Geophysical Research on an Open Pit Mine for Geotechnical Planning and Future Land Reclamation: A Case Study from NW Macedonia, Greece
Abstract
:1. Introduction
2. Study Area
3. Geophysical Methods
4. Results
4.1. Geoelectrical Survey
4.2. Seismic Reflection
4.2.1. 2D P-SV Seismic Wave Simulation
4.2.2. Field Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burlutsky, S.B. Geophysical surveys as a tool for geotechnical monitoring of disturbed land reclamation. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1070. [Google Scholar] [CrossRef]
- Greenhalgh, S.; Suprajitno, M.; King, D. Shallow seismic reflection investigations of coal in the Sydney basin. Geophysics 1986, 51, 1426–1437. [Google Scholar] [CrossRef]
- Miller, R.D.; Saenz, V.; Huggins, R.J. Feasibility of CDP seismic reflection to image structures in a 220-m deep, 3-m thick coal zone near Palau, Coahuila, Mexico. Geophysics 1992, 57, 1373–1381. [Google Scholar] [CrossRef]
- Baker, G.S. Processing Near-Surface Seismic Reflection Data A Primer; Course Notes Series No. 9; Society of Exploration Geophysicists: Houston, TX, USA, 1999; p. 79. [Google Scholar]
- Diogo, L.; Diagon, F.; Prado, R. Bedrock imaging using post-critical shallow seismic reflection data. J. Appl. Geophys. 2004, 57, 1–9. [Google Scholar] [CrossRef]
- Sheriff, R.E.; Geldart, L.P. Exploration Seismology: History, Theory, and Data Acquisition; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Yilmaz, O. Seismic Data Processing: Society of Exploration Geophysics; SEG: Houston, TX, USA, 1987. [Google Scholar]
- Onyebueke, E.O.; Manzi, M.S.D.; Durrheim, R.J. High-resolution shallow reflection seismic integrated with other geophysical methods for hydrogeological prospecting in the Nylsvley Nature Reserve, South Africa. J. Geophys. Eng. 2018, 15, 2658–2673. [Google Scholar] [CrossRef]
- Dehghannejad, M.; Malehmir, A.; Svensson, M.; Lindén, M.; Möller, H. High-resolution reflection seismic imaging for the planning of a double-train-track tunnel in the city of Varberg, southwest Sweden. Near Surf. Geophys. 2017, 15, 226–240. [Google Scholar] [CrossRef]
- Yilmaz, O. Engineering Seismology with Applications to Geotechnical Engineering; Tulsa, O.K., Ed.; Society of Exploration Geophysicists: Houston, TX, USA, 2015. [Google Scholar]
- Drahor, M.; Gokturkler, G.; Berge, M.; Kurtulmus, T. Application of electrical resistivity tomography technique for investigation of landslides: A case study from turkey. Environ. Geol. 2006, 50, 147–155. [Google Scholar] [CrossRef]
- Perrone, A.; Vassallo, R.; Lapenna, V.; Di Maio, C. Pore water pressures and slope stability: A jointed geophysical and geotechnical analysis of a landslide. J. Geophys. Eng. 2008, 5, 323–337. [Google Scholar] [CrossRef]
- Colangelo, G.; Lapenna, V.; Loperte, A.S.; Perrone, A.; Telesca, L. 2D electrical resistivity tomographies for investigation recent activation landslides in Basilicate region (Southern Italy). Ann. Geophys. 2008, 51, 275–285. [Google Scholar]
- Chambers, J.; Meldrum, P.; Gunn, D.; Wilkinson, P.; Kuras, O.; Weller, A.; Ogilvy, R. Hydrogeophysical monitoring of landslide processes using automated time-lapse electrical resistivity tomography (ALERT). In Proceedings of the 15th European Meeting of Environmental and Engineering Geophysics 2009, Dublin, Ireland, 3–5 September 2009. [Google Scholar]
- Apostolopoulos, G.; Antoniades, C.; Pavlopoulos, K. The electrical resistivity method—A useful tool in evaluating geological and geotechnical conditions for constructing and engineering projects. In Proceedings of the 6th Balkan Geophysical Society 2011, Budapest, Hungary, 3–6 October 2011. [Google Scholar]
- Yilmaz, S. A case study of the application of electrical resistivity imaging for investigation of a landslide along the highway. Int. J. Phys. Sci. 2011, 6, 5843–5849. [Google Scholar]
- Andronikidis, N.; Kritikakis, G.S.; Agioutantis, Z.; Vafidis, A.; Steiakakis, C.; Papageorgiou, C.; Schilizzi, P.; Tsourlos, P.; Vargemezis, G. Mapping the Bedrock Using ERT for Slope Stability Studies at Mavropigi Lignite Open Pit Mine, Northern Greece. In Proceedings of the 8th Balkan Geophysical Society 2015, Chania, Greece, 5–8 October 2015. [Google Scholar]
- Bryson, S. Evaluation of geotechnical parameters using electrical Resistivity Measurements. In Proceedings of the Geo-Frontiers 2005, Austin, TX, USA, 24–26 January 2005. [Google Scholar]
- Oh, S.; Sun, C. Combined analysis of electrical resistivity and geotechnical SPT blow counts for the safety assessment of fill dam. Environ. Geol. 2008, 54, 31–42. [Google Scholar] [CrossRef]
- Siddiqui, F.; Osman, S. Integrated Geo-Electrical and geotechnical data for soil characterization. Int. J. Appl. Phys. Math 2012, 2, 104–106. [Google Scholar] [CrossRef]
- Siddiqui, F.; Osman, S. Electrical resistivity based nondestructive testing method for determination of soil’s strength properties. Adv. Mater. Res. 2012, 488–489, 1553–1557. [Google Scholar] [CrossRef]
- Sastry, R.; Mondal, S.; Pachauri, A. 2D Electrical resistivity tomography of a Landslide in Garhwal Himalaya. In Proceedings of the 6th International Conference and Exposition on Petroleum 2006, Kolkata, India, 9–11 January 2006. [Google Scholar]
- Perrone, A.; Piscitelli, S.; Lapenna, V.; Loperte, A.; Di Maio, C.; Vassallo, R. Electrical resistivity tomography and geotechnical techniques for the stability analysis of the Tricario Landslide. In Proceedings of the 13th European Meeting of Environmentaland Engineering Geophysics 2007, Istanbul, Turkey, 3–5 September 2007. [Google Scholar]
- Soupios, P.; Georgakopoulos, P.; Papadopoulos, N.; Andreadakis, A.; Vallianatos, F.; Sarris, A.; Makris, J.P. Use of engineering geophysics to investigate a site for a building foundation. J. Geophys. Eng. 2007, 4, 94–103. [Google Scholar] [CrossRef]
- Chavez, R.; Tejero, A.; Aguilar, D. A 3D Electrical Resistivity Tomography Carried Out to Characterize the Subsoil (Fractures and Subsidence) Beneath a Reside. Extended abstracts, Near Surface Geoscience 2012. In Proceedings of the 18th European Meeting of Environment and Engineering Geophysics, Paris, France, 3–5 September 2012. [Google Scholar]
- Hamdan, H.; Andronikidis, N.; Kritikakis, G.; Economou, N.; Agioutantis, Z.; Schilizzi, P.; Steiakakis, C.; Papageorgiou, C.; Tsourlos, T.; Vargemezis, G.; et al. Contribution of electrical tomography methods in geotechnical investigations at Mavropigi lignite open pit mine, Northern Greece. Environ. Earth Sci. 2014, 72, 1589–1598. [Google Scholar] [CrossRef]
- Economou, N.; Kritikakis, G.; Manoutsoglou, E.; Vafidis, A. Fast and efficient void detection in carbonates by combined ERT and borehole data: A case study from Chania Airport in Greece. Lead. Edge 2022, 41, 322–330. [Google Scholar] [CrossRef]
- Chambers, J.E.; Ogilvy, R.D.; Kuras, O.; Cripps, J.C.; Meldrum, P.I. 3D electrical mapping of known targets at controlled environmental test site. Environ. Geol. 2002, 41, 690–704. [Google Scholar] [CrossRef]
- Bentley, L.R.; Gharibi, M. Two and three-dimensional electrical resistivity imaging at a heterogeneous site. Geophysics 2004, 69, 674–680. [Google Scholar] [CrossRef]
- Tsourlos, P. Inversion of electrical resistivity tomography data deriving from 3D structures. Bull. Hell. Geol. Soc. 2004, 36, 1289–1297. [Google Scholar] [CrossRef]
- Papadopoulos, N.; Tsourlos, P.; Tsokas, G.; Sarris, A. Two dimensional and Three-dimensional Resistivity Imaging in Archaeological Site Investigation. Archaeol. Prospect. 2006, 13, 163–181. [Google Scholar] [CrossRef]
- Dahlin, T.; Loke, M. Quasi-3D resistivity imaging: Mapping of three dimensional structures using two dimensional DC resistivity techniques. In Proceedings of the 3rd Meeting Environmental and Engineering Geophysics, Aarhus, Denmark, 8–11 September 1997. [Google Scholar]
- Aizebeokhai, A.P.; Olayinka, A.I.; Singh, V.S. Numerical evaluation of 3D geoelectrical resistivity imaging for environmental and engineering investigations using orthogonal 2D profiles. SEG Expand. Abstr. 2009, 28, 1440–1444. [Google Scholar] [CrossRef]
- Aizebeokhai, A. 2D and 3D geoelectrical resistivity imaging: Theory and field design. Sci. Res. Essays. 2010, 5, 3592–3605. [Google Scholar]
- Loke, M.; Barker, R. Practical techniques for 3D resistivity surveys and data inversion. Geophys. Prospect. 1996, 44, 499–523. [Google Scholar] [CrossRef]
- Loke, M.; Barker, R. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Metaxas, A.; Karageorgiou, D.; Varvarousis, G.; Kotis, T.; Ploumidis, M.; Papanikolaou, G. Geological evolution-stratigraphy of Florina, Ptolemaida, Kozani and Saradaporo graben. Bull. Geol. Soc. Greece 2006, 40, 161–172. [Google Scholar] [CrossRef]
- Claebout, J.; Muir, F. Robust modeling with erratic data. Geophysics 1973, 38, 826–844. [Google Scholar] [CrossRef]
- Ellis, R.; Oldenburg, D. Applied geophysical inversion. Geophys. J. Int. 1994, 116, 5–11. [Google Scholar] [CrossRef]
- Brokesova, J.; Zahradnik, J.; Paraskevopoulos, P. Ray and finite-difference modelling of CDP seismic sections for shallow lignite deposits. J. Appl. Geophys. 2000, 45, 261–272. [Google Scholar] [CrossRef]
- Tselentis, G.; Paraskevopoulos, P. Application of a high-resolution seismic investigation in a Greek coal mine. Geophysics 2002, 67, 50–59. [Google Scholar] [CrossRef]
- Vafidis, A.; Abramovici, F.; Kanasewich, E.R. Elastic wave propagation using fully vectorized high order finite differences. Geophysics 1992, 57, 218–232. [Google Scholar] [CrossRef]
- Stockwell, R.G.L.; Mansinha, L.R.P.; Lowe, R.P. Localization of the complex spectrum: The S transform. IEEE Trans Signal Process. 1996, 44, 998–1001. [Google Scholar] [CrossRef]
- Soubaras, R. Explicit 3D migration using equiripple polynomial expansion and Laplacian synthesis 1992. In SEG Technical Program Expanded Abstracts 1992; Society of Exploration Geophysicists: Houston, TX, USA, 1992; pp. 905–908. [Google Scholar]
Synthetic Data | |||
---|---|---|---|
Model length (m) | 1000 | Shot depth (m) | 10 |
Model depth (m) | 280 | 1st Shot X-coordinate (m) | 5 |
Model grid (m) | 1.25 | Number of receivers (m) | 72 |
Sampling interval (ms) | 0.4 | Receiver interval (m) | 5 |
Record length (ms) | 1200 | Receiver depth (m) | 0 |
Number of shots | 55 | 1st Receiver X-coordinate (m) | 100 |
Shot interval (m) | 10 | Nearest offset (m) | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andronikidis, N.; Kritikakis, G.; Vafidis, A.; Hamdan, H.; Agioutantis, Z.; Steiakakis, C.; Economou, N. Geophysical Research on an Open Pit Mine for Geotechnical Planning and Future Land Reclamation: A Case Study from NW Macedonia, Greece. Sustainability 2023, 15, 14476. https://doi.org/10.3390/su151914476
Andronikidis N, Kritikakis G, Vafidis A, Hamdan H, Agioutantis Z, Steiakakis C, Economou N. Geophysical Research on an Open Pit Mine for Geotechnical Planning and Future Land Reclamation: A Case Study from NW Macedonia, Greece. Sustainability. 2023; 15(19):14476. https://doi.org/10.3390/su151914476
Chicago/Turabian StyleAndronikidis, Nikos, George Kritikakis, Antonios Vafidis, Hamdan Hamdan, Zach Agioutantis, Chrysanthos Steiakakis, and Nikos Economou. 2023. "Geophysical Research on an Open Pit Mine for Geotechnical Planning and Future Land Reclamation: A Case Study from NW Macedonia, Greece" Sustainability 15, no. 19: 14476. https://doi.org/10.3390/su151914476
APA StyleAndronikidis, N., Kritikakis, G., Vafidis, A., Hamdan, H., Agioutantis, Z., Steiakakis, C., & Economou, N. (2023). Geophysical Research on an Open Pit Mine for Geotechnical Planning and Future Land Reclamation: A Case Study from NW Macedonia, Greece. Sustainability, 15(19), 14476. https://doi.org/10.3390/su151914476