Spatiotemporal Distribution Characteristics and Their Driving Forces of Ecological Service Value in Transitional Geospace: A Case Study in the Upper Reaches of the Minjiang River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Data Source
2.3. Methods
2.3.1. Calculation of ESV Based on InVEST
- (1)
- Calculation of Carbon Storage Value
- (2)
- Calculation of Water Conservation Value
- (3)
- Calculation of Soil Conservation Value
- (4)
- Ecosystem Service Value
2.3.2. Analysis of Global Moran’s I
2.3.3. Analysis of Getis-Ord Gi*
2.3.4. Geo-Detector
3. Analysis and Results
3.1. Ecological Service Value in the Upper Reaches of the Minjiang River, China
3.2. Analysis of the Spatiotemporal Distribution Characteristics of ESV
3.3. Driving Forces Analysis of ESV Spatial Variations
3.3.1. Single Factor Detection
3.3.2. Exploration of the Interplay between Factors Underlying Spatial Variations in ESV
4. Discussion
5. Conclusions
- (1)
- From 2010 to 2020, the ESV in the study area increased from USD 13 billion to USD 17 billion, showing a general upward trend. This increase in ESV is mainly due to improvements in the value of soil and water conservation, while the value of carbon stock contributes little to this phenomenon. ESV generally presents a spatial distribution trend of ‘low in the north and high in the south’. The ESV in the upstream areas of Zhenjiangguan and Xiaoxinggou watershed is low, while the ecosystem service value in the Heishui River, Zagunao River, and Yuzi Creek watershed is relatively high;
- (2)
- ESV features intense spatial clustering. The ESV is obviously high in three places: the Heishui River basin, the Zagunao River basin, and the Mao County in the upper reaches of the Minjiang River–Dujiangyan City area. There is also one area in the north of Songpan County and the northwest of Heishui County where the ESV is visibly low;
- (3)
- The spatial variations in ESV in the upper reaches of the Minjiang River are the result of both natural and social factors. Here, slope is the main factor causing spatial variations in ESV. The driving force of all factors on ESV after interplay is greater than that of a single factor, and the interplay between slope and HAI has the greatest impact on ESV. The key factors causing the spatial variations in ESV vary from place to place. Natural factors affect the spatial variation of ESV in the study area, and socio-economic factors will further change ecosystem services. Therefore, continuous progress should be made in the ecological protection and restoration of the upper reaches of the Minjiang River by enhancing land use management and the stability of the ecosystem.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Zhou, D.M.; Ma, J.; Dang, R.; Ma, J.J.; Zhu, X.Y. Temporal and spatial variation of carbon storage in the Shule River Basin based on In VEST model. Acta Ecol. Sin. 2021, 41, 4052–4065. [Google Scholar] [CrossRef]
- Sediqi, M.N.; Shiru, M.S.; Nashwan, M.S.; Ali, R.; Abubaker, S.; Wang, X.J.; Ahmed, K.; Shahid, S.; Asaduzzaman, M.; Manawi, S.M.A. Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan. Sustainability 2019, 11, 5836. [Google Scholar] [CrossRef]
- Liu, X.R.; Sun, T.; Feng, Q. Dynamic spatial spillover effect of urbanization on environmental pollution in China considering the inertia characteristics of environmental pollution. Sustain. Cities Soc. 2020, 53, 101903. [Google Scholar] [CrossRef]
- Shi, D.M.; Wang, W.L.; Jiang, G.Y.; Peng, X.D.; Yu, Y.L.; Li, Y.X.; Ding, W.B. Effects of disturbed landforms on the soil water retention function during urbanization process in the Three Gorges Reservoir Region, China. Catena 2016, 144, 84–93. [Google Scholar] [CrossRef]
- Chen, Y.X.; Huang, B.Y.; Zeng, H. How does urbanization affect vegetation productivity in the coastal cities of eastern China? Sci. Total Environ. 2022, 811, 152356. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of ecosystem service value method based on unit area value equivalent factor. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Richardson, L.; Loomis, J.; Kroeger, T.; Casey, F. The role of benefit transfer in ecosystem service valuation. Ecol. Econ. 2015, 115, 51–58. [Google Scholar] [CrossRef]
- Zhong, J.T.; Wang, B.; Mi, W.b.; Fan, X.G.; Yang, M.L.; Yang, X.M. Spatial recognition of ecological compensation standard for grazing grassland in Yanchi County based on In VEST model. Sci. Geogr. Sin. 2020, 40, 1019–1028. [Google Scholar] [CrossRef]
- Hu, M.M.; Li, Z.T.; Wang, Y.F.; Jiao, M.Y.; Li, M.X.; Bei, C. Spatio-temporal changes in ecosystem service value in response to land-use/ cover changes in the Pearl River Delta. Resour. Conserv. Recycl. 2019, 149, 106–114. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabo, G. Impact of Land Use and Land Cover Changes on Urban Ecosystem Service Value in Dhaka, Bangladesh. Land 2021, 10, 793. [Google Scholar] [CrossRef]
- He, Z.Q.; Shang, X.; Zhang, T.H.; Yun, J.Y. Coupled regulatory mechanisms and synergy/trade-off strategies of human activity and climate change on ecosystem service value in the loess hilly fragile region of northern Shaanxi, China. Ecol. Indic. 2022, 143, 109325. [Google Scholar] [CrossRef]
- Li, T.; Jia, B.Q.; Liu, W.R.; Zhang, Q.M. Spatial pattern of ecological land stability analysis and influencing factor in Beijing-Tianjin-Hebei Region. Acta Ecol. Sin. 2022, 42, 9927–9944. [Google Scholar] [CrossRef]
- Liu, J.F.; Chen, L.; Yang, Z.H.; Zhao, Y.F.; Zhang, X.W. Unraveling the Spatio-Temporal Relationship between Ecosystem Services and Socioeconomic Development in Dabie Mountain Area over the Last 10 years. Remote Sens. 2022, 14, 1059. [Google Scholar] [CrossRef]
- Li, W.S.; Wang, L.Q.; Yang, X.; Liang, T.; Zhang, Q.; Liao, X.Y.; White, J.R.; Rinklebe, J. Interactive influences of meteorological and socioeconomic factors on ecosystem service values in a river basin with different geomorphic features. Sci. Total Environ. 2022, 829, 154595. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, Q.; Wang, P.; Zhang, L.; Tian, Y.Q.; Li, X.R. Spatio-Temporal Changes in Ecosystem Service Value and Its Coordinated Development with Economy: A Case Study in Hainan Province, China. Remote Sens. 2022, 14, 970. [Google Scholar] [CrossRef]
- Yang, L.; Liu, F.L. Spatio-Temporal Evolution and Driving Factors of Ecosystem Service Value of Urban Agglomeration in Central Yunnan. Sustainability 2022, 14, 10823. [Google Scholar] [CrossRef]
- Long, X.R.; Lin, H.; An, X.X.; Chen, S.D.; Qi, S.Y.; Zhang, M. Evaluation and analysis of ecosystem service value based on land use/cover change in Dongting Lake wetland. Ecol. Indic. 2022, 136, 108619. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, S.Y.; Zhang, H.; Peng, L.; Liu, Y. Transitional geospace from the perspective of human-nature coupling: Concept, connotations, attributes, and the research framework. Geogr. Res. 2020, 39, 761–771. [Google Scholar] [CrossRef]
- Liu, S.; Costanza, R.; Farber, S.; Troy, A. Valuing ecosystem services theory, practice, and the need for a transdisciplinary synthesis. Ann. N. Y. Acad. Sci. 2010, 1185, 54–78. [Google Scholar] [CrossRef] [PubMed]
- Kubiszewski, I.; Costanza, R.; Anderson, S.; Sutton, P. The future value of ecosystem services: Global scenarios and national implications. Ecosyst. Serv. 2017, 26, 289–301. [Google Scholar] [CrossRef]
- Mehring, M.; Zajonz, U.; Hummel, D. Social-Ecological Dynamics of Ecosystem Services: Livelihoods and the Functional Relation between Ecosystem Service Supply and Demand-Evidence from Socotra Archipelago, Yemen and the Sahel Region, West Africa. Sustainability 2017, 9, 1037. [Google Scholar] [CrossRef]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Yasuda, H.; Shimizu, K.; Kawai, T.; Ebabu, K.; Berihun, M.L.; Sultan, D.; et al. Cropland expansion outweighs the monetary effect of declining natural vegetation on ecosystem services in sub-Saharan Africa. Ecosyst. Serv. 2020, 45, 101154. [Google Scholar] [CrossRef]
- Wang, X.C.; Dong, X.B.; Liu, H.M.; Wei, H.J.; Fan, W.G.; Lu, N.C.; Xu, Z.H.; Ren, J.H.; Xing, K.X. Linking land use change, ecosystem services and human well-being: A case study of the Manas River Basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W.; Tolessa, T.; Kindu, M. Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia. Ecosyst. Serv. 2018, 31, 219–228. [Google Scholar] [CrossRef]
- Shrestha, B.; Ye, Q.H.; Khadka, N. Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas. Sustainability 2019, 11, 3183. [Google Scholar] [CrossRef]
- Ricaurte, L.F.; Olaya-Rodriguez, M.H.; Cepeda-Valencia, J.; Lara, D.; Arroyave-Suarez, J.; Finlayson, C.M.; Palomo, I. Future impacts of drivers of change on wetland ecosystem services in Colombia. Glob. Environ. Chang.-Hum. Policy Dimens. 2017, 44, 158–169. [Google Scholar] [CrossRef]
- Akhtar, M.; Zhao, Y.Y.; Gao, G.L.; Gulzar, Q.; Hussain, A. Assessment of spatiotemporal variations of ecosystem service values and hotspots in a dryland: A case-study in Pakistan. Land Degrad. Dev. 2022, 33, 1383–1397. [Google Scholar] [CrossRef]
- Zhang, P.P.; Li, X.; Yu, Y. Relationship between ecosystem services and farmers’ well-being in the Yellow River Wetland Nature Reserve of China. Ecol. Indic. 2023, 146, 109810. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Jing, Y.Q. Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.F.; Fang, C.L.; Zhu, C.; Gao, Q. Ecosystem service trade-offs and identification of eco-optimal regions in urban agglomerations in arid regions of China. J. Clean. Prod. 2022, 373, 133823. [Google Scholar] [CrossRef]
- Daigneault, A.; Strong, A.L.; Meyer, S.R. Benefits, costs, and feasibility of scaling up land conservation for maintaining ecosystem services in the Sebago Lake watershed, Maine, USA. Ecosyst. Serv. 2021, 48, 101238. [Google Scholar] [CrossRef]
- Pan, Z.Z.; He, J.H.; Liu, D.F.; Wang, J.W.; Guo, X.N. Ecosystem health assessment based on ecological integrity and ecosystem services demand in the Middle Reaches of the Yangtze River Economic Belt, China. Sci. Total Environ. 2021, 774, 144837. [Google Scholar] [CrossRef]
- Zhang, J.F.; Sun, J.; Ma, B.B.; Du, W.P. Assessing the ecological vulnerability of the upper reaches of the Minjiang River. PLoS ONE 2017, 12, e0181825. [Google Scholar] [CrossRef]
- Liu, M.; Hu, Y.M.; Chang, Y.; He, X.Y.; Zhang, W. Land Use and Land Cover Change Analysis and Prediction in the Upper Reaches of the Minjiang River, China. Environ. Manag. 2009, 43, 899–907. [Google Scholar] [CrossRef]
- Ding, H.R.; Li, Y.; Shao, C.J.; Svirchev, L.; Xu, Q.; Yan, Z.K.; Yan, L.; Ni, S.J.; Shi, Z.M. Mechanism of post-seismic floods after the Wenchuan earthquake in the upper Minjiang River, China. J. Earth Syst. Sci. 2017, 126, 96. [Google Scholar] [CrossRef]
- Zhang, W.G.; Hu, Y.M.; Hu, J.C.; Yu, C.; Jing, Z.; Miao, L. Impacts of land-use change on mammal diversity in the upper reaches of Minjiang River, China: Implications for biodiversity conservation planning. Landsc. Urban Plan. 2008, 85, 195–204. [Google Scholar] [CrossRef]
- Xiong, Y.L.; Wang, H.L. Spatial relationships between NDVI and topographic factors at multiple scales in a watershed of the Minjiang River, China. Ecol. Inform. 2022, 69, 101617. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Y.F.; Ouyang, Z.Y.; Luo, Y.C. Progress and perspectives of ecosystem services management. Acta Ecol. Sin. 2013, 33, 0702–0710. [Google Scholar] [CrossRef]
- Canu, D.M.; Ghermandi, A.; Nunes, P.A.L.D.; Lazzari, P.; Cossarini, G.; Solidoro, C. Estimating the value of carbon sequestration ecosystem services in the Mediterranean Sea: An ecological economics approach. Glob. Environ. Chang. 2015, 32, 87–95. [Google Scholar] [CrossRef]
- Chu, X.; Zhan, J.; Li, Z.; Zhang, F.; Wei, Q. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod. 2019, 215, 382–389. [Google Scholar] [CrossRef]
- Liu, M.; Hao, R.; Han, L.; Zhou, G.; Li, L. An integrated economic-ecological index based on satellite-derived carbon sequestration and carbon price: A case study during 2015–2020 in Shaanxi, China. Ecol. Indic. 2023, 153, 110458. [Google Scholar] [CrossRef]
- Li, M.Y.; Liang, D.; Xia, J.; Song, J.X.; Cheng, D.D.; Wu, J.T.; Cao, Y.L.; Sun, H.T.; Li, Q. Evaluation of Water Conservation Function of Danjiang River Basin in Qinling Mountains, China Based on InVEST Model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef]
- Du, H.Q.; Yu, S.; Zhang, P.T.; Zhang, L.L. Assessing payment for ecosystem services based on water retention value flow in Beijing-Tianjin-Hebei region. Acta Ecol. Sin. 2022, 42, 9871–9885. [Google Scholar] [CrossRef]
- Xu, W.X.; Wang, H.Y.; Bao, Y.H.; Cong, P.J.; Li, J.L. Evaluation of Service Value of Soil and Water Conservation Function in Nanbu County, Sichuan Province. Ecol. Econ. 2019, 35, 181–185. [Google Scholar]
- Liu, S.L.; Fu, B.J.; Ma, K.M.; Liu, G.H. Effects of vegetation types and landscape features on soil properties at the plateau in the upper reaches of Minjiang River. Chin. J. Appl. Ecol. 2004, 15, 26–30. [Google Scholar] [CrossRef]
- Li, Y.Q.; Feng, Z.K.; Han, L.B.; Liu, R.X.; Deng, O.; Han, D.L.; Fu, J.C. Value Evaluation of Benefits of Soil Conservation to the Ecosystem of Danjiangkou Reservoir Basin and Upstream. China Popul. Resour. Environ. 2010, 20, 64–69. [Google Scholar] [CrossRef]
- Xiang, M.S.; Yang, J.; Li, W.H.; Song, Y.T.; Wang, C.J.; Liu, Y.; Liu, M.L.; Tan, Y.X. Spatiotemporal Evolution and Simulation Prediction of Ecosystem Service Function in the Western Sichuan Plateau Based on Land Use Changes. Front. Environ. Sci. 2022, 10, 890580. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Ecol. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Chen, T.T.; Huang, Q.; Wang, Q. Differentiation characteristics and driving factors of ecosystem services relationships in karst mountainous area based on geographic detector modeling: A case study of Guizhou Province. Acta Ecol. Sin. 2023, 42, 6959–6972. [Google Scholar] [CrossRef]
- Jing, H.C.; Liu, Y.H.; He, P.; Zhang, J.Q.; Dong, J.Y.; Wang, Y. Spatial heterogeneity of ecosystem services and it’s influencing factors in typical areas of the Qinghai-Tibet Plateau: A case study of Nagqu City. Acta Ecol. Sin. 2022, 42, 2657–2673. [Google Scholar] [CrossRef]
- Wang, B.; Pan, K. Analysis of the landscape pattern and ecological security of Yinchuan City from 1980 to 2018. J. Lanzhou Univ. Nat. Sci. 2022, 58, 27–38. [Google Scholar] [CrossRef]
- Xiang, M.S.; Wang, C.J.; Tan, Y.X.; Yang, J.; Duan, L.S.; Fan, Y.N.; Li, W.H.; Shu, Y.; Liu, M.L. Spatio-temporal evolution and driving factors of carbon storage in the Western Sichuan Plateau. Sci. Rep. 2022, 12, 8114. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.L.; Peng, W.F.; Tao, S.; Zhu, C.; Xu, X.L. Dynamic changes of land use and ecosystem services value in the upper reaches of the Minjiang River. Acta Ecol. Sin. 2021, 41, 6384–6397. [Google Scholar] [CrossRef]
- Duan, L.S.; Shao, H.Y.; Xiang, M.S.; Wang, H.; Wang, C.J.; Mei, H.; Tan, Y.X.; Yang, X.F. Spatiotemporal Relationship between Ecosystem Service Value and Ecological Risk in Disaster-Prone Mountainous Areas: Taking the Upper Reaches of the Minjiang River as an Example. J. Environ. Public Health 2022, 2022, 1462237. [Google Scholar] [CrossRef]
- Deng, B.; Shi, L. Remote Sensing Quantitative Research on Soil Erosion in the Upper Reaches of the Minjiang River. Front. Earth Sci. 2022, 10, 930535. [Google Scholar] [CrossRef]
- Zuo, D.P.; Chen, G.; Wang, G.Q.; Xu, Z.X.; Han, Y.; Peng, D.Z.; Pang, B.; Abbaspour, K.C.; Yang, H. Assessment of changes in water conservation capacity under land degradation neutrality effects in a typical watershed of Yellow River Basin, China. Ecol. Indic. 2023, 148, 110145. [Google Scholar] [CrossRef]
- Yao, K.; Zhou, B.; He, L.; Liu, B.; Luo, H.; Liu, D.L.; Li, Y.X. Changes in Soil Erosion in the Upper Reaches of the Minjiang River Based on Geo-Detector. Res. Soil Water Conserv. 2022, 29, 85–91. [Google Scholar] [CrossRef]
- Yu, E.X.; Zhang, M.F.; Jiang, Z.W.; Xu, Y.L.; Deng, S.Y. Spatiotemporal Dynamics of Soil Erosion and Associated Influencing Factors in the Upper Minjiang River Watershed. Res. Soil Water Conserv. 2023, 30, 1–10+17. [Google Scholar] [CrossRef]
- Song, F.; Su, F.L.; Mi, C.X.; Sun, D. Analysis of driving forces on wetland ecosystem services value change: A case in Northeast China. Sci. Total Environ. 2021, 751, 141778. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.C.; Zhao, Y.L.; Huang, J.L.; Wang, S.Q. Analysis of Spatial-Temporal Differentiation and Influencing Factors of Ecosystem Services in Resource-Based Cities in Semiarid Regions. Remote Sens. 2023, 15, 871. [Google Scholar] [CrossRef]
- Luo, Q.L.; Zhou, J.F.; Li, Z.G.; Yu, B.L. Spatial differences of ecosystem services and their driving factors: A comparation analysis among three urban agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.G.; Liao, Y.S.; Wang, Q.; Zou, Q. Eco-security Assessment of Minority Poor Areas in Upper Reaches of Min River from Eco-tourism Standpoint View. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 189–195. [Google Scholar] [CrossRef]
- Costanza, R. Ecosystem services: Multiple classification systems are needed, Letter to Editor. Biol. Conserv. 2008, 141, 350–352. [Google Scholar] [CrossRef]
The Data Source | Type | Resolution | Year | Data Source |
---|---|---|---|---|
DEM | Raster | 30 m | - | http://www.geodata.cn, (accessed on 12 December 2022) |
Administrative boundaries | Vector | - | 2020 | http://www.geodata.cn, (accessed on 25 October 2022) |
Land use | Raster | 30 m | 2000, 2005, 2010, 2015, 2020 | http://www.resdc.cn, (accessed on 25 October 2022) |
Potential evapotranspiration decreases | Raster | 1 km | 2000, 2005, 2010, 2015, 2020 | http://www.geodata.cn/, (accessed on 5 January 2023) |
soil dataset | Raster | 1 km | 2014 | https://data.tpdc.ac.cn/, (accessed on 5 January 2023) |
Temperature | Raster | 1 km | 2000, 2005, 2010, 2015, 2020 | http://www.geodata.cn/, (accessed on 10 March 2023) |
Average annual rainfall | Raster | 1 km | 2000, 2005, 2010, 2015, 2020 | http://www.geodata.cn/, (accessed on 10 March 2023) |
Annual average temperature | Raster | 1 km | 2000, 2005, 2010, 2015, 2020 | http://www.geodata.cn/, (accessed on 10 March 2023) |
NDVI | Raster | 30 m | 2000, 2005, 2010, 2015, 2020 | http://www.resdc.cn/, (accessed on 11 March 2023) |
Per kilometer of GDP spatial distribution (GDP) | Raster | 1 km | 2000, 2005, 2010, 2015, 2020 | https://www.resdc.cn/, (accessed on 11 March 2023) |
Per kilometer of population spatial distribution (PD) | Raster | 1 km | 2000, 2005, 2010, 2015, 2020 | http://www.ornl.gov/sci/landscan/, (accessed on 11 March 2023) |
Other socio-economic data | Text | - | 2000, 2005, 2010, 2015, 2020 | Sichuan Statistical Yearbook, A BA Prefecture Yearbook, and National Economic and Statistical Communiqué of the People’s Republic of China on the National Economic and Social Development |
Z Score | The Value of p | Level of Confidence |
---|---|---|
<−1.65 or >+1.65 | <0.10 | 90% |
<−1.96 or >+1.96 | <0.05 | 95% |
<−2.58 or >+2.58 | <0.01 | 99% |
The Basis for Judging | Result Types of the Interplay between Two Factors |
---|---|
q(x1∩x2) < min(q(x1), q(x2)) | Nonlinear Weakening Trend |
min(q(x1), q(x2)) < q(x1∩x2) < max(q(x1), q(x2)) | Nonlinear Weakening Trend with One Factor |
q(x1∩x2) > max(q(x1), q(x2)) | Increasing Trend with Two Factors |
q(x1∩x2) = q(x1) + q(x2) | No Mutual Interference |
q(x1∩x2) > q(x1) + q(x2) | Nonlinear Increasing Trend |
Year | 2000 | 2005 | 2010 | 2015 | 2020 | Changes in 2000–2020 |
---|---|---|---|---|---|---|
Carbon Stock/Billion USD | 6.131 | 6.130 | 6.132 | 6.131 | 6.128 | −0.0026 |
Water Conservation/Billion USD | 1.631 | 1.837 | 1.910 | 1.697 | 2.120 | 0.489 |
Soil Conservation/Billion USD | 5.275 | 5.297 | 7.308 | 6.703 | 8.867 | 3.592 |
ESV/Billion USD | 13.036 | 13.264 | 15.350 | 14.530 | 17.114 | 4.078 |
Factors | qVC Statistic | qVw Statistic | qVS Statistic | qESV Statistic | |
---|---|---|---|---|---|
Natural factors | Slope (X1) | 0.11 | 0.037 | 0.333 | 0.309 |
Rainfall (X2) | 0.099 | 0.229 | 0.045 | 0.04 | |
Temperature (X3) | 0.189 | 0.402 | 0.29 | 0.11 | |
NDVI (X4) | 0.18 | 0.214 | 0.1 | 0.058 | |
Elevation (X5) | 0.203 | 0.385 | 0.31 | 0.13 | |
Socio-economic factors | Urbanization rate (X6) | 0.027 | 0.039 | 0.224 | 0.168 |
GDP (X7) | — | 0.032 | 0.171 | 0.093 | |
HAI (X8) | 0.542 | 0.164 | 0.173 | 0.197 | |
SPIO-GDP (X9) | 0.023 | — | 0.107 | 0.104 | |
PD (X10) | — | 0.051 | 0.113 | 0.052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, F.; Xiang, M.; Deng, L.; Wang, Y.; Li, W.; Yang, S.; Wu, Z. Spatiotemporal Distribution Characteristics and Their Driving Forces of Ecological Service Value in Transitional Geospace: A Case Study in the Upper Reaches of the Minjiang River, China. Sustainability 2023, 15, 14559. https://doi.org/10.3390/su151914559
Wei F, Xiang M, Deng L, Wang Y, Li W, Yang S, Wu Z. Spatiotemporal Distribution Characteristics and Their Driving Forces of Ecological Service Value in Transitional Geospace: A Case Study in the Upper Reaches of the Minjiang River, China. Sustainability. 2023; 15(19):14559. https://doi.org/10.3390/su151914559
Chicago/Turabian StyleWei, Fengran, Mingshun Xiang, Lanlan Deng, Yao Wang, Wenheng Li, Suhua Yang, and Zhenni Wu. 2023. "Spatiotemporal Distribution Characteristics and Their Driving Forces of Ecological Service Value in Transitional Geospace: A Case Study in the Upper Reaches of the Minjiang River, China" Sustainability 15, no. 19: 14559. https://doi.org/10.3390/su151914559
APA StyleWei, F., Xiang, M., Deng, L., Wang, Y., Li, W., Yang, S., & Wu, Z. (2023). Spatiotemporal Distribution Characteristics and Their Driving Forces of Ecological Service Value in Transitional Geospace: A Case Study in the Upper Reaches of the Minjiang River, China. Sustainability, 15(19), 14559. https://doi.org/10.3390/su151914559