K.; Nielsen, P.H. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996, 30, 1749–1758. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 2002, 28, 350–356. [Google Scholar] [CrossRef]
- Oehmen, A.; Keller-Lehmann, B.; Zeng, R.J.; Yuan, Z.; Keller, J. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. J. Chromatogr. A 2005, 1070, 131–136. [Google Scholar] [CrossRef]
- Dai, H.-H.; Gao, J.-F.; Wang, Z.-Q.; Zhao, Y.-F.; Zhang, D. Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system. J. Clean. Prod. 2020, 256, 120402. [Google Scholar] [CrossRef]
- Zaaba, N.F.; Jaafar, M. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 2020, 60, 2061–2075. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, X.; Ding, W.; Zhang, Z.; Nghiem, L.D.; Sun, J.; Wang, Q. Do Microplastics Affect Biological Wastewater Treatment Performance? Implications from Bacterial Activity Experiments. ACS Sustain. Chem. Eng. 2019, 7, 20097–20101. [Google Scholar] [CrossRef]
- Li, L.; Song, K.; Yeerken, S.; Geng, S.; Liu, D.; Dai, Z.; Xie, F.; Zhou, X.; Wang, Q. Effect evaluation of microplastics on activated sludge nitrification and denitrification. Sci. Total Environ. 2020, 707, 135953. [Google Scholar] [CrossRef] [PubMed]
- Gabriella, C.; Cristina, P.; Simone, C.; Marcella, L.; Rosabruna, L.F.; Angelina, L.G.; Giulia, M.; Carmen, R.; Giovanna, M.; Ciro, R.A.; et al. Effects of microplastics on trophic parameters, abundance and metabolic activities of seawater and fish gut bacteria in mesocosm conditions. Environ. Sci. Pollut. Res. Int. 2018, 25, 30067–30083. [Google Scholar]
- Schuler, A.J.; Jenkins, D. Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, Part III: Anaerobic sources of reducing equivalents. Water Environ. Res. Res. Publ. Water Environ. Fed. 2003, 75, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Francesca, D.P.; Simona, C.; Caterina, L.; Luca, V.; Maria, S.; Loris, P.; Stefania, D.V.; Stefano, A.; Simona, R. Plastisphere in lake waters: Microbial diversity, biofilm structure, and potential implications for freshwater ecosystems. Environ. Pollut. 2022, 310, 119876. [Google Scholar]
- Zhou, Y.; Pijuan, M.; Zeng, R.J.; Lu, H.; Yuan, Z. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)? Water Res. 2008, 42, 2361–2368. [Google Scholar] [CrossRef]
- Kristiansen, R.; Nguyen, H.T.T.; Saunders, A.M.; Nielsen, J.L.; Wimmer, R.; Le, V.Q.; McIlroy, S.J.; Petrovski, S.; Seviour, R.J.; Calteau, A.; et al. A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal. ISME J. 2013, 7, 543–554. [Google Scholar] [CrossRef]
- Oehmen, A.; Zeng, R.J.; Yuan, Z.; Keller, J. Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems. Biotechnol. Bioeng. 2005, 91, 43–53. [Google Scholar] [CrossRef]
- Lanham, A.B.; Oehmen, A.; Saunders, A.M.; Carvalho, G.; Nielsen, P.H.; Reis, M.A.M. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal. Water Res. 2013, 47, 7032–7041. [Google Scholar] [CrossRef]
- Gu, A.Z.; Saunders, A.; Neethling, J.B.; Stensel, H.D.; Blackall, L.L. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States. Water Environ. Res. 2008, 80, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Qiu, G.; Zuniga-Montanez, R.; Law, Y.; Thi, S.S.; Nguyen, T.Q.N.; Eganathan, K.; Liu, X.; Nielsen, P.H.; Williams, R.B.H.; Wuertz, S. Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. Water Res. 2018, 149, 496–510. [Google Scholar] [CrossRef] [PubMed]
- Kapagiannidis, A.G.; Zafiriadis, I.; Aivasidis, A. Comparison between aerobic and anoxic metabolism of denitrifying-EBPR sludge: Effect of biomass poly-hydroxyalkanoates content. New Biotechnol. 2013, 30, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, Y.; Niu, C.; Wang, Y.; Wang, B.; Liu, Y.; Guo, L.; Wang, Z. Long-term exposure of polytetrafluoroethylene-nanoplastics on the nitrogen removal and extracellular polymeric substances in sequencing batch reactor. Enzym. Microb. Technol. 2023, 166, 110229. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.K.; Shweta; Singh, S.; Singh, S.; Pandey, R.; Singh, V.P.; Sharma, N.C.; Prasad, S.M.; Dubey, N.K.; Chauhan, D.K. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 2017, 110, 2–12. [Google Scholar] [CrossRef]
- Li, S.; Fei, X.; Chi, Y.; Jiao, X.; Wang, L. Integrated temperature and DO effect on the lab scale A2O process: Performance, kinetics and microbial community. Int. Biodeterior. Biodegrad. 2018, 133, 170–179. [Google Scholar] [CrossRef]
- Yao, Q.; Peng, D.C. Nitrite oxidizing bacteria (NOB) dominating in nitrifying community in full-scale biological nutrient removal wastewater treatment plants. AMB Express 2017, 7, 25. [Google Scholar] [CrossRef]
- Agrawal, S.; Seuntjens, D.; Cocker, P.D.; Lackner, S.; Vlaeminck, S.E. Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights. Curr. Opin. Biotechnol. 2018, 50, 214–221. [Google Scholar] [CrossRef]
- Wei, W.; Hao, Q.; Chen, Z.; Bao, T.; Ni, B.-J. Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater. Water Res. 2020, 182, 116041. [Google Scholar] [CrossRef]
- Tang, Q.; Wu, M.; Zhang, Y.; Li, J.; Liang, J.; Zhou, H.; Qu, Y.; Zhang, X. Performance and bacterial community profiles of sequencing batch reactors during long-term exposure to polyethylene terephthalate and polyethylene microplastics. Bioresour. Technol. 2021, 347, 126393. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wu, Y.; Esquivel-Elizondo, S.; Sørensen, S.J.; Rittmann, B.E. How Microbial Aggregates Protect against Nanoparticle Toxicity. Trends Biotechnol. 2018, 36, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Z.; Cheng, Y.-F.; Liu, Y.-Y.; Zhang, Q.; Zhu, B.-Q.; Jin, R.-C. Deciphering the evolution characteristics of extracellular microbial products from autotrophic and mixotrophic anammox consortia in response to nitrogen loading variations. Environ. Int. 2019, 124, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Zheng, M.; Liu, A.; Wang, L.; Pan, X.; Liu, J.; Ran, X. Effects of emerging contaminants and heavy metals on variation in bacterial communities in estuarine sediments. Sci. Total Environ. 2022, 832, 155118. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.-T.; Huang, Q.-S.; Ni, B.-J. Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms. Water Res. 2019, 163, 114881. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Hu, Y.; Kou, D.; Yang, W.; Tang, W.; Chen, Q.; Que, S.; Zhao, X.; Zhao, D. Factors Impacting Microplastic Biofilm Community and Biological Risks Posed by Microplastics in Drinking Water Sources. Water Air Soil Pollut. 2022, 233, 179. [Google Scholar] [CrossRef]
- Deng, H.; Fu, Q.; Li, D.; Zhang, Y.; He, J.; Feng, D.; Zhao, Y.; Du, G.; Yu, H.; Ge, C. Microplastic-associated biofilm in an intensive mariculture pond: Temporal dynamics of microbial communities, extracellular polymeric substances and impacts on microplastics properties. J. Clean. Prod. 2021, 319, 128774. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Mielczarek, A.T.; Kragelund, C.; Nielsen, J.L.; Saunders, A.M.; Kong, Y.; Hansen, A.A.; Vollertsen, J. A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. Water Res. 2010, 44, 5070–5088. [Google Scholar] [CrossRef]
- Sun, T.; Du, R.; Dan, Q.; Liu, Y.; Peng, Y. Rapidly achieving partial nitrification of municipal wastewater in enhanced biological phosphorus removal (EBPR) reactor: Effect of heterotrophs proliferation and microbial interactions. Bioresour. Technol. 2021, 340, 125712. [Google Scholar] [CrossRef]
- Yan, B.; Xia, S.; Gui, S.L.; Fu, J.Q.; Wu, J.J.; Xiong, J.H.; Wei, Y.S. Microbial Community Structure and Diversity During the Enrichment of Anaerobic Ammonium Oxidation Bacteria. Huan Jing Ke Xue Huanjing Kexue 2020, 41, 5535–5543. [Google Scholar]
- Lawson, C.E.; Strachan, B.J.; Hanson, N.W.; Hahn, A.S.; Hall, E.R.; Rabinowitz, B.; Mavinic, D.S.; Ramey, W.D.; Hallam, S.J. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ. Microbiol. 2015, 17, 4979–4993. [Google Scholar] [CrossRef] [PubMed]
- Nierychlo, M.; Andersen, K.S.; Xu, Y.; Green, N.; Jiang, C.; Albertsen, M.; Dueholm, M.S.; Nielsen, P.H. MiDAS 3: An ecosystem-specific reference database, taxonomy and knowledge platform for activated sludge and anaerobic digesters reveals species-level microbiome composition of activated sludge. Water Res. 2020, 182, 115955. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Wang, D.Q.; Zhang, Z.; Li, X.X.; Chai, G.D.; Lin, Y.S.; Liu, C.; Cao, R.; Song, Y.X.; Meng, H.Y.; et al. Impact of Dissolved Oxygen on the Performance and Microbial Dynamics in Side-Stream Activated Sludge Hydrolysis Process. Water 2023, 15, 1977. [Google Scholar] [CrossRef]
- Zafiri, C.; Kornaros, M.; Lyberatos, G. Kinetic modelling of biological phosphorus removal with a pure culture of Acinetobacter sp. under aerobic, anaerobic and transient operating conditions. Water Res. 1999, 33, 2769–2788. [Google Scholar] [CrossRef]
- Hisao, O.; Kenji, T.; Yoshiaki, T.; Kiyoshi, T. Uptake and release of phosphate by a pure culture of Acinetobacter calcoaceticus. Water Res. 1985, 19, 1587–1594. [Google Scholar]
- Parnian, I.; Parin, I.; Ahmed, E. Evaluation of PAO adaptability to oxygen concentration change: Development of stable EBPR under stepwise low-aeration adaptation. Chemosphere 2022, 286, 131778. [Google Scholar]
- Weon, S.-Y.; Lee, C.-W.; Lee, S.-I.; Koopman, B. Nitrite inhibition of aerobic growth of Acinetobacter sp. Water Res. 2002, 36, 4471–4476. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Su, Y.; Zheng, X.; Chen, H.; Yang, H. Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Water Res. 2012, 46, 4379–4386. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.-F.; Ding, J.-N.; Zhang, Y.; Li, Y.-F.; Zhu, R.; Yuan, X.-Z.; Zou, H. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system. Sci. Total Environ. 2018, 625, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Tang, D.; Wang, Q.; Wang, J.; Liu, J.; Guo, Y.; Liu, S. Comparison of denitrification performances using PLA/starch with different mass ratios as carbon source. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2015, 71, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Kunlere, I.O.; Fagade, O.E.; Nwadike, B.I. Biodegradation of low density polyethylene (LDPE) by certain indigenous bacteria and fungi. Int. J. Environ. Stud. 2019, 76, 428–440. [Google Scholar] [CrossRef]
- Wang, Z.; Xin, X.; Shi, X.; Zhang, Y. A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. Sci. Total Environ. 2020, 726, 138564. [Google Scholar] [CrossRef]
- Chu, Z.-R.; Wang, K.; Li, X.-K.; Zhu, M.-T.; Yang, L.; Zhang, J. Microbial characterization of aggregates within a one-stage nitritation–anammox system using high-throughput amplicon sequencing. Chem. Eng. J. 2015, 262, 41–48. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, P.; Hao, B.; Yu, Z. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 2011, 102, 9866–9869. [Google Scholar] [CrossRef]
- Mergaert, J.; Boley, A.; Cnockaert, M.C.; Müller, W.-R.; Swings, J. Identity and Potential Functions of Heterotrophic Bacterial Isolates from a Continuous-Upflow Fixed-Bed Reactor for Denitrification of Drinking Water with Bacterial Polyester as Source of Carbon and Electron Donor. Syst. Appl. Microbiol. 2001, 24, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Philippon, T.; Tian, J.; Bureau, C.; Chaumont, C.; Midoux, C.; Tournebize, J.; Bouchez, T.; Barrière, F. Denitrifying bio-cathodes developed from constructed wetland sediments exhibit electroactive nitrate reducing biofilms dominated by the genera Azoarcus and Pontibacter. Bioelectrochemistry 2021, 140, 107819. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Wang, D.; Zhang, S.; Weng, Y.; Li, K.; Huang, R.; Guo, Y.; Jiang, C.; Wang, Z.; Wang, H.; et al. Impacts of Polylactic Acid Microplastics on Performance and Microbial Dynamics in Activated Sludge System. Sustainability 2023, 15, 14332. https://doi.org/10.3390/su151914332
Huang M, Wang D, Zhang S, Weng Y, Li K, Huang R, Guo Y, Jiang C, Wang Z, Wang H, et al. Impacts of Polylactic Acid Microplastics on Performance and Microbial Dynamics in Activated Sludge System. Sustainability. 2023; 15(19):14332. https://doi.org/10.3390/su151914332
Chicago/Turabian StyleHuang, Mengbo, Dongqi Wang, Shengwei Zhang, Yuzhu Weng, Kailong Li, Renjie Huang, Yuan Guo, Chunbo Jiang, Zhe Wang, Hui Wang, and et al. 2023. "Impacts of Polylactic Acid Microplastics on Performance and Microbial Dynamics in Activated Sludge System" Sustainability 15, no. 19: 14332. https://doi.org/10.3390/su151914332
APA StyleHuang, M., Wang, D., Zhang, S., Weng, Y., Li, K., Huang, R., Guo, Y., Jiang, C., Wang, Z., Wang, H., Meng, H., Lin, Y., Fang, M., & Li, J. (2023). Impacts of Polylactic Acid Microplastics on Performance and Microbial Dynamics in Activated Sludge System. Sustainability, 15(19), 14332. https://doi.org/10.3390/su151914332