Mohr–Coulomb and Modified Hoek–Brown Strength Criteria of Layered Sandstone Considering the Unloading Effect and Anisotropy
Abstract
:1. Introduction
2. Experimental System and Scheme
- The upper threshold of axial pressure is 1700 kN;
- The upper threshold of confining pressure is 45 MPa;
- The upper threshold of pore pressure is 45 MPa;
- The upper threshold of osmotic water pressure difference is 2 MPa;
- The upper threshold of osmotic gas pressure difference is 6 MPa;
- The upper threshold of temperature is 200 °C;
- The upper limit of specimen size for applicable tests is 100 mm in diameter and 200 mm in height.
3. Results and Analysis
3.1. Strength Anisotropy
3.2. M-C and Modified H-B Strength Criteria
3.2.1. Initial Principles of M-C Criteria
3.2.2. M-C Strength Criteria
3.3. Modified H-B Strength Criteria
3.3.1. Initial Principles of H-B Criteria
3.3.2. Modified H-B Strength Criteria
4. Discussion
5. Conclusions
- (1)
- With increasing bedding angle, the peak strength first decreased and then increased. When the bedding angle was 45°, the peak strength was the smallest. In addition, with increasing confining pressure, the peak strength also showed a continuous increasing nonlinear evolution trend. Additionally, the peak strength under TLUT was significantly lower than that under CTLT;
- (2)
- With increasing bedding angle, the cohesion with CTLT decreased first and then increased, while the evolution trend of the internal friction angle with CTLT was opposite. Additionally, with increasing bedding angle, the cohesion with TLUT also decreased first and then increased, but the cohesion with TLUT increased first, then decreased, and finally increased again;
- (3)
- The cohesion and internal friction angle, parameters (n) and (γ), were not constants and changed with increasing bedding angle. Compared with CTLT, the variation degree of the cohesion and internal friction angle under TLUT was more significant with increasing bedding angle;
- (4)
- Compared with the M-C strength criteria, the modified H-B strength criteria were more suitable to estimate the peak strength of layered sandstones.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Genis, M.; Basarir, H.; Ozarslan, A.; Bilir, E.; Balaban, E. Engineering geological appraisal of the rock masses and preliminary support design, Dorukhan Tunnel, Zonguldak, Turkey. Eng. Geol. 2007, 92, 14–26. [Google Scholar] [CrossRef]
- Xue, Y.G.; Zhang, X.L.; Li, S.C.; Qiu, D.H.; Su, M.X.; Li, L.P.; Li, Z.Q.; Tao, Y.F. Analysis of factors influencing tunnel deformation in loess deposits by data mining: A deformation prediction model. Eng. Geol. 2018, 232, 94–103. [Google Scholar] [CrossRef]
- Feng, S.J.; Zhao, Y.; Zhang, X.L.; Bai, Z.B. Leachate leakage investigation, assessment and engineering countermeasures for tunneling underneath a MSW landfill. Eng. Geol. 2020, 265, 105447. [Google Scholar] [CrossRef]
- Liu, D.Q.; Ling, K.; Guo, C.B.; He, P.F.; He, M.C.; Sun, J.; Yan, X.H. Experimental simulation study of rockburst characteristics of Sichuan-Tibet granite: A case study of the Zheduoshan tunnel. Eng. Geol. 2022, 305, 106701. [Google Scholar] [CrossRef]
- Tao, J.; Yang, X.G.; Ding, P.P.; Li, X.L.; Zhou, J.W.; Lu, G.D. A fully coupled thermo-hydro-mechanical-chemical model for cemented backfill application in geothermal conditions. Eng. Geol. 2022, 302, 106643. [Google Scholar] [CrossRef]
- Benavente, D.; Garcia, D.; Cura, M.A.; Fort, R.; Ordonez, S. Durability estimation of porous building stones from pore structure and strength. Eng. Geol. 2004, 74, 113–127. [Google Scholar] [CrossRef]
- Hecht, C.A.; Bonsch, C.; Bauch, E. Relations of rock structure and composition to petrophysical and geomechanical rock properties: Examples from permocarboniferou red-beds. Rock. Mech. Rock. Eng. 2005, 38, 197–216. [Google Scholar] [CrossRef]
- Sabatakakis, N.; Koukis, G.; Tsiambaos, G.; Papanakli, S. Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng. Geol. 2008, 97, 80–90. [Google Scholar] [CrossRef]
- Torok, A.; Vasarhelyi, B. The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Eng. Geol. 2010, 115, 237–245. [Google Scholar] [CrossRef]
- Shen, J.Y.; Jimenez, R.; Karakus, M.; Xu, C.S. A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength. Rock. Mech. Rock. Eng. 2014, 47, 357–369. [Google Scholar] [CrossRef]
- Shen, J.Y.; Karakus, M. Simplified method for estimating the Hoek-Brown constant for intact rocks. J. Geotech. Geoenviron. 2014, 140, 971–984. [Google Scholar] [CrossRef]
- Rajabzadeh, M.A.; Moosavinasab, Z.; Rakhshandehroo, G. Effects of rock classes and porosity on the relation between uniaxial compressive strength and some rock properties for Carbonate rocks. Rock. Mech. Rock. Eng. 2012, 45, 113–122. [Google Scholar] [CrossRef]
- Wang, Y.F.; Cui, F. Energy evolution mechanism in process of sandstone failure and energy strength criterion. J. Appl. Geophys. 2018, 154, 21–28. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, H.; Hu, D.W.; Zhang, C.Q. Yield criterion for rocklike geomaterials based on strain energy and CMP model. Int. J. Geomech. 2020, 20, 04020013. [Google Scholar] [CrossRef]
- Sari, M. An improved method of fitting experimental data to the Hoek–Brown failure criterion. Eng. Geol. 2012, 127, 27–35. [Google Scholar] [CrossRef]
- Fjaer, E.; Ruistuen, H. Impact of the intermediate principal stress on the strength of heterogeneous rock. J. Geophys. Res. 2002, 107, 2032. [Google Scholar] [CrossRef]
- Priest, S.D. Determination of shear strength and three-dimensional yield strength for the Hoek-Brown criterion. Rock. Mech. Rock. Eng. 2005, 38, 299–327. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, H.H. Collaborative 3D geological modeling analysis based on multi-source data standard. Eng. Geol. 2018, 246, 233–244. [Google Scholar] [CrossRef]
- Saroglou, H.; Tsiambaos, G. A modified Hoek-Brown failure criterion for anisotropic intact rock. Int. J. Rock. Mech. Min. Sci. 2008, 45, 223–234. [Google Scholar] [CrossRef]
- Singh, M.; Raj, A.; Singh, B. Modified Mohr-Coulomb criterion for non-linear triaxial and poly-axial strength of intact rocks. Int. J. Rock. Mech. Min. Sci. 2011, 48, 546–555. [Google Scholar] [CrossRef]
- Zhou, C.T.; Xu, C.S.; Karakus, M.; Shen, J.Y. A particle mechanics approach for the dynamic strength model of the jointed rock mass considering the joint orientation. Int. J. Numer. Anal. Met. 2019, 43, 2797–2815. [Google Scholar] [CrossRef]
- Zhou, C.T.; Xie, H.P.; Zhu, J.B.; Zhou, T. Failure criterion considering high temperature treatment for rocks from a micromechanical perspective. Theor. Appl. Fract. Mec. 2022, 118, 103226. [Google Scholar] [CrossRef]
- Wang, G.S.; Lu, D.C.; Du, X.L.; Zhao, X. Dynamic multiaxial strength criterion for concrete based on strain rate–dependent strength parameters. J. Eng. Mech. 2018, 144, 04018018. [Google Scholar] [CrossRef]
- Wang, G.S.; Lu, D.C.; Li, M.; Zhao, X.; Wang, J.T.; Du, X.L. Static–dynamic combined multiaxial strength criterion for concrete. J. Eng. Mech. 2021, 147, 04021017. [Google Scholar] [CrossRef]
- Yang, Q.; Zan, Y.W.; Xie, L.G. Comparative analysis of the nonlinear unified strength criterion for rocks and other three-dimensional Hoek-Brown strength criteria. Geomech. Geophysics. Geo. 2018, 4, 29–37. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C.; Jiang, B.S. New true-triaxial rock strength criteria considering intrinsic material characteristics. Acta Mech. Sinica. 2018, 34, 138–150. [Google Scholar] [CrossRef]
- Song, Z.L.; Li, M.H.; Yin, G.Z.; Ranjith, P.G.; Liu, C. Rock strength criterion considering the effect of hydrostatic stress on lode angle effect. Energy. Sci. Eng. 2019, 7, 1166–1177. [Google Scholar] [CrossRef]
- Song, Z.L.; Yin, G.Z.; Ranjith, P.G.; Li, M.H.; Huang, J.; Liu, C. Influence of the intermediate principal stress on sandstone failure. Rock. Mech. Rock. Eng. 2019, 52, 3033–3046. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Yao, B.W.; Fan, X.Y.; Li, Y.; Li, M.H.; Zeng, F.T.; Zhao, P.F. A modified Hoek-Brown failure criterion for unsaturated intact shale considering the effects of anisotropy and hydration. Eng. Fract. Mech. 2020, 241, 107369. [Google Scholar] [CrossRef]
- Lee, Y.K.; Bobet, A. Instantaneous friction angle and cohesion of 2-D and 3-D Hoek-Brown rock failure criteria in terms of stress invariants. Rock. Mech. Rock. Eng. 2014, 47, 371–385. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, R.C.; Jing, H.W.; Su, H.J.; Yu, L.Y.; He, L.X. Experimental study of nonlinear flow behaviors through fractured rock samples after high-temperature exposure. Rock. Mech. Rock. Eng. 2019, 52, 2963–2983. [Google Scholar] [CrossRef]
- Yin, Q.; Wu, J.Y.; Zhu, C.; He, M.C.; Meng, Q.X.; Jing, H.W. Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions. Geomech. Geophysics. Geo. 2021, 7, 1–17. [Google Scholar] [CrossRef]
- Yin, Q.; Wu, J.Y.; Zhu, C.; Wang, Q.; Xie, J.Y. The role of multiple heating and water cooling cycles on physical and mechanical responses of granite rocks. Geomech. Geophysics. Geo. 2021, 7, 69. [Google Scholar] [CrossRef]
- Pan, J.L.; Zhang, Y.; Li, P.; Wu, X.; Xi, X. Mechanical properties and thermo-chemical damage constitutive model of granite subjected to thermal and chemical treatments under uniaxial compression. Constr. Build. Mater. 2023, 390, 131755. [Google Scholar] [CrossRef]
- Pan, J.L.; Cai, M.F.; Li, P.; Guo, Q.F. A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression. J. Cent. South. Univ. 2022, 29, 486–498. [Google Scholar] [CrossRef]
- Zhang, J.W.; Song, Z.X.; Wang, S.Y. Mechanical behavior of deep sandstone under high stress-seepage coupling. J. Cent. South. U. 2021, 28, 3190–3206. [Google Scholar] [CrossRef]
- Song, Z.X.; Zhang, J.W.; Zhang, L.C.; Dong, X.K.; Niu, W.M.; Zhang, Y. The permeability properties of bedded coal and rock: Review and new insights. Energy. Sci. Eng. 2022, 10, 1544–1565. [Google Scholar] [CrossRef]
- Song, Z.X.; Zhang, J.W.; Wang, S.Y.; Dong, X.K.; Zhang, Y. Energy evolution characteristics and weak structure—“Energy Flow” impact damaged mechanism of deep-bedded sandstone. Rock Mech. Rock Eng. 2023, 56, 2017–2047. [Google Scholar] [CrossRef]
- Song, Z.X.; Zhang, J.W.; Zhang, Y.; Dong, X.K.; Wang, S.Y. Characterization and evaluation of brittleness of deep bedded sandstone from the perspective of the whole life-cycle evolution process. Int. J. Min. Sci. Technol. 2023, 33, 481–502. [Google Scholar] [CrossRef]
- Erener, A.; Mutlu, A.; Düzgün, H.S. A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Eng. Geol. 2016, 203, 45–55. [Google Scholar] [CrossRef]
- Sepehri, M.; Apel, D.B.; Adeeb, S.; Leveille, P.; Hall, R.A. Evaluation of mining-induced energy and rockburst prediction at a diamond mine in Canada using a full 3D elastoplastic finite element model. Eng. Geol. 2020, 266, 105457. [Google Scholar] [CrossRef]
- Kokkala, A.; Marinos, V. An engineering geological database for managing, planning and protecting intelligent cities: The case of Thessaloniki city in Northern Greece. Eng. Geol. 2022, 301, 106617. [Google Scholar] [CrossRef]
- He, M.C. Physical modeling of an underground roadway excavation in geologically 45° inclined rock using infrared thermography. Eng. Geol. 2011, 121, 165–176. [Google Scholar] [CrossRef]
- Torresa, F.; Piccinini, L.; Pola, M.; Zampieri, D.; Fabbri, P. 3D hydrogeological reconstruction of the fault-controlled Euganean Geothermal System (NE Italy). Eng. Geol. 2020, 274, 105740. [Google Scholar] [CrossRef]
- Saeidi, O.; Vaneghi, R.G.; Rasouli, V.; Gholami, R. A modified empirical criterion for strength of transversely anisotropic rocks with metamorphic origin. Bull. Eng. Geol. Environ. 2013, 72, 257–269. [Google Scholar] [CrossRef]
- Zhao, J. Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock. Int. J. Rock. Mech. Min. Sci. 2000, 37, 1115–1121. [Google Scholar] [CrossRef]
- Liu, X.W.; Liu, Q.S.; Kang, Y.S.; Pan, Y.C. Improved nonlinear strength criterion for jointed rock masses subject to complex stress states. Int. J. Geomech. 2018, 18, 04017164. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Underground Excavation in Rock; Institution of Mining and Metallurgy: London, UK, 1980. [Google Scholar]
- Hoek, E.; Brown, E.T. Practical estimates of rock mass strength. Int. J. Rock. Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. The Hoek-Brown failure criterion and GSI-2018 edition. J. Rock. Mech. Geotech. Eng. 2018, 37, 1–28. [Google Scholar] [CrossRef]
- Peng, J.; Cai, M.F. A cohesion loss model for determining residual strength of intact rocks. Int. J. Rock. Mech. Min. Sci. 2019, 119, 131–139. [Google Scholar] [CrossRef]
- Alejano, L.A.; Walton, G.; Gaines, S. Residual strength of granitic rocks. Tunn. Undergr. Sp. Tech. 2021, 118, 104189. [Google Scholar] [CrossRef]
- Shi, X.C.; Yang, X.; Meng, Y.F.; Li, G. Modified Hoek-Brown failure criterion for anisotropic rocks. Environ. Earth. Sci. 2016, 75, 995.1–995.11. [Google Scholar] [CrossRef]
- He, M.M.; Zhang, Z.Q.; Zhu, J.W.; Li, N. Correlation between the constant mi of Hoek-Brown criterion and porosity of intact rock. Rock. Mech. Rock. Eng. 2022, 55, 923–936. [Google Scholar] [CrossRef]
- Luo, B.Y.; Ye, Y.C.; Hu, N.Y.; Wang, W.Q. Investigation of dip effect on uniaxial compressive strength of inclined rock sample by experimental and theoretical models. Rock. Mech. Rock. Eng. 2020, 53, 1–17. [Google Scholar] [CrossRef]
- Shen, B.T.; Shi, J.Y.; Barton, N. Graphic examples of a logical nonlinear strength criterion for intact rock. Rock. Mech. Rock. Eng. 2019, 53, 71–75. [Google Scholar] [CrossRef]
- Singh, M.; Singh, B. Modified Mohr-Coulomb criterion for non-linear triaxial and poly-axial strength of jointed rocks. Int. J. Rock. Mech. Min. Sci. 2012, 51, 43–52. [Google Scholar] [CrossRef]
- Barton, N. Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. J. Rock. Mech. Geotech. Eng. 2013, 5, 249–261. [Google Scholar] [CrossRef]
- Poulsen, B.A.; Adhikary, D.P.; Elmouttie, M.K.; Wilkins, A. Convergence of synthetic rock mass modelling and the Hoek-Brown strength criterion. Int. J. Rock. Mech. Min. Sci. 2015, 80, 171–180. [Google Scholar] [CrossRef]
- Tsiambaos, G.; Saroglou, H. Excavatability assessment of rock masses using the geological strength index (GSI). Bull. Eng. Geol. Environ. 2010, 69, 13–27. [Google Scholar] [CrossRef]
- Kang, H.P. Temporal scale analysis on coal mining and strata control technologies. J. Min. Strata. Control. Eng. 2021, 3, 5–27. [Google Scholar]
Stress Paths | σ3/MPa | Fitting Functions | a | b | c | d | e | R2 |
---|---|---|---|---|---|---|---|---|
UCT | 0 | 69.882 | 7.008 | −0.44 | 0.0078 | −4.19 × 10−5 | 0.99807 | |
CTLT | 5 | 132.85 | 6.51 | −0.39 | 0.0065 | −3.37 × 10−5 | 0.99504 | |
10 | 162.65 | 8.18 | −0.50 | 0.0085 | −4.5 × 10−5 | 0.99465 | ||
20 | 178.29 | 9.90 | −0.62 | 0.011 | −6.14 × 10−5 | 0.98355 | ||
TLUT | 5 | 119.3 | 12.66 | −0.77 | 0.01 | −7.2 × 10−5 | 0.99864 | |
10 | 131.2 | 13.95 | −0.85 | 0.02 | −8.4 × 10−5 | 0.99499 | ||
20 | 147.95 | 8.88 | −0.47 | 0.008 | −4.18 × 10−5 | 0.97657 |
Stress Paths | β/° | Fitting Functions | a | b | R2 | C/MPa | φ/° |
---|---|---|---|---|---|---|---|
CTLT | 0 | 92.85527 | 5.07731 | 0.80331 | 20.60438 | 42.1371 | |
30 | 85.45472 | 5.12911 | 0.81234 | 18.86623 | 42.3524 | ||
45 | 54.84519 | 4.87182 | 0.85823 | 12.42404 | 41.2534 | ||
60 | 60.22258 | 5.55663 | 0.97647 | 12.77390 | 44.0244 | ||
90 | 81.93618 | 4.5764 | 0.97106 | 19.15066 | 39.8923 | ||
TLUT | 0 | 112.0105 | 1.89684 | 0.99172 | 40.66431 | 18.0347 | |
30 | 90.974 | 4.0006 | 0.99999 | 22.74179 | 36.8733 | ||
45 | 29.0247 | 5.76219 | 0.99869 | 6.04566 | 44.7680 | ||
60 | 55.9759 | 5.17955 | 0.86989 | 12.29773 | 42.5592 | ||
90 | 61.7466 | 5.55021 | 0.86333 | 13.10474 | 44.0006 |
Stress Paths | Fitting Functions | g | h | i | j | R2 |
---|---|---|---|---|---|---|
CTLT | 20.714 | −0.1456 | −0.011 | 1 × 10−4 | 0.91468 | |
TLUT | 41.057 | −0.8764 | 0.004 | 2.3 × 10−5 | 0.91146 |
Stress Paths | Fitting Functions | p | q | r | s | t | R2 |
---|---|---|---|---|---|---|---|
CTLT | 41.7157 | 0.68 | −0.004 | 8.2 × 10−4 | −4.8 × 10−6 | 0.90453 | |
TLUT | 17.8544 | −0.4588 | 0.073 | −1.5 × 10−3 | 8.6 × 10−6 | 0.99851 |
Specimens No. | σ3/MPa | β/° | Actual σ1cf/MPa | /MPa | △σ1cf/MPa | △χ/% |
---|---|---|---|---|---|---|
UCT-0-0 | 0 | 0 | 70.5882 | 92.43275 | 21.84455 | 30.94646 |
UCT-0-30 | 0 | 30 | 63.1373 | 80.165336 | 17.02804 | 26.96985 |
UCT-0-45 | 0 | 45 | 36.4706 | 23.440632 | 13.02997 | 35.72732 |
UCT-0-60 | 0 | 60 | 52.1569 | 54.964666 | 2.807766 | 5.383307 |
UCT-0-90 | 0 | 90 | 75.2941 | 81.664869 | 6.370769 | 8.46118 |
CTLT-5-0 | 5 | 0 | 134.1575 | 117.3223 | 16.8352 | 12.54883 |
CTLT-5-30 | 5 | 30 | 128.512 | 105.304668 | 23.20733 | 18.05849 |
CTLT-5-45 | 5 | 45 | 95.6064 | 85.9217 | 9.6847 | 10.12976 |
CTLT-5-60 | 5 | 60 | 95.8986 | 82.16242 | 13.73618 | 14.32365 |
CTLT-5-90 | 5 | 90 | 108.722 | 104.13657 | 4.58543 | 4.217573 |
CTLT-10-0 | 10 | 0 | 164.289 | 142.21186 | 22.07714 | 13.43799 |
CTLT-10-30 | 10 | 30 | 155.263 | 130.443999 | 24.819 | 15.98514 |
CTLT-10-45 | 10 | 45 | 115.7094 | 109.82013 | 5.88927 | 5.089707 |
CTLT-10-60 | 10 | 60 | 120.081 | 109.36017 | 10.72083 | 8.927999 |
CTLT-10-90 | 10 | 90 | 135.1286 | 126.380968 | 8.747632 | 6.473561 |
CTLT-20-0 | 20 | 0 | 180.0923 | 191.990956 | 11.89866 | 6.606977 |
CTLT-20-30 | 20 | 30 | 174.4253 | 180.641627 | 6.216327 | 3.563891 |
CTLT-20-45 | 20 | 45 | 142.108 | 157.616989 | 15.50899 | 10.91352 |
CTLT-20-60 | 20 | 60 | 167.236 | 163.755675 | 3.480325 | 2.081086 |
CTLT-20-90 | 20 | 90 | 168.774 | 171.551677 | 2.777677 | 1.645797 |
TLUT-5-0 | 5 | 0 | 120.494 | 122.1011949 | 1.607195 | 1.333838 |
TLUT-5-30 | 5 | 30 | 110.902 | 95.9125784 | 14.98942 | 13.51592 |
TLUT-5-45 | 5 | 45 | 56.6327 | 86.7164127 | 30.08371 | 53.12075 |
TLUT-5-60 | 5 | 60 | 70.3082 | 64.87972 | 5.42848 | 7.720977 |
TLUT-5-90 | 5 | 90 | 76.7481 | 90.0899997 | 13.3419 | 17.38401 |
TLUT-10-0 | 10 | 0 | 132.48 | 131.547778 | 0.932222 | 0.70367 |
TLUT-10-30 | 10 | 30 | 131.083 | 115.597043 | 15.48596 | 11.81386 |
TLUT-10-45 | 10 | 45 | 88.451 | 114.902517 | 26.45152 | 29.90528 |
TLUT-10-60 | 10 | 60 | 125.119 | 90.267581 | 34.85142 | 27.85462 |
TLUT-10-90 | 10 | 90 | 136.373 | 117.256881 | 19.11612 | 14.01752 |
TLUT-20-0 | 20 | 0 | 149.447 | 150.390459 | 0.943459 | 0.6313 |
TLUT-20-30 | 20 | 30 | 170.939 | 154.96597 | 15.97303 | 9.344287 |
TLUT-20-45 | 20 | 45 | 143.667 | 114.902517 | 28.76448 | 20.02164 |
TLUT-20-60 | 20 | 60 | 153.784 | 141.026828 | 12.75717 | 8.295513 |
TLUT-20-90 | 20 | 90 | 166.376 | 171.590648 | 5.214648 | 3.134255 |
Stress Path | β/° | Fitting Functions | R2 | A | n | γ |
---|---|---|---|---|---|---|
CTLT | 0 | 0.98537 | 1.482 | 0.07026 | 0.14827 | |
30 | 0.99324 | 1.55 | 0.06033 | 0.15641 | ||
45 | 0.99995 | 1.753 | 0.07447 | 0.21615 | ||
60 | 0.99793 | 0.715 | 2.16486 | 0.44159 | ||
90 | 0.99846 | 0.71 | 2.8149 | 0.32838 | ||
TLUT | 0 | 0.91955 | 1.70 | −4.85 | 0.0227 | |
30 | 0.80546 | 1.868 | −4.85 | 0.06712 | ||
45 | 0.865 | 1.892 | −4.85 | 0.17162 | ||
60 | 0.99893 | 1.69 | −4.85 | 0.15661 | ||
90 | 0.9986 | 1.285 | −4.85 | 0.15588 |
Specimens No. | σ3/MPa | β/° | Actual σ1cf/MPa | /MPa | △σ1cf/MPa | △χ/% |
---|---|---|---|---|---|---|
UCT-0-0 | 0 | 0 | 70.5882 | 70.56187 | 0.02633 | 0.037301 |
UCT-0-30 | 0 | 30 | 63.1373 | 63.12045 | 0.01685 | 0.026688 |
UCT-0-45 | 0 | 45 | 36.4706 | 36.468495 | 0.002105 | 0.005772 |
UCT-0-60 | 0 | 60 | 52.1569 | 52.450756 | 0.293856 | 0.563408 |
UCT-0-90 | 0 | 90 | 75.2941 | 75.096037 | 0.198063 | 0.263052 |
CTLT-5-0 | 5 | 0 | 134.1575 | 138.077143 | 3.919643 | 2.921673 |
CTLT-5-30 | 5 | 30 | 128.512 | 131.196554 | 2.684554 | 2.088952 |
CTLT-5-45 | 5 | 45 | 95.6064 | 95.825809 | 0.219409 | 0.229492 |
CTLT-5-60 | 5 | 60 | 95.8986 | 93.977556 | 1.921044 | 2.003203 |
CTLT-5-90 | 5 | 90 | 108.722 | 110.012396 | 1.290396 | 1.186877 |
CTLT-10-0 | 10 | 0 | 164.289 | 157.329419 | 6.959581 | 4.236182 |
CTLT-10-30 | 10 | 30 | 155.263 | 150.515898 | 4.747102 | 3.057459 |
CTLT-10-45 | 10 | 45 | 115.7094 | 115.338119 | 0.371281 | 0.320874 |
CTLT-10-60 | 10 | 60 | 120.081 | 122.409173 | 2.328173 | 1.938835 |
CTLT-10-90 | 10 | 90 | 135.1286 | 133.530415 | 1.598185 | 1.182714 |
CTLT-20-0 | 20 | 0 | 180.0923 | 183.191738 | 3.099438 | 1.721027 |
CTLT-20-30 | 20 | 30 | 174.4253 | 176.532883 | 2.107583 | 1.208301 |
CTLT-20-45 | 20 | 45 | 142.108 | 142.265970 | 0.15797 | 0.111162 |
CTLT-20-60 | 20 | 60 | 167.236 | 166.508056 | 0.727944 | 0.435279 |
CTLT-20-90 | 20 | 90 | 168.774 | 169.291193 | 0.517193 | 0.306441 |
TLUT-5-0 | 5 | 0 | 120.494 | 120.023404 | 0.470596 | 0.390556 |
TLUT-5-30 | 5 | 30 | 110.902 | 108.847201 | 2.054799 | 1.852806 |
TLUT-5-45 | 5 | 45 | 56.6327 | 54.820759 | 1.811941 | 3.199461 |
TLUT-5-60 | 5 | 60 | 70.3082 | 70.469598 | 0.161398 | 0.229558 |
TLUT-5-90 | 5 | 90 | 76.7481 | 76.950906 | 0.202806 | 0.264249 |
TLUT-10-0 | 10 | 0 | 132.48 | 134.636994 | 2.156994 | 1.628166 |
TLUT-10-30 | 10 | 30 | 131.083 | 141.665518 | 10.58252 | 8.073143 |
TLUT-10-45 | 10 | 45 | 88.451 | 101.4049927 | 12.95399 | 14.64539 |
TLUT-10-60 | 10 | 60 | 125.119 | 123.906407 | 1.212593 | 0.969152 |
TLUT-10-90 | 10 | 90 | 136.373 | 134.860098 | 1.512902 | 1.109385 |
TLUT-20-0 | 20 | 0 | 149.447 | 147.72747 | 1.71953 | 1.150595 |
TLUT-20-30 | 20 | 30 | 170.939 | 161.55488 | 9.38412 | 5.489748 |
TLUT-20-45 | 20 | 45 | 143.667 | 129.99982 | 13.66718 | 9.513096 |
TLUT-20-60 | 20 | 60 | 153.784 | 154.876549 | 1.092549 | 0.710444 |
TLUT-20-90 | 20 | 90 | 166.376 | 167.730403 | 1.354403 | 0.814062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Zhang, J.; Wu, S. Mohr–Coulomb and Modified Hoek–Brown Strength Criteria of Layered Sandstone Considering the Unloading Effect and Anisotropy. Sustainability 2023, 15, 14418. https://doi.org/10.3390/su151914418
Song Z, Zhang J, Wu S. Mohr–Coulomb and Modified Hoek–Brown Strength Criteria of Layered Sandstone Considering the Unloading Effect and Anisotropy. Sustainability. 2023; 15(19):14418. https://doi.org/10.3390/su151914418
Chicago/Turabian StyleSong, Zhixiang, Junwen Zhang, and Shaokang Wu. 2023. "Mohr–Coulomb and Modified Hoek–Brown Strength Criteria of Layered Sandstone Considering the Unloading Effect and Anisotropy" Sustainability 15, no. 19: 14418. https://doi.org/10.3390/su151914418
APA StyleSong, Z., Zhang, J., & Wu, S. (2023). Mohr–Coulomb and Modified Hoek–Brown Strength Criteria of Layered Sandstone Considering the Unloading Effect and Anisotropy. Sustainability, 15(19), 14418. https://doi.org/10.3390/su151914418