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Abstract: The crumb rubber (CR) recycled from waste tyres could be a viable alternative in achieving
green pavements that offer exciting new markets to global investors. Adding CR into flexible
pavements enhances their performance and ensures environmental sustainability. This paper will
discuss the production variables, CR sizes and contents, blending techniques, optimum bitumen
contents, morphology, standard characteristics, rheological characteristics, mechanical performance,
greenhouse gas emissions, energy consumption and life cycle cost. This review study found that
compared to traditional asphalt mixtures, the CR-modified asphalts had superior performance and
longer service life. However, the dearth of information on several factors in CR asphalt production,
including greenhouse gas emissions, energy consumption and life cycle cost during recycling, causes
many agencies in the global asphalt industry to continue employing costly, energy-consuming
additives such as styrene-butadiene-styrene (SBS) instead of CR to enhance asphalt.

Keywords: crumb rubber (CR); characteristics; mechanical performance; greenhouse gas emissions;
energy consumption; life cycle cost

1. Introduction

The road construction industry should follow other related sectors in utilising recycled
and waste materials or by-products, for example, glass furnace dross, ashes from the incin-
eration of municipal waste, crushed brick, plastics, glasses and crumb rubbers from waste
tyres, to produce asphalt mixtures. However, their applications are still underexplored
since few studies have investigated the potential of these materials [1,2].

Generally, crumb rubber is the rubber recycled from automotive and truck scrap tyres.
Waste tyre disposal management is challenging because tyres have a long lifespan and
are non-biodegradable [3,4]. The United States is the single-largest market for ground
rubber, with an annual consumption of 12 million waste tyres (more than 100,000 tons).
The conventional waste tyre disposal methods, namely stockpiling, illegal dumping or
landfilling, are temporary solutions. The urgent need to recycle waste tyres is apparent
given the substantial amount of waste tyres generated (up to nine million tons each year
globally. In some countries, the volume of waste tyres reaches 220 thousand tons), limited
landfill space and pollution issues. Generally, gathering waste tyres for dumping in landfills
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is costly and not an environmentally viable disposal method. Therefore, it is imperative
to find sustainable solutions for recycling waste tyres to effectively deal with the massive
amounts of waste tires produced globally [5].

One way to recycle waste tyres is by using crumb rubbers in asphalt binder modifi-
cation. Waste tyres have thermo-mechanical, chemical and physical properties that make
them suitable for the asphalt construction sector [6]. Crumb rubbers are safe because
they are lightweight, durable, non-toxic and inert [7,8]. In addition to using crumb rub-
ber as a chemical de-vulcanisation feedstock and incorporating it into the bitumen as
asphalt sealants and roadway laying [9], it has been used as an asphalt modifier for over
40 years. Studies have demonstrated that asphalt–rubber pavements reduce road pavement
thickness, traffic noise, pollution and maintenance costs and extend the lifespan of road
pavements while reducing refraction and reflection [10,11]. This review paper will present
a comprehensive overview of the primary techniques and technological advancements in
incorporating crumb rubber into asphalt mixtures to encourage extensive explorations on
the fundamental principles of crumb rubber-modified (CR) asphalt, including production
parameters, particle sizes and concentrations, mixing methods, optimal bitumen contents,
morphology, standard attributes, rheological properties, mechanical behaviour, greenhouse
gas emissions, energy consumption and life cycle expenses.

2. Crumb Rubber

CR has been used to modify asphalt mixtures and binders for decades. In 1840, natu-
ral rubber was first used in asphalt pavement to increase the durability of conventional
asphalt [12], and the paving industry has been using CR since 1950. The research by
McDonald’s to determine the best method for developing an ideal combination found
that a mixing time of 45 min to an hour produced an asphalt mixture with the best engi-
neering characteristics [13]. In 1975, researchers successfully incorporated CR into asphalt
mixes, and in 1988, the American Society for Testing and Materials (ASTM) recommended
incorporating 15% ground tires into the original asphalt to produce asphalt binders [14].
Between the early 1970s and mid-1980s, South Africa and Australia used bitumen rubber
as a sealant and asphalt binder [15]. Two Australian territories (New South Wales and
Victoria) began using rubberised asphalt binder for limited application, primarily as a
crack-resistant layer through spray sealing applications [16]. In 1991, the United States
established federal rules and regulations for the CR asphalt used in stress absorption inter-
layers, HMA and joint sealants. Since then, researchers have begun exploring new methods
to improve CR-modified asphalt manufacturing techniques [17]. Portugal, Spain, Italy,
the Czech Republic and Sweden use CR asphalt the most, and Taiwan uses CR-modified
asphalt for rehabilitation projects [18]. The Rubber Research Institute of Malaysia (RRIM)
and the Malaysian Public Works Department (PWD) investigated the effectiveness of using
CR asphalt for road construction. The researchers in the 1950s focused on developing CR
asphalt techniques and constructed a 91 m road between Kota Bharu and Kuala Krai by
incorporating 5% CR into the asphalt mixture. Between 1988 and 2003, the states of Melaka,
Negeri Sembilan, Kedah, Johor and Perlis constructed rubberised paving as part of their
research. Unfortunately, the results of these experiments were never published [19].

2.1. Production Methods

Crumb rubber is recycled rubber from the scrap tyres of cars and trucks. The two meth-
ods for making crumb rubbers are cryogenic grinding and ambient mechanical grinding [3],
and the crumb rubber is ground repeatedly to obtain finer crumb rubber particles [20].
Figure 1 shows the ambient mechanical grinding method for producing crumb rubber
by breaking up the scrap tyres at or above the average room temperature (25 ◦C). This
process comprises several steps and uses whole truck tyres to produce rubber shreds or
chips. The first step is separating the metals, fabrics and rubber; the next step is shredding
the scrap tyres to obtain the chips fed into a granulator that grinds them and removes any
remaining steel or fibre using a combination of magnetic separation, shaking screens and
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wind sifters. The third step grounds the discarded tyres into smaller rubber pieces through
the secondary granulators and high-speed rotating mills [3]. Ambient plants use extruders
or screw presses and cracker mills for fine grinding.
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Figure 1. Tyre recycling plant [21].

Cryogenic grinding uses liquid nitrogen or other industrial refrigerants to ground the
scrap tyres at about −80 ◦C. This process uses truck tyres in the form of chips or ambiently
formed granulates as feedstock. Even though cryogenic grinding consumes more energy
than ambient mechanical grinding, it produces high-quality crumb rubber. This process
comprises four stages: initial size reduction, chilling, separating and grinding. In the first
stage, the scrap tyres are placed in a freezing chamber containing −80 to −120 ◦C liquid
nitrogen to reduce the rubber’s flexibility. A hammer mill then separates the metals from
the fibres, and in the last stage, the granules pass through magnetic screens and sifting
stations to remove harmful materials [3].

2.2. Physical and Chemical Properties

Tyres are categorised into different rubber compositions and other components to
ensure a safe function under various challenging conditions. Figure 2 shows the materials
required for tyre production, including natural rubber, artificial polymers, metals, fabric,
fillers (such as carbon black and crystalline-precipitated silica), anti-oxidants and curing
agents (such as sulphur and zinc oxide).
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Figure 2. The composition of light truck tyres [22].

Table 1 presents the physical properties of crumb rubbers produced using ambient
and cryogenic methods. The specific unit weight of crumb rubber, up to a certain extent, is
not affected by the processing method [23]. The chemical characteristics of crumb rubber
modifiers are almost identical to the parent rubber tyres [24,25], as shown in Table 2.
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The scanning electron microscope images in Figure 3 show the different scales of the CR
particles. Table 3 presents the difference between the physical and chemical properties of
the CR obtained by Shatanawi et al. [11] using the ambient and cryogenic methods. The
values of the physical and chemical properties vary with the steps in CR production.

Table 1. The physical characteristics of crumb rubber [24].

Property Ambient Cryogenic

Specific gravity 1.15 1.15

Shape Irregular Regular

Steel content 0.1% -

Fiber content 0.5% -

Surface area High Low

Table 2. The chemical composition of crumb rubber [25,26].

Chemical Composition Percentage (%)

Acetone extract % 15.5 9.21

Ash content % 6 6

Carbon black % 29.5 32

Rubber hydrocarbon % 49 52.79

Table 3. The physical and chemical characteristics of crumb rubber [11].

Property Ambient Cryogenic

Specific gravity (wt%) 1.042 1.053

Moisture content (wt%) 0.76 0.77

Ash content (wt%) 6.01 4.66

Carbon black content (wt%) 32.98 30.41

Sulfur content (wt%) 2.02 1.24

Acetone and chloroform content (wt%) 9.86 11.69
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Researchers investigated the physical and chemical characteristics of four CRs, two
produced by the cryogenic method and the others using the ambient method. They
observed that the crumb rubber from each production method has different physical and
chemical properties, which determined the behaviour of the asphalt binders and mixtures,
as shown in Table 4 [28].

Table 4. The physical and chemical characteristics of crumb rubber produced via different production
methods [28].

Property Cryogenic 1 Cryogenic 2 Ambient 1 Ambient 2

Specific gravity (wt%) 1.04 1.04 1.05 1.06

Moisture content (wt%) 0.76 0.67 0.77 0.67

Ash content (wt%) 6.01 5.36 4.66 5.61

Carbon black content (wt%) 32.98 29.75 30.41 32.74

Sulfur content (wt%) 9.86 11.80 11.69 8.52

Acetone and chloroform content (wt%) 2.02 1.32 1.24 1.47

2.3. Size and Contents

There is a grading system for crumb rubbers with varying particle shapes and sizes,
and the particle size of crumb rubbers can be as small as 0.075 mm. The typical CR gradation
in rubberised asphalt pavements ranges between 2.0 and 0.075 mm. The crumb rubber
size is the screen or mesh size that crumb rubber passes through during manufacturing.
Finer screens or meshes have more apertures or holes per linear inch; for example, a
30-mesh screen has 30 openings or holes per inch [29,30]. The permeability coefficient
of an asphalt mixture decreases markedly with bigger CR particle sizes and higher CR
contents [31]. Cao et al. [32] reported a marked change in the penetration, softening point
and ductility of the asphalt binder added with 15% 80-mesh CR. Wong and Wong [33]
discovered that the asphalt mixture containing 0.6 mm CR had a higher rutting resistance
than that with 0.3 mm CR. Researchers experimented with varying CR sizes and found
that larger particle sizes affected the mixture’s stiffness and indirectly increased its tensile
strength [34]. Another study [35] demonstrated that adding different crumb rubber sizes of
30-mesh 0.6 mm CR, 30-mesh 0.3 mm CR and 40-mesh 0.15 mm CR in varying percentages
of 0%, 5%, 10% and 15% by weight of the base binder had a minor effect on the moisture
sensitivity of rubberised asphalt. The researchers concluded that the CR sizes and contents
influenced asphalt mixture performance. The 50-mesh CR has a better low-temperature
performance than the 14-mesh crumb rubber [36]. However, Liu et al. [37] concluded that
adding 60-mesh and 80-mesh crumb rubbers to asphalt binder did not considerably impact
its performance. Adding 0.15, 0.3 and 0.6 mm CRs to asphalt mixtures resulted in a slight
performance difference [33]. Tables 3–5 show that adding less than 20% CR enhanced the
performance of CR-modified asphalts. In contrast, high rubberised asphalt contents of
20–50% imparted excellent high-temperature characteristics, low-temperature properties
and fatigue resistance compared to virgin asphalt [26]. Figure 4 shows crumb rubber with
varying particle sizes.
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2.4. Blending Methods

The mixing of crumb rubber and asphalt uses the wet or dry process. The dry process
mixes the CR and aggregates in an asphalt mixture, whereas the wet method mixes CR
and asphalt binder at a specific temperature [39]. The latter enhances the asphalt mixture’s
rutting resistance, resilience modulus and fatigue cracking [40]. Moreno et al. [41] observed
that the dry method was more effective for producing CR asphalt, while Losa et al. [42]
noted that the rubberised asphalt mixtures produced by wet and dry methods showed
similar indirect tensile strength (ITS), although those produced through wet mixing have a
higher resilient modulus. The rubberised asphalt binders mixed using the wet method had
the following characteristics.

• The optimal shearing temperature for ductility at 5 ◦C ranged from 170 to 180 ◦C [43],
where low shearing temperatures reduced the asphalt’s fluidity (higher consistency),
making it unsuitable for CR adsorption and swelling, while too high shearing temper-
atures caused ageing.

• The optimum shearing time ranged between 30 [44] and 60 min [45]. The rubber
particles were not sheared properly when the shearing time was too short, but an
exceedingly long shearing time accelerated asphalt ageing.

• The recommended shearing rates for rubber-modified asphalt are 700 rpm [35],
1200 rpm [46] or 5000 rpm at 180 ◦C for 45 min [45]. The shearing outcome was
poor when the shearing rate was too low, but an excessively high shearing rate in-
creased the rubber particle temperature rapidly.

According to the American Society for Testing and Materials (ASTM), asphalt–rubber
is a mixture of asphalt binder, aggregates, scrap tyres and additives, where the rubber
content should be at least 15% of the total mixture weight and react sufficiently with the
asphalt binder to ensure swelling of the CR particles. [47]. Increasing the blending time
from 30 to 60 min increased the asphalt binder’s rutting resistance and elastic recovery [40].
The longer blending duration and higher blending temperature caused the CR asphalt
binder to have a higher failure temperature and viscosity at 135 ◦C [48]. Liu et al. [45]
concluded that time, shear and temperature influenced asphalt binder performance, and
they recommended mixing at 5000 rpm and 180 ◦C for 45 min to achieve the optimal
rubberised asphalt binder performance. The viscosity of CR asphalt binder decreased
considerably with higher mixing temperature and time [32,49]. Figure 5 shows the wet
and dry methods for producing rubberised asphalt mixtures. Laboratory experiments and
field studies revealed that CR mixtures produced via the dry process showed marginal
improvement compared to the wet process. Numerous laboratory investigations have
determined the suitable aggregate gradation, optimal bitumen content and appropriate
mixture preparation to enhance the consistency and performance of the blends produced
via dry mixing. The findings showed that the mechanical characteristics of mixtures
produced via dry mixing were more susceptible to varying rubber concentrations. The
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critical parameters for formulating a CR mixture for both mixing methods are aggregate
gradation, bitumen content and air void proportion [50,51].
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2.5. Morphology

A previous investigation found that rubberised mixtures require 1–2% higher bitumen
percentages than the original asphalt mixture [53]. A study by Bilema et al. [54] used
the Superpave Gyratory Compactor with varying crumb rubber percentages of 5, 10 and
15% asphalt mixture and found that higher crumb rubber contents required 0.25% higher
bitumen content since the rubber particles absorbed some of the bitumen in the rubberised
asphalt mixture.

Researchers employed modern methods for examining asphalt structure to study the
morphology of CR asphalt binders. The compatibility between CR and asphalt binder
strongly determines the properties of a CR asphalt binder. Crumb rubber absorbed the
lightweight component in the asphalt binder, which expanded the mixture and created
a gel-like layer. The CR particles were connected by the gel film surrounding them. A
better integration of crumb rubber in the base binder enhanced the asphalt binder’s charac-
teristics [9]. Wang et al. [55] classified the interaction between the asphalt binder and CR
particles into four stages, as shown in Figure 6. The first stage mixes the asphalt binder with
the rubber particles. In the second stage, the rubber particles swell as they absorb the light
bitumen fractions, forming a gel layer close to the bitumen–rubber interface. In the third
stage, the rubber granules expand, causing the polymer chains and crosslinked network
to break down as the chemical reaction occurs. The destruction of the network structure
causes the swollen rubber particles to break into smaller components. The deterioration of
the rubber particles continues in the fourth stage until they are fully incorporated into the
bitumen structure, creating a homogeneous asphalt binder.
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Xu et al. [56] reported that the smooth surface of the crumb rubber particles caused
a poor absorption of the lightweight components in the asphalt binder. Researchers used
an ambient grinding method to generate CR using untreated CR and CR with polymer-
enhanced surface treatment. The largest particle diameter for both CRs was 800 µm.
The environmental scanning electron microscope (ESEM) analysis showed no apparent
difference between the CR particles, although the surface of the treated CR particles was
more porous and open. The chemical activation improves the interaction with the asphalt
binder [26]. The AFM images in Figure 6 show asphalt binders with varying percentages of
crumb rubber powder and the characteristic changes in the catana phase. The clustered and
floating micro-rubber powder had more impact on the interfacial tension than the apparent
structural change [55].

Cong et al. [57] used a fluorescence microscope to examine the morphology of rub-
berised asphalt binders, particularly the discontinuous and continuous phase distribution
and observed that the chemical composition of the asphalt binder and CR swelling influ-
enced their low-temperature properties. Zhang et al. [58] examined the morphology of
rubberised asphalt binders using a scanning electron microscope after microwave treat-
ment, and they concluded that the CR surface had a strong reactivity, permeability and
affinity at the interface with epoxidised soybean oil, which entered the asphalt structure
and restored and enhanced the asphalt binder’s performance after ageing. The scanning
electron microscope (SEM) imaging revealed that the high concentrations of CR powder
created an excellent network connection with virgin asphalt. The microscopy of asphalt
with high rubber contents showed minor differences before and after ageing, and the
compatibility and stability remained satisfactory even after extended ageing [26].

3. The Effects of Crumb Rubbers on Asphalt

Most performance tests assess the physical, rheological and mechanical properties of
asphalt to determine the effects of combined factors on CR asphalt mixture. This section
summarises the recent research findings to provide a comprehensive knowledge of the
fundamental behaviour of rubberised asphalt binders and mixtures.

3.1. Physical Properties

After successfully incorporating crumb rubber into HMA and WMA, researchers
continued to explore asphalt rubber applications [59,60]. CR significantly enhanced the
penetration, softening point, ductility and viscosity of CR asphalt [61]. One of the main
issues with adding CR to asphalt is workability, which can be resolved by reducing the
amount of CR added to asphalt rubber binders [62]. Table 5 summarises the laboratory
studies on the effects of CR incorporation on the physical characteristics of asphalts. CR
increased penetration and viscosity while lowering the ductility and softening point during
blending. The aromatic oil absorbed by the crumb rubber particles in the asphalt binder
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expanded the crumb rubber particles and increased the asphalt binder’s hardness [61].
One study concluded that the rubber absorbed the maltene fractions with low molecular
weights as it came into contact with the bitumen, leaving the remaining bitumen with
a higher proportion of asphaltenes with a high molecular weight, thus increasing its
viscosity [28]. Several variables, including the temperature and duration of the rubber–
bitumen interaction, the chemical structure of the bitumen and the rubber characteristics
and dimensions, influenced the rate of rubber swelling and viscosity [63].

Table 5. The physical characteristics of CR asphalt binders.

Reference Bitumen CR Size CR (%) Blending Method Penetration Softening
Point Ductility Viscosity

Asgharzadeh
et al. [64] PG 64-22 50–100-mesh 20

- Wet method
- 5000 rpm
- 185 ◦C
- 60 min

↓ ↑ - ↑

Li et al. [65] 80/100
PEN 40-mesh 24, 28

and 32

- Wet method
- 1800 rpm
- 190 ◦C
- Varying mixing

times

↓ - - ↑

Bilema et al. [66] 60/70
PEN 20-mesh 5

- Wet method
- 700 rpm
- 177 ◦C
- 30 min

↓ ↑ ↓ ↑

Yu et al. [67] 60/70
PEN 40-mesh 10 and

20

- Wet method
- 10,000 rpm
- 180 ◦C
- 60 min

↓ ↑ - ↑

Geng et al. [68] 70 SK base
binder 60-mesh 20

- Wet method
- 180–200 ◦C
- 45 min

↓ ↑ ↓ ↑

Poovaneshvaran
et al. [2] 60/70 PEN 0.425–0.075

mm
5, 10

and 15

- Wet method
- 1000 rpm
- 160 ◦C
- 30 min

↓ ↑ - ↑

Leng et al. [69] 60/70 PEN 40-mesh 18

- Wet method
- 4000 rpm
- 176 ◦C
- 60 min

↓ ↑ - ↑

Yu et al. [70] 60/70 PEN - -

- Wet method
- 4000 rpm
- 176 ◦C
- 60 min

↓ ↑ - ↑

Yu et al. [71] 60/70 PEN 40-mesh 18

- Wet method
- 4000 rpm
- 176 ◦C
- 60 min

↓ ↑ - ↑

Pouranian
et al. [72] PG 67-22 0.6 mm 10, 15, 20

and 25

- Wet method
- 4000 rpm
- 175 ◦C
- 30, 45 and 60 min

↓ ↑ - ↑



Sustainability 2023, 15, 14481 10 of 24

Table 5. Cont.

Reference Bitumen CR Size CR (%) Blending Method Penetration Softening
Point Ductility Viscosity

Zumrawi et al. [73] 60/70 PEN <4.75
5, 10, 15,
20 and

30

- Wet method
- 180 ◦C
- 60 min

↓ ↑ ↓ ↑

Mashaan et al. [74] 80/100
PEN 30-mesh

4, 8, 12,
16

and 20

- Wet method
- 200 rpm
- 180 ◦C
- 60 min

↓ ↑ ↓ ↑

Kedarisetty
et al. [75]

VG-30 and
VG-40 <0.6 mm

5, 10, 15,
20 and

25

- Wet method
- 3000 rpm
- 170–180 ◦C
- 5 min

↓ ↑ - ↑

Kök et al. [76] 160-220
PEN - 3, 6, 9, 12

and 15

- Wet method
- 1000 rpm
- 180 ◦C
- 60 min

↓ ↑ - -

Wulandari and
Tjandra [77] 60/70 PEN 40- and

80-mesh 1 and 2

- Dry method
- Manual mixing
- 135–150 ◦C
- No specific time

↓ ↑ ↓ -

Xie et al. [78] 70/90 PEN 60–80-mesh 10, 15
and 20

- Wet method
- Varying shear

times
- Varying

temperatures

- ↑ - ↑

Palit et al. [59] 80/100
PEN 0.6 mm 5, 10

and 15

- Wet method
- 2000 rpm
- 175–185 ◦C
- 40 min

↓ ↑ ↓ -

↓ = decrease and ↑ = increase.

3.2. Rheological Properties

The dynamic shear rheometer (DSR) measurements for the G*/sin rutting parameter
yielded values directly proportional to rice husk ash/crumb rubber modifier concen-
trations. Asphalt binders with higher complex modulus and lower phase angle have
higher resistance to permanent deformation and elastic response [79]. The phase angle
decreased considerably while the complex shear modulus and rutting factor of the crumb
rubber/styrene-butadiene-styrene asphalt increased markedly, indicating that CR/SBS
increased the high-temperature deformation resistance [61]. The temperature sweep test
showed that SBS and CR lowered the phase angle and increased the complex shear modu-
lus, thus enhancing the behaviour of the modified asphalts in high-temperature conditions.
An asphalt binder modified with 20% CR and 5% SBS showed higher high-temperature
and rutting resistance. The temperature sweep test also showed that the asphalt binders
modified with SBS and CR had higher flexibility at high temperatures. When considering
the shear modulus and phase angle of asphalt binders, the viscoelastic balance of the
20% CR and 5% SBS-modified asphalt binder was more suitable for dealing with cracking
issues [80]. The higher Superpave values for rutting resistance and complex modulus in
the frequency sweeps produced better rheological performance with higher CR contents.
The Glover-Rowe (G-R) parameter showed that CR reduced fatigue resistance [27]. CR
also reduced the phase angle, increased the complex shear modulus and considerably en-
hanced the stiffness, modulus and cohesive energy of the asphalt binder, thus enhancing its
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high-temperature elastic characteristics and making it suitable for various applications [55].
Table 6 summarises the rheological experiments to determine the effects of CR on asphalt.

Table 6. The rheological properties of rubberised asphalt binders.

Reference Bitumen CR Size CR (%) Blending Method Complex
Modulus

Phase
Angle

Rutting
Resistance

Fatigue
Life

Sol-Sánchez et al.
[81]

70/100 PEN
grade

0.6–0.063
mm 20

- Wet method
- 3500 rpm
- 165 ◦C
- 60 min

↑ ↓ - -

Wang et al. [82] PG 64-22 40-mesh
0.425 mm

10, 15, 20
and 25

- Wet method
- 700 rpm
- 177 ◦C
- 30 min

↑ ↓ - -

Leng et al. [69] 60/70 PEN 40-mesh 18

- Wet method
- 4000 rpm
- 176 ◦C
- 60 min

- - ↑ ↓

Yu et al. [70] 60/70 PEN - -

- Wet method
- 4000 rpm
- 176 ◦C
- 60 min

- - ↑ ↓

Mashaan et al.
[74] 80/100 PEN 30-mesh 4, 8, 12, 16

and 20

- Wet method
- 200 rpm
- 180 ◦C
- 60 min

↑ ↓ ↑ -

Shen et al. [83] PG 64-22 and
PG 52–28

1.35, 0.6 and
0.425 mm 10 and 15

- Wet method
- 700 rpm
- 176 ◦C
- 15, 30 and 45 min

↑ ↓ - -

Shatanawi et al.
[11] PG 64-22 - 15

- Wet method
- 700 rpm
- 177 ◦C
- 60 min

↑ - ↑ -

Ziari et al. [36] 85/100 PEN 14- and
50-mesh 10, 15 and 20

- Wet method
- 4000 rpm
- 190 ◦C
- 120 min

- - ↑ ↓

Poovaneshvaran
et al. [2] 60/70 PEN 0.425–0.075

mm 5, 10 and 15

- Wet method
- 1000 rpm
- 160 ◦C
- 30 min

↑ ↓ ↑ -

Bilema et al. [84] 80/100
PEN 20-mesh 5, 10 and 15

- Wet method
- 700 rpm
- 177 ◦C
- 30 min

↑ ↓ ↑ -

Wang et al. [55] 90/100
PEN 80-mesh 15, 20 and 25

- Wet method
- 4000 rpm
- 180 ◦C
- 60 min

↑ ↓ ↑ -
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Table 6. Cont.

Reference Bitumen CR Size CR (%) Blending Method Complex
Modulus

Phase
Angle

Rutting
Resistance

Fatigue
Life

Yu et al. [67] 60/70
PEN - 10 and 20

- Wet method
- 10,000 rpm
- 180 ◦C
- 60 min

↑ ↓ ↑ ↓

Wang et al. [26] 60/80 PEN <0.6 mm 20, 25, 30, 35,
40, 45 and 50

- Wet method
- 2000 rpm
- 180–190 ◦C
- 50 + 15 min

↑ ↓ ↑ ↓

Yu et al. [85] 60/70 PEN 40-mesh 18

- Wet method
- 4000 rpm
- 176 ◦C
- 60 min

- - - ↑

Xiaoming et al.
[86] 60/70 PEN 0.125 mm 2, 3, 3.5 and 4

- Wet method
- 4000 rpm
- 185 ± 5 ◦C
- 120 min

↑ ↓ ↑ -

Zhang et al. [87] 70/80 PEN 40-mesh 25

- Wet method
- 4000 rpm
- 175 ◦C
- 60 min

↑ ↓ ↑ -

Zong et al. [88] 80/100
PEN

25-, 30-, 40-
and 60-mesh

12, 16, 20
and 24

- Wet method
- 5000 rpm
- 205 ◦C
- 60 min

↑ ↓ ↑ -

Khan et al. [89] PG 64-10 0.15–0.075
mm

4, 8, 12 and
16

- Wet method
- 1000 rpm
- 20 min

↑ ↓ ↑ -

Khan et al. [90] PG 64-10 0.15–0.075
mm 2, 4, 8 and 10

- Wet method
- 165 ◦C
- 120 min

↑ ↓ ↑ -

Yun et al. [91] PG 64-22 0.425–
0.075mm

5, 10, 15 and
20

- Wet method
- 700 rpm
- 177 ◦C
- 30 min

- - ↑ -

↓ = decrease; ↑ = increase.

3.3. Mechanical Performance

Crumb rubber generally improved asphalt mixture behaviour [17]. The asphalt mix-
ture’s moisture resistance at a particular temperature decreased with higher CR powder
contents [54]. Another research demonstrated that CR asphalt had better moisture sensitiv-
ity and permanent resistance than unmodified asphalt mixture [33]. Liu et al. [37] used the
Superpave test results to identify the ideal condition for using CR in asphalt, taking into
account the granulated CR, fusion temperature, aggregate gradation, CR content, density,
temperature, amount of asphalt binder and fusion time as the experimental variables.
The investigation mixed the CR and asphalt using the dry blending method. At high
temperatures and low production costs, adding 10% rubber powder produced an asphalt
mixture with lower thermal sensitivity and higher permanent deformation resistance than
the control specimens [1]. CR is an influential determiner of asphalt mixture performance,
where the rubberised asphalt mixture had better rutting deformation resistance than or-
dinary mixtures [92]. Generally, high percentages of crumb rubber were added to the
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asphalt mixtures to enhance their ability to resist deterioration in the Cantabro abrasion loss
test [93]. Table 7 summarises the results of the mechanical performance test to determine
the effects of crumb rubber on asphalt.

Table 7. A summary of laboratory research on the effects of crumb rubber on asphalt.

CR
(%) CR Size Blending Method Result Authors

1 and 2 40- and 80-mesh

- Dry method
- Manual mixing
- 135–150 ◦C
- No specific time

Improved the stiffness and
durability of the asphalt mixtures.

Wulandari and
Tjandra [77]

1, 2 and 3 2.36–0.075 mm - Dry method

Adding CR increased the Marshall
stability and rutting

resistance considerably.
The recommended CR dosage in

asphalt mixture is 1.5–2%.

Nguyen and Tran [94]

10 2–0.075 mm - Wet method
- 1200 rpm

Waste CR powder reduced the rut
depth of asphalt mixes at varying

temperatures and pressures.
Shafabakhsh et al. [1]

5, 10 and 15 20-mesh

- Wet method
- 700 rpm
- 177 ◦C
- 30 min
- WMA additives

(Sasobit)

The tensile strength ratio (TSR) of
the WMA mixtures modified with

CR decreased at lower test
temperatures and higher

CR contents.

Bilema et al. [54]

1 0.8 mm

- Dry method
- 160–185 ◦C
- 3.5 min
- Conditioning time of

30, 60, 120, 180, 240
and 300 min at
165 ◦C

The CR-modified bitumen had a
higher viscosity than the

virgin bitumen.
The CR had a significant impact on

the mixture’s performance.
The conditioning time determined

the asphalt morphology.

Fernández et al. [95]

20 0.6–0.063 mm

- Wet method
- 3500 rpm
- 165 ◦C
- 60 min
- WMA additives

(Sasobit and
Zycotherm)

The CR with WMA additives
reduced the manufacturing

temperature by 45 ◦C without
adversely affecting mechanical

performance, energy consumption,
costs and GHG emissions.

Sánchez et al. [81]

1.5 and 1.9 0.6–0.063 mm - Dry method
- 160–195 ◦C

CR mixtures were less sensitive to
high temperatures than the virgin

asphalt mixture.
CR improved fatigue
cracking performance.

The temperatures of over 190 ◦C at
plants producing CR asphalt

mixture had adverse effects on
rubber performance (reduced

stiffness at intermediate
temperatures and lower

fatigue resistance).

Dias et al. [96]
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Table 7. Cont.

CR
(%) CR Size Blending Method Result Authors

10 0.15, 0.3 and 0.6
mm

- Wet method
- 3000 rpm
- 175–185 ◦C
- 45 min

CR increased the rutting resistance. Wong and Wong [33]

0.5 1 and 1.5 0.6 mm - Dry method
CR enhanced the asphalt mixture’s

stiffness modulus and rutting
resistance.

Moreno et al. [41]

20 50–100-mesh

- Wet method
- 5000 rpm
- 185 ◦C
- 60 min

The fatigue life of the CR-modified
mixture was 3.6 times the

unmodified asphalt mixtures for
highway applications.

Asgharzadeh et al. [64]

1 0.8 mm

- Dry method
- 160–185 ◦C
- 3.5 min
- Conditioned at 165

◦C for 120 min

The CR-modified asphalt mixtures
showed satisfactory performance

and were less susceptible to ageing
than the conventional

polymer-modified mixture.

Fernández et al. [97]

5 0.075, 0.15 and
0.3 mm

- Wet method
- 700 rpm
- 177 ◦C
- 30 min

Larger CR particles increased the ITS
and reduced the moisture resistance.

The 0.15 mm CR was suitable for
improving the asphalt mixture’s
strength and moisture damage

resistance.

Bilema et al. [34]

6, 12, 16
and 20 0.45 mm - Dry method

- 160–165 ◦C

CR improved the stability of stone
mix asphalt by providing better

adhesion. The stiffness modulus of
SMA samples containing varying
CR percentages was significantly

higher than the virgin asphalt
mixture. The optimal CR percentage
was 12% by weight of the bitumen.

Mashaan et al. [7]

5, 10 and 15 0.6 mm

- Wet method
- 2000 rpm
- 175–185 ◦C
- 40 min

Reduced the asphalt mixture’s
permanent deformation and

increased its resilient modulus.
Palit et al. [59]

0.25, 0.5,
0.75, 1, 2, 3,

4 and 5
0.425 mm - Dry method

- 180 ◦C

Adding the 0.75 mm CR enhanced
the fatigue cracking and rutting

resistance.
Kamarudin et al. [98]

15, 17, 20
and 21 2–0.075 mm

- Wet method
- 180 ◦C
- 90 min

The CR asphalt mixtures showed
improved resistance to permanent

deformation.
Fontes et al. [99]

5, 10, 15
and 19 0.3–0.6 mm

- Wet method
- 180–190 ◦C
- 30 min

The fatigue resistance decreased
with higher CR contents in the

asphalt mixture.
Yun et al. [91]

3.4. Emissions and Their Effects on Health

The manufacture of asphalt mixes consumes energy and emits pollutants into the
environment. In terms of emissions, studies on life cycle assessments have shown that the
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materials manufacturing and transportation stages in pavement technology prevail [100].
The amount and constituents of the emissions from asphalt production depend on the type
of asphalt, additives and blending temperature [101]. The primary concern with CR mixes
is the results of incorporating CR in asphalt mixtures on the released emissions compared
to those released by conventional asphalt mixtures. The higher blending temperatures and
binder concentrations in CR asphalt production than traditional asphalt production released
higher emissions [102]. According to Yang et al. [102], adding CR to asphalt mixes resulted
in considerably higher pollutant emissions, particularly hazardous toluene emissions. A
contractor in Colorado responsible for developing and investigating the specifications
for rubberised asphalt for the 2006 paving season voiced their concerns about the wet or
dry methods because of the high levels of fumes and smoke released by their plants into
the environment during production. They decided against using the wet or dry method
because they were concerned about losing their state environmental certificates unless given
the assurance that their operating licences would not be revoked [103]. Burr et al. [104]
concluded that the risk of worker exposure to asphalt rubber could be worse than ordinary
asphalt mixes.

Unlike the manufacture and use of traditional asphalt mixes, CR does not contribute
to a marked increase in harmful emissions, such as greenhouse gases (GHG) [100–102].
Instead, CR asphalt could reduce greenhouse gas emissions [102], and the exposure to
emissions in asphalt rubber production was the same as in traditional asphalt production.
Moreover, compared to the effects of other factors, including the dryer’s fueling rate,
blending temperature, asphalt throughput rate and binder dosage [105], CR has minimal
impact on emissions. Zanetti et al. [106] contended that the toxic and carcinogenic hazard
in CR applications is similar to other asphalt mixes produced with original or polymer-
modified bitumen (PMB). Carbon dioxide (CO2) emissions are the main contributors
to global warming. Compared to gap-graded and open-graded mixtures, CR asphalt
applications can reduce 154 tonnes and 343 tonnes CO2 emission per lane mile [107]. It
is imperative to conduct more in-depth investigations to determine the type and amount
of emissions in CR asphalt technology. According to Carlson, the O2, N2, CO2 and SO2
emissions in CR asphalt production are similar to traditional asphalt, while the CO and
CH4 emissions are significantly lower [108]. Wang et al. [109] reported that the CO and
CH4 emissions from CR asphalt mixture manufacturing were much lower than ordinary
asphalt. Stout et al. [110] compared the greenhouse gases emitted after incorporating
CR into asphalt mix to those of unmodified asphalt mix. The O2, N2, CO2, NOx and
SO2 emissions from rubberised asphalt mix manufacturing were comparable to those of
unmodified asphalt mix. The production of rubberised asphalt mix released substantially
less CO and CH4 than the unmodified mix. The warm mix asphalt (WMA) technique
for manufacturing CR asphalt required lower blending and compaction temperatures
and released minimal emissions, besides performance advantages and energy provision.
Recent experiments employing WMA technology to incorporate CR required much lower
mixing and compaction temperatures, thus significantly reducing emissions during site
activities [111,112]. Figure 7 depicts the estimated emissions of greenhouse gases during
the production of rubberized asphalt and conventional asphalt mixtures.
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3.5. Energy Consumption

Several studies found that using CR in asphalt manufacturing reduced energy consump-
tion because it used fewer raw materials and had a longer service life. Farina et al. [113]
concluded that depending on the life cycle assessment (LCA), the net energy saving in the
CR manufacturing chain was 4236 MJ/t, equivalent to 43–46% lower energy consumption.
Sousa et al. [107] evaluated the energy consumption of CR asphalt and concluded that using
CR in asphalt modification could save energy. Antunes and Murachelli [114] reported a 47%
savings from the total energy consumption in the maintenance stage. Bartolozzi et al. [115]
observed that using CR in pavement reconstruction consumed about 33% less energy in
typical hot mixed asphalt treatments, while Zhu et al. [116] noted a slightly higher energy
consumption in asphalt rubber production than unmodified asphalt mixtures, but much
less than SBS-modified asphalt mixtures, as shown in Figure 8. Wang et al. [117] conducted
a comprehensive analysis of the energy consumption and environmental effects of using
CR on asphalt surfaces in each stage of their life cycles, including raw material extractions,
construction, service, maintenance and end of life. Extensive use of asphalt rubber ensures
a sustainable environment because of the reduced energy and raw material consumption,
lower GHG emissions and less noise from roadways. However, incorporating CR increased
bitumen viscosity, thus raising the mixing and compaction temperatures. In this case,
WMA technology could reduce the CR asphalt blending and compaction temperatures,
thus reducing the energy consumption in the manufacturing and construction stages. Re-
cent research explored incorporating additives, including waxes, to reduce the blending
temperature and energy consumption [118]. WMA technology could reduce the mixing
temperature of rubberised asphalt by 30 ◦C and fuel consumption by 20–25% [119]. Warm
mix agents reduced rubberised asphalt’s mixing and compaction temperatures [120]. Al-
loza et al. [121] produced WMA with CR that consumed 18% less energy than traditional
asphalt mixes. Pratico et al. [122] conducted a comparative analysis of bio-binders and
technologies employing rubberised asphalts in terms of their impact on the Global Energy
Requirement (GER). Their findings indicate that the use of mixtures containing crumb
rubber through the dry method has a substantially lower energetic (GER) footprint when
contrasted with the bio-binder solution, irrespective of the aggregate gradation employed.
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Figure 8. Energy consumption of various asphalt mixtures [116]. FBAR = Filed-blended asphalt
rubber; TBAR = Terminal-blended asphalt rubber.

3.6. Life Cycle Costs

When comparing the relative costs of pavement solutions, it is essential to consider
the related raw material and manufacturing plant costs and select the appropriate materials
when designing, developing and producing the rubber asphalt to achieve the required pave-
ment structure and drainage that ensures superior pavement performance. Dias et al. [123]
reported that the direct manufacturing costs for CR asphalt using the dry method were 20%
higher than the control asphalt, while the costs for the wet method were 26% higher than
traditional asphalt pavement. Hicks and Epps [124] found that the cost of rubber asphalt
mixtures could be twice the traditional asphalt. Volle [125] compared the cost of eleven CR
asphalt projects between 1991 and 1995 and found that nine projects cost more than the
traditional mixture, where the expenses for seven projects were 25% higher, one was 43%
higher, and another was 101% higher.

A previous study has proven that thin CR asphalt overlays cost 43% less than unmodi-
fied asphalt and increased pavement life by 10% [126]. Similarly, using CR asphalt instead
of unmodified mixtures improved performance while reducing pavement thickness by
50% [127].

The initial cost for producing a CR-modified mixture is lower than other premium-
modified mixes, such as polymer (SBS)-modified asphalt mixtures. The production cost
of SBS asphalt mixture is about $2280 per tonne, and, at present, it could be as high as
$4000 per tonne, while the estimated cost for CR asphalt mixture production is $380 per
tonne [128]. As a result, several states and organisations, including the Illinois Tollway,
Georgia DOT and Oklahoma DOT, have replaced SBS with CR to produce mixtures that
fulfil the performance requirements more economically while ensuring durability [129].

Figure 9 shows the maintenance and user cost trends for rubber asphalt and traditional
asphalt pavements. Even though the maintenance and user costs differ slightly after five
years, the differences were significant after ten years, where the maintenance cost for the tra-
ditional asphalt pavement was much higher, and the user cost began to differ considerably
after fifteen years. Data analysis showed that the user and maintenance costs for rubber
asphalt pavements were lower than for traditional pavements [130]. Cheng et al. [131]
investigated the cost-effectiveness of 126 rubber asphalt projects in 12 districts in Califor-
nia and concluded that most medium- to large-scale rubber asphalt paving projects were
more economical than traditional pavements. A recent investigation conducted by Riek-
stins et al. [132] determined that the utilisation of asphalt rubber in asphalt wearing courses
through the wet process with high viscosity results in higher expenses in comparison to
traditional asphalt wearing courses, assuming there is no extension in the service life of
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the pavement. Also, their findings indicate that for a pavement constructed using crumb
rubber-modified asphalt to be considered more sustainable in various sustainability aspects,
it must exhibit a prolonged service life of 2 to 4 years in each maintenance cycle when com-
pared to traditional asphalt for very thin layers, or stone mastic asphalt wearing courses.
CR asphalt, owing to its superior performance, necessitates fewer raw materials and less
mix production [133]. This results in lower costs when compared to traditional asphalt,
primarily due to reduced requirements for maintenance and rehabilitation interventions.
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A study by Wang et al. [134] proved that the total cost of the warm mix CR mixtures
for Evotherm-DAT and Aspha-Min were US$0.51 and US$0.48 lower, while those of the
warm mix CR mixtures for Vestenamer (TOR) and Sasobit increased US$7.2 and US$8.11,
respectively, compared to hot-mix asphalt. The typical production cost for hot-mix CR
mixture was US$105 to US$135 per metric tonne. The total cost for each metric tonne of CR
mixture, including various warm mix agents, could increase the total cost by 7.7% or reduce
the total costs by 0.5%, depending on the type of WMA additives. The current economic
projection for rubberised asphalt is critical to revitalising the transport infrastructure since
a significant percentage of pavement investments is for surface rejuvenation, such as
smoothness and skid resistance of existing roadways and airfield pavements. Local and
state authorities could optimise their expenses, carry out more pavement maintenance
each year and reduce the backlog of the pavements requiring maintenance service by using
rubberised asphalt. Motorists would also benefit from lower vehicle maintenance and fuel
expenses due to better driving on smoother road surfaces [129].

4. Conclusions and Future Research
4.1. Conclusions

This paper has summarised the procedures and technological advancements for
adding crumb rubber to asphalt mixtures to encourage comprehensive examinations of
the critical CR asphalt parameters, including production variables, particle size and con-
tent, blending method, optimum bitumen content, morphology, standard characteristics,
rheological characteristics, mechanical performance, greenhouse gas emissions, energy
consumption and life cycle cost. The conclusions drawn from the literature review of
previous studies are as follows.

- CR is produced through ambient mechanical grinding or cryogenic grinding, where
ambient mechanical grinding is more cost-effective and widely used.

- The recommended CR content for the wet method is 10% of the binder weight without
additives and up to 30% with additives. For the dry method, the recommended CR
content is 1.5% of the mixture weight without additives and up to 3% with additives.

- Adding CR may increase the optimal bitumen content slightly because the CR particles
absorb some bitumen constituents.

- Even though CR increases asphalt viscosity, it can be mitigated with additives, such
as warm mix asphalt (WMA) additives or rejuvenators.

- CR improves the physical properties of asphalt mixtures, for example, by reducing
the penetration and viscosity values and increasing the softening values. It enhances
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the rheological properties by increasing stiffness and rutting resistance and reducing
the phase angle.

- Rubberised asphalt production emits similar levels of O2, N2, CO2, NOx and SO2
as unmodified asphalt but less CO and CH4. Rubberised asphalt ensures superior
functional and structural performance during rehabilitation and less adverse environ-
mental impacts.

- Asphalt rubber has energy-saving benefits throughout its lifecycle through lower
energy consumption during construction and maintenance.

- Considering the costs for manufacturing materials, construction, maintenance and
rehabilitation, CR asphalt pavement is more economical than traditional pavement.

4.2. Future Research

Researchers have demonstrated the better energy savings, life cycle costs and envi-
ronmental benefits of rubberised asphalt in the industry. However, many areas of the
CR asphalt applications and research gaps require further investigations. The authors
recommend further research in the following areas.

• Comprehensive investigations and quantitative analyses to determine the energy
consumption patterns of asphalt rubber during construction, recycling and service life.

• An in-depth examination and quantitative evaluation of the costs associated with
rubberised asphalt construction, service life and recycling.

• A quantitative appraisal of the environmental implications of recycling rubberised
asphalt materials.

• Case studies and analyses to explore various asphalt mixtures, including rubberised
asphalt containing SBS-modified components, WMA additives, rejuvenating agents
and nano and waste constituents.
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