Experimental Design and Breakthrough Curve Modeling of Fixed-Bed Columns Utilizing a Novel 3D Coconut-Based Polyurethane-Activated Carbon Composite Adsorbent for Lead Sequestration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polyol Synthesis
2.3. Preparation of the Adsorbate Solution
2.4. Polyurethane Foam-Activated Carbon Composite Formulation
2.5. Characterization
2.6. Column Adsorption Experiment
2.7. Analysis of Data from the Column
2.8. Breakthrough Curve Modeling
3. Results and Discussion
3.1. Adsorbent Characterization
3.1.1. SEM-EDX Analysis
3.1.2. FTIR Analysis
3.1.3. Surface Area Analysis
3.1.4. XRD Analysis
3.1.5. Thermogravimetric Analysis
3.2. Effect of Dynamic Adsorption Parameters
3.2.1. Effect of Bed Height
3.2.2. Effect of Flow Rate
3.2.3. Effect of Initial Concentration
3.2.4. Effect of pH
3.3. Modeling of Column Data
3.3.1. Thomas Model
3.3.2. Bohart–Adams Model
3.3.3. Yoon–Nelson Model
3.4. Comparative Analysis of Breakthrough Curves Fitting
3.5. Regeneration Studies and Implications to Industrial Wastewater Treatment
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Li, Z.; Wang, D.; Li, J.; Zou, B.; Tao, Y.; Lei, L.; Qiao, F.; Huang, J. Assessment of residents’ total environmental exposure to heavy metals in China. Sci. Rep. 2019, 9, 16386. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.H.; Udoetok, I.A.; Solgi, M.; Steiger, B.G.K.; Zhou, Z.; Wilson, L.D. Design of Sustainable Biomaterial Composite Adsorbents for Point-of-Use Removal of Lead Ions from Water. Front. Water 2022, 4, 739492. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, G.; Zhang, Q.; Wang, H.; Zhang, Y.; Cao, W.; Zhang, N.; Du, B.; Wei, Q. Electrochemical aptasensor based on gold modified graphene nanocomposite with different morphologies for ultrasensitive detection of Pb2+. Sens. Actuators B Chem. 2019, 288, 325–331. [Google Scholar] [CrossRef]
- Levallois, P.; Barn, P.; Valcke, M.; Gauvin, D.; Kosatsky, T. Public Health Consequences of Lead in Drinking Water. Curr. Environ. Health Rep. 2018, 5, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Basu, M.; Guha, A.K.; Ray, L. Adsorption of Lead on Lentil Husk in Fixed Bed Column Bioreactor. Bioresour. Technol. 2019, 283, 86–95. [Google Scholar] [CrossRef]
- Renu, M.A.; Singh, K.; Upadhyaya, S.; Dohare, R. Removal of heavy metals from wastewater using modified agricultural adsorbents. Mater. Today Proc. 2017, 4, 10534–10538. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhang, X.; Zhou, S. Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water 2020, 12, 587. [Google Scholar] [CrossRef]
- Maulina, S.; Iriansyah, M. Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder. IOP Conf. Ser. Mater. Sci. Eng. 2018, 309, 012072. [Google Scholar] [CrossRef]
- Wang, B.; Lan, J.; Bo, C.; Gong, B.; Ou, J. Adsorption of heavy metal onto biomass-derived activated carbon: Review. RSC Adv. 2023, 13, 4275–4302. [Google Scholar] [CrossRef]
- Lou, X.-Y.; Boada, R.; Simonelli, L.; Valiente, M. Enhanced arsenite removal by superparamagnetic iron oxide nanoparticles in-situ synthesized on a commercial cube-shape sponge: Adsorption-oxidation mechanism. J. Colloid Interface Sci. 2022, 614, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Hethnawi, A.; Manasrah, A.D.; Vitale, G.; Nassar, N.N. Fixed-bed column studies of total organic carbon removal from industrial wastewater by use of diatomite decorated with polyethylenimine-functionalized pyroxene nanoparticles. J. Colloid Interface Sci. 2018, 513, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Sawant, S.Y.; Pawar, R.R.; Lee, S.-M.; Cho, M.H. Binder-free production of 3D N-doped porous carbon cubes for efficient Pb2+ removal through batch and fixed bed adsorption. J. Clean. Prod. 2017, 168, 290–301. [Google Scholar] [CrossRef]
- Kalaivani, S.S.; Muthukrishnaraj, A.; Sivanesan, S.; Ravikumar, L. Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution. Process Saf. Environ. Prot. 2016, 104, 11–23. [Google Scholar] [CrossRef]
- Prasad, P.S.; Gomathi, T.; Sudha, P.; Deepa, M.; Rambabu, K.; Banat, F. Biosilica/Silk Fibroin/Polyurethane biocomposite for toxic heavy metals removal from aqueous streams. Environ. Technol. Innov. 2022, 28, 102741. [Google Scholar] [CrossRef]
- Carriço, C.S.; Fraga, T.; Pasa, V.M. Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J. 2016, 85, 53–61. [Google Scholar] [CrossRef]
- Kaikade, D.S.; Sabnis, A.S. Polyurethane foams from vegetable oil-based polyols: A review. Polym. Bull. 2022, 80, 2239–2261. [Google Scholar] [CrossRef]
- Dingcong, R.G.; Malaluan, R.M.; Alguno, A.C.; Estrada, D.J.E.; Lubguban, A.A.; Resurreccion, E.P.; Dumancas, G.G.; Al-Moameri, H.H.; Lubguban, A.A. A novel reaction mechanism for the synthesis of coconut oil-derived biopolyol for rigid poly(urethane-urea) hybrid foam application. RSC Adv. 2023, 13, 1985–1994. [Google Scholar] [CrossRef]
- De Franco, M.A.E.; de Carvalho, C.B.; Bonetto, M.M.; de Pelegrini Soares, R.; Féris, L.A. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling. J. Clean. Prod. 2017, 161, 947–956. [Google Scholar] [CrossRef]
- Bo, S.; Luo, J.; An, Q.; Xiao, Z.; Wang, H.; Cai, W.; Zhai, S.; Li, Z. Efficiently selective adsorption of Pb(II) with functionalized alginate-based adsorbent in batch/column systems: Mechanism and application simulation. J. Clean. Prod. 2019, 250, 119585. [Google Scholar] [CrossRef]
- Fouda-Mbanga, B.; Prabakaran, E.; Pillay, K. Synthesis and characterization of CDs/Al2O3 nanofibers nanocomposite for Pb2+ ions adsorption and reuse for latent fingerprint detection. Arab. J. Chem. 2020, 13, 6762–6781. [Google Scholar] [CrossRef]
- Recepoğlu, Y.K.; Kabay, N.; Ipek, I.Y.; Arda, M.; Yüksel, M.; Yoshizuka, K.; Nishihama, S. Packed bed column dynamic study for boron removal from geothermal brine by a chelating fiber and breakthrough curve analysis by using mathematical models. Desalination 2018, 437, 1–6. [Google Scholar] [CrossRef]
- De Franco, M.A.E.; de Carvalho, C.B.; Bonetto, M.M.; de Pelegrini Soares, R.; Féris, L.A. Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed-bed column: Isotherms, thermodynamic study and breakthrough curves modeling. J. Clean. Prod. 2018, 181, 145–154. [Google Scholar] [CrossRef]
- Bulgariu, D.; Bulgariu, L. Sorption of Pb(II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column. Bioresour. Technol. 2013, 129, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Thomas, H.C. chromatography: A problem in kinetics. Ann. N. Y. Acad. Sci. 1948, 49, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Bohart, G.S.; Adams, E.Q. Some aspects of the behavior of charcoal with respect to chlorine. J. Am. Chem. Soc. 1920, 42, 523–544. [Google Scholar] [CrossRef]
- Hoang, M.T.; Pham, T.D.; Nguyen, V.T.; Nguyen, M.K.; Pham, T.T.; Van der Bruggen, B. Removal and recovery of lead from wastewater using an integrated system of adsorption and crystallization. J. Clean. Prod. 2019, 213, 1204–1216. [Google Scholar] [CrossRef]
- Yoon, Y.H.; Nelson, J.H. Application of Gas Adsorption Kinetics I. A Theoretical Model for Respirator Cartridge Service Life. Am. Ind. Hyg. Assoc. J. 1984, 45, 509–516. [Google Scholar] [CrossRef]
- Keshavarz, A.; Zilouei, H.; Abdolmaleki, A.; Asadinezhad, A.; Nikkhah, A.A. Impregnation of polyurethane foam with activated carbon for enhancing oil removal from water. Int. J. Environ. Sci. Technol. 2016, 13, 699–710. [Google Scholar] [CrossRef]
- Li, B.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J.; Shi, Z. Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption. Sep. Purif. Technol. 2021, 257, 117949. [Google Scholar] [CrossRef]
- Qu, J.; Song, T.; Liang, J.; Bai, X.; Li, Y.; Wei, Y.; Huang, S.; Dong, L.; Jin, Y. Adsorption of lead (II) from aqueous solution by modified Auricularia matrix waste: A fixed-bed column study. Ecotoxicol. Environ. Saf. 2019, 169, 722–729. [Google Scholar] [CrossRef]
- Wang, S.; Jin, C.; Qian, W. Bi2O3 with activated carbon composite as a supercapacitor electrode. J. Alloys Compd. 2014, 615, 12–17. [Google Scholar] [CrossRef]
- Vuković, G.D.; Marinković, A.D.; Škapin, S.D.; Ristić, M.Đ.; Aleksić, R.; Perić-Grujić, A.A.; Uskoković, P.S. Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem. Eng. J. 2011, 173, 855–865. [Google Scholar] [CrossRef]
- Hassan, A.; Abdel-Mohsen, A.; Elhadidy, H. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. Int. J. Biol. Macromol. 2014, 68, 125–130. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.-S.; He, J.-J.; Mao, Z.-L.; Sun, J.-H. Study on the Pyrolytic Behaviors and Kinetics of Rigid Polyurethane Foams. Procedia Eng. 2013, 52, 377–385. [Google Scholar] [CrossRef]
- Xiong, L.W.; Badri, K.H. Preparation of polyurethane composites with activated carbon black as the reinforcing filler. J. Polym. Sci. Technol. 2018, 3, 11–18. [Google Scholar]
- Mathivanan, J.; Liu, H.; Gan, J.; Chandrasekaran, A.R.; Sheng, J. Fluorescent Aptaswitch for Detection of Lead Ions. ACS Appl. Bio Mater. 2022, 5, 5089–5093. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Sampson, W.W. Relationships between specific surface area and pore size in electrospun polymer fibre networks. J. R. Soc. Interface 2010, 7, 641–649. [Google Scholar] [CrossRef]
- Nam, G.; Choi, S.; Byun, H.; Rhym, Y.-M.; Shim, S.E. Preparation of macroporous carbon foams using a polyurethane foam template replica method without curing step. Macromol. Res. 2013, 21, 958–964. [Google Scholar] [CrossRef]
- El Malti, W.; Hamieh, M.; Noaman, A.; El-Dine, R.N.; Hijazi, A.; Al-Khatib, W. Polyurethane Loaded with Vegetable Activated Carbon for Heavy Metals Removal from Water. J. Ecol. Eng. 2021, 22, 99–110. [Google Scholar] [CrossRef]
- Udayakumar, M.; El Mrabate, B.; Koós, T.; Szemmelveisz, K.; Kristály, F.; Leskó, M.; Filep, A.; Géber, R.; Schabikowski, M.; Baumli, P.; et al. Synthesis of activated carbon foams with high specific surface area using polyurethane elastomer templates for effective removal of methylene blue. Arab. J. Chem. 2021, 14, 103214. [Google Scholar] [CrossRef]
- Mobasherpour, I.; Salahi, E.; Asjodi, A. Research on the Batch and Fixed-Bed Column Performance of Red Mud Adsorbents for Lead Removal. Can. Chem. Trans. 2014, 2, 83–96. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Mangwandi, C.; Al-Muhtaseb, A.H.; Walker, G.M.; Allen, S.J.; Ahmad, M.N. Modelling and Fixed Bed Column Adsorption of Cr(VI) onto Orthophosphoric Acid-activated Lignin. Chin. J. Chem. Eng. 2012, 20, 469–477. [Google Scholar] [CrossRef]
- Makrigianni, V.; Giannakas, A.; Hela, D.; Papadaki, M.; Konstantinou, I. Adsorption of methylene blue dye by pyrolytic tire char in fixed-bed column. Desalin. Water Treat. 2017, 65, 346–358. [Google Scholar] [CrossRef]
- Gong, J.-L.; Zhang, Y.-L.; Jiang, Y.; Zeng, G.-M.; Cui, Z.-H.; Liu, K.; Deng, C.-H.; Niu, Q.-Y.; Deng, J.-H.; Huan, S.-Y. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column. Appl. Surf. Sci. 2015, 330, 148–157. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Hameed, B.H. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J. Hazard. Mater. 2010, 175, 298–303. [Google Scholar] [CrossRef]
- Boucherdoud, A.; Kherroub, D.E.; Bestani, B.; Benderdouche, N.; Douinat, O. Fixed-bed adsorption dynamics of methylene blue from aqueous solution using alginate-activated carbon composites adsorbents. Alger. J. Environ. Sci. Technol. Month Ed. 2022, 8. [Google Scholar]
- Dotto, G.; dos Santos, J.N.; Rosa, R.; Pinto, L.; Pavan, F.; Lima, E. Fixed bed adsorption of Methylene Blue by ultrasonic surface modified chitin supported on sand. Chem. Eng. Res. Des. 2015, 100, 302–310. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Y.; Zhu, Z.; Zhang, X.; Wang, D.; Xie, L. Fixed-bed column adsorption of arsenic(v) by porous composite of magnetite/hematite/carbon with eucalyptus wood microstructure. J. Environ. Eng. Landsc. Manag. 2018, 26, 38–56. [Google Scholar] [CrossRef]
- El Mouhri, G.; Merzouki, M.; Belhassan, H.; Miyah, Y.; Amakdouf, H.; Elmountassir, R.; Lahrichi, A. Continuous Adsorption Modeling and Fixed Bed Column Studies: Adsorption of Tannery Wastewater Pollutants Using Beach Sand. J. Chem. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Gomaa, H.; Shenashen, M.A.; Yamaguchi, H.; Alamoudi, A.S.; Abdelmottaleb, M.; Cheira, M.F.; El-Naser, T.A.S.; El-Safty, S.A. Highly-efficient removal of AsV, Pb2+, Fe3+, and Al3+ pollutants from water using hierarchical, microscopic TiO2 and TiOF2 adsorbents through batch and fixed-bed columnar techniques. J. Clean. Prod. 2018, 182, 910–925. [Google Scholar] [CrossRef]
- Khan, M.R.; Hegde, R.A.; Shabiimam, M.A. Adsorption of Lead by Bentonite Clay. Int. J. Sci. Res. Manag. 2017, 5, 5800–5804. [Google Scholar] [CrossRef]
- Pap, S.; Radonić, J.; Trifunović, S.; Adamović, D.; Mihajlović, I.; Miloradov, M.V.; Sekulić, M.T. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes. J. Environ. Manag. 2016, 184, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, V.; Patel, M.; Pittman, C.U., Jr.; Mohan, D. Batch and Continuous Fixed-Bed Lead Removal Using Himalayan Pine Needle Biochar: Isotherm and Kinetic Studies. ACS Omega 2020, 5, 16366–16378. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.P.; Aris, A.Z. Continuous fixed-bed column study and adsorption modeling: Removal of cadmium (II) and lead (II) ions in aqueous solution by dead calcareous skeletons. Biochem. Eng. J. 2014, 87, 50–61. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Q.; Pu, S.; Wang, H.; Xia, K.; Han, B.; Zhou, C. Carboxyl-functionalized lotus seedpod: A highly efficient and reusable agricultural waste-based adsorbent for removal of toxic Pb2+ ions from aqueous solution. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 568, 391–401. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mondal, S.; De, S. Design and scaling up of fixed bed adsorption columns for lead removal by treated laterite. J. Clean. Prod. 2018, 177, 760–774. [Google Scholar] [CrossRef]
- Futalan, C.M.; Wan, M.-W. Fixed-Bed Adsorption of Lead from Aqueous Solution Using Chitosan-Coated Bentonite. Int. J. Environ. Res. Public Health 2022, 19, 2597. [Google Scholar] [CrossRef]
- Chu, K.H. Breakthrough curve analysis by simplistic models of fixed bed adsorption: In defense of the century-old Bohart-Adams model. Chem. Eng. J. 2020, 380, 122513. [Google Scholar] [CrossRef]
- Sreenivas, K.; Inarkar, M.; Gokhale, S.; Lele, S. Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies. J. Environ. Chem. Eng. 2014, 2, 455–462. [Google Scholar] [CrossRef]
- Dorado, A.D.; Gamisans, X.; Valderrama, C.; Solé, M.; Lao, C. Cr(III) removal from aqueous solutions: A straightforward model approaching of the adsorption in a fixed-bed column. J. Environ. Sci. Health Part A 2014, 49, 179–186. [Google Scholar] [CrossRef]
- Anwar, J.; Shafique, U.; Zaman, W.U.; Salman, M.; Dar, A.; Anwar, S. Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresour. Technol. 2010, 101, 1752–1755. [Google Scholar] [CrossRef] [PubMed]
- Mittal, H.; Maity, A.; Ray, S.S. The Adsorption of Pb2+ and Cu2+ onto Gum Ghatti-Grafted Poly(acrylamide-co-acrylonitrile) Biodegradable Hydrogel: Isotherms and Kinetic Models. J. Phys. Chem. B 2015, 119, 2026–2039. [Google Scholar] [CrossRef]
- Ma, J.; Xia, M.; Zhu, S.; Wang, F. A new alendronate doped HAP nanomaterial for Pb2+, Cu2+ and Cd2+ effect absorption. J. Hazard. Mater. 2020, 400, 123143. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Saeed, A.; Zafar, S.I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J. Hazard. Mater. 2009, 164, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
Ingredients | Concentration (Based on 100 Parts Polyol) |
---|---|
B-side Components | |
VORANOL® 4701 (petroleum-based polyol) | 80.00 |
Coconut-based polyol | 20.00 |
Polycat® 8 (gelling catalyst) | 0.50 |
INV® 690 (surfactant) | 1.75 |
Silicon oil | 5.00 |
Fillers | |
Coconut activated carbon | 40.00 |
A-side Component | |
Isocyanate index of PAPI® 27 | 100.0 |
Element | Wt% | ||||
---|---|---|---|---|---|
a | b | c | Difference (b−a) | Difference (c−b) | |
CK | 53.28 ± 1.13 | 55.13 ± 1.05 | 56.11 ± 1.03 | 1.85 | −4.02 |
NK | 12.58 ± 1.00 | 10.58 ± 0.81 | 9.56 ± 0.79 | −2.00 | 3.98 |
OK | 23.73 ± 1.19 | 33.60 ± 1.22 | 21.27 ± 1.20 | 9.87 | −4.33 |
SiK | 1.31 ± 0.01 | 0.60 ± 0.01 | 0.51 ± 0.01 | ||
PtK | 3.10 ± 0.80 | 0.09 ± 0.11 | 0.18 ± 0.09 | ||
PbK | 0.00 | 0.00 | 12.37 ± 0.16 | ||
O/C | 0.45 | 0.61 | 0.38 | 35.55% | −37.70% |
(O+N)/C | 0.68 | 0.80 | 0.55 | 17.65% | −31.25% |
Data parameters attained at different bed heights with constant initial concentration (50 mg L−1), flow rate (4 mL min−1), and pH (6) | ||||
Bed height (mm) | Total time (min) | Total mass adsorbed, qtotal (mg) | Equilibrium uptake, qeq (mg g−1) | Effluent volume (mL) |
50 | 190 | 35.85 | 7.17 | 760 |
100 | 240 | 106.3 | 10.63 | 960 |
150 | 300 | 125.7 | 8.38 | 1200 |
Data parameters attained at different initial concentrations with constant bed height (100 mm), flow rate (4 mL min−1), and pH (6) | ||||
Initial Concentration (mg L−1) | Total time (min) | Total mass adsorbed, qtotal (mg) | Equilibrium uptake, qeq (mg g−1) | Effluent volume (mL) |
10 | 290 | 94.6 | 9.46 | 1100 |
50 | 240 | 106.6 | 10.66 | 960 |
100 | 180 | 135.4 | 13.54 | 270 |
Data parameters attained at different flow rates with constant bed height (100 mm), initial concentration (50 mg L−1), and pH (6) | ||||
Flow rate (mL min−1) | Total time (min) | Total mass adsorbed, qtotal (mg) | Equilibrium uptake, qeq (mg g−1) | Effluent volume (mL) |
4 | 250 | 106.6 | 10.66 | 1000 |
6 | 195 | 105.6 | 10.56 | 1170 |
8 | 150 | 86.6 | 8.66 | 1200 |
Data parameters attained at different pH with constant bed height (100 mm), initial concentration (50 mg L−1), and flow rate (4 mL min−1) | ||||
pH | Total time (min) | Total mass adsorbed, qtotal (mg) | Equilibrium uptake, qeq (mg g−1) | Effluent volume (mL) |
2 | 265 | 220.3 | 22.03 | 1060 |
4 | 300 | 280.0 | 28.00 | 1200 |
6 | 250 | 107.0 | 10.70 | 1000 |
Parameter | kTh (L mg−1 min−1) × 10−4 | qTh (mg g−1) | R2 | |
---|---|---|---|---|
Flow rate | 4 | 2.11 | 0.3774 | 0.8801 |
(mL min−1) | 6 | 3.13 | 0.3866 | 0.8764 |
8 | 4.32 | 0.9725 | 0.9122 | |
Bed height (mm) | 50 | 3.50 | 0.7106 | 0.9354 |
100 | 2.11 | 0.3774 | 0.8801 | |
150 | 1.73 | 0.3690 | 0.8284 | |
pH | 2 | 1.50 | 0.8267 | 0.8801 |
4 | 1.80 | 1.8025 | 0.9784 | |
6 | 2.11 | 0.3774 | 0.8801 | |
Initial metal | 10 | 3.53 | 0.2706 | 0.9301 |
concentration | 50 | 2.11 | 0.3774 | 0.8801 |
(mg L−1) | 100 | 1.64 | 0.7356 | 0.8664 |
Parameter | KAB (L mg−1 min−1) × 10−5 | N0 (mg L−1) | R2 | |
---|---|---|---|---|
Flow rate | 4 | 2.44 | 0.6023 | 0.6781 |
(mL min−1) | 6 | 2.93 | 0.7181 | 0.5621 |
8 | 2.30 | 0.7503 | 0.7032 | |
Bed height (mm) | 50 | 2.25 | 0.9150 | 0.8164 |
100 | 2.44 | 0.6023 | 0.6781 | |
150 | 1.83 | 0.5035 | 0.6132 | |
2 | 3.10 | 0.7041 | 0.6789 | |
pH | 4 | 2.89 | 0.8278 | 0.8954 |
6 | 2.44 | 0.6023 | 0.6781 | |
Initial metal | 10 | 4.05 | 0.4037 | 0.8381 |
concentration | 50 | 2.44 | 0.6023 | 0.6781 |
(mg L−1) | 100 | 1.33 | 0.8980 | 0.6964 |
Parameter | kYN (mg−1 min−1) × 10−2 | Tcalc (min) | R2 | |
---|---|---|---|---|
Flow rate | 4 | 2.11 | 9.4382 | 0.8801 |
(mL min−1) | 6 | 3.13 | 6.4445 | 0.8764 |
8 | 4.32 | 5.8982 | 0.9122 | |
Bed height (mm) | 5 | 3.50 | 8.8842 | 0.9354 |
10 | 2.11 | 9.4382 | 0.8801 | |
15 | 1.73 | 13.8422 | 0.8284 | |
pH | 2 | 1.50 | 20.6706 | 0.8801 |
4 | 1.77 | 45.0641 | 0.9784 | |
6 | 2.11 | 9.4382 | 0.8801 | |
Initial metal | 10 | 1.72 | 13.5244 | 0.9301 |
concentration | 50 | 2.11 | 9.4382 | 0.8801 |
(mg L−1) | 100 | 3.24 | 9.1965 | 0.8664 |
Thomas | Bohart–Adams | Yoon–Nelson | |
---|---|---|---|
a | kThCo | kBACo | kYN |
b | kThqThM/Q | kBANoZ/u | kYNτ |
Merits | Limitations | |
---|---|---|
Thomas model |
|
|
Bohart–Adams |
|
|
Yoon–Nelson model |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, R.M.D.; Estrada, R.J.R.; Tomon, T.R.B.; Dingcong, R.G., Jr.; Amparado, R.F., Jr.; Capangpangan, R.Y.; Malaluan, R.M.; Dumancas, G.G.; Lubguban, A.A.; Alguno, A.C.; et al. Experimental Design and Breakthrough Curve Modeling of Fixed-Bed Columns Utilizing a Novel 3D Coconut-Based Polyurethane-Activated Carbon Composite Adsorbent for Lead Sequestration. Sustainability 2023, 15, 14344. https://doi.org/10.3390/su151914344
Fernandez RMD, Estrada RJR, Tomon TRB, Dingcong RG Jr., Amparado RF Jr., Capangpangan RY, Malaluan RM, Dumancas GG, Lubguban AA, Alguno AC, et al. Experimental Design and Breakthrough Curve Modeling of Fixed-Bed Columns Utilizing a Novel 3D Coconut-Based Polyurethane-Activated Carbon Composite Adsorbent for Lead Sequestration. Sustainability. 2023; 15(19):14344. https://doi.org/10.3390/su151914344
Chicago/Turabian StyleFernandez, Rubie Mae D., Renz John R. Estrada, Tomas Ralph B. Tomon, Roger G. Dingcong, Jr., Ruben F. Amparado, Jr., Rey Y. Capangpangan, Roberto M. Malaluan, Gerard G. Dumancas, Alona A. Lubguban, Arnold C. Alguno, and et al. 2023. "Experimental Design and Breakthrough Curve Modeling of Fixed-Bed Columns Utilizing a Novel 3D Coconut-Based Polyurethane-Activated Carbon Composite Adsorbent for Lead Sequestration" Sustainability 15, no. 19: 14344. https://doi.org/10.3390/su151914344
APA StyleFernandez, R. M. D., Estrada, R. J. R., Tomon, T. R. B., Dingcong, R. G., Jr., Amparado, R. F., Jr., Capangpangan, R. Y., Malaluan, R. M., Dumancas, G. G., Lubguban, A. A., Alguno, A. C., Bacosa, H. P., & Lubguban, A. A. (2023). Experimental Design and Breakthrough Curve Modeling of Fixed-Bed Columns Utilizing a Novel 3D Coconut-Based Polyurethane-Activated Carbon Composite Adsorbent for Lead Sequestration. Sustainability, 15(19), 14344. https://doi.org/10.3390/su151914344