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Abstract: The platform–train interface (PTI) is considered a complex space where most interactions
occur between passengers boarding and alighting. These interactions are critical under crowded
conditions, affecting the experience of traveling and therefore the quality of life. The problem is that
urban railway operators do not know what the density at the PTI is in real time, and therefore it
is not possible to obtain a measure of the personal space of passengers boarding and alighting the
train. To address this problem, a new method is developed to estimate the density of passengers on
urban railway platforms using laboratory experiments. In those experiments, the use of computer
vision is attractive, through the training of neural networks and image processing. The experiments
considered a mock-up of a train carriage and its adjacent platform. In the boarding process, the
results showed that the density using Voronoi polygons reached up to a 300% difference compared
to the average values of density using Fruin’s Level of Service. However, in the case of alighting,
that difference reached about 142% due to the space available for wheelchair users who needed
assistance. These results would help practitioners to know where passengers are located at the PTI
and, therefore, which part of the platform is more congested, requiring the implementation of crowd
management measures in real time. Further studies need to include other types of passengers and
different situations in existing stations.

Keywords: passenger; platform–train interface; density; boarding and alighting; Voronoi polygons;
computer vision

1. Introduction

In the last years, different urban railway platforms have been reaching high levels
of density, affecting the experience of traveling and therefore the quality of life [1]. For
example, in the case of Chile, the Metro de Santiago reached more than 2.5 million trips per
day (i.e., about 700 million passengers per year), in which the platform–train interface (PTI)
is perceived as the space where more interactions occur [2–6]. Likewise, in the case of other
train systems in the world such as the UK railway network, each year there are more than
3 billion interactions, and half of the fatality risks for passengers occur on platforms, being
complex spaces that present different risks and dangers for passengers [7,8].

In situations with high passenger flows, e.g., densities greater than 5 passengers per
square meter at the PTI, the efficiency and safety of the entire system are affected [9].
Regarding efficiency, for high-frequency services, the dwell time of a train in the station
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is the main component of station capacity, which is related to passenger behavior [10,11].
From a safety point of view, an increase in passenger density can cause accidents at the
PTI. For passengers with reduced mobility, such as wheelchair users, the PTI is a complex
space due to safety reasons, for which a strategy is needed to reduce accidents and improve
the travel experience [12–14]. Passengers can be trapped, fall onto the tracks, or stumble
aboard trains, sustaining injuries [15,16].

To improve efficiency and safety at the PTI, public transport operators can activate
crowd management measures (e.g., the platform is closed), and passengers are contained in
an earlier stage (e.g., at turnstiles, ticket offices, or outside the station at street level) [2–4].
Moreover, due to COVID-19, crowd management measures have been implemented [17,18].
In the case of the Metro de Santiago, Fruin’s Level of Service (LOS) is used [10,11,19] to
classify the level of congestion at the PTI, in which different types of passengers are needed
to be included [20]. The congestion at the PTI depends mainly on the time getting on and
off, the number of passengers getting on and off, and the time of opening and closing the
doors [10,11]. According to Aashtiani and Irvani [21], the congestion at the PTI is affected
by the number of doors, the vehicle load factor, and the method of charging fees. Similarly,
Harris [22], based on the London Underground, identified that the congestion at the PTI
depends on the time required to open and close doors, the number of doors per vehicle, the
door width, the number of passengers boarding, the number of passengers getting off, and
the number of seats per vehicle, among other factors.

In addition, the congestion at the PTI is influenced by passenger density and vehicle
and platform layout. According to Harris [22], if there are few passengers, passengers
have enough space to get on and off simultaneously. However, when there is a crowded
situation, passengers will wait until the alighting is complete or until there is a space
available to board the vehicle. Other studies presented by Wiggenraad [23] suggest that
wider doors decreased the congestion at the PTI. However, the relationship between door
capacity and door width appears to be nonlinear. This is also supported by Heinz [24]
who studied the difference in height between the train and the platform and found that the
congestion increased when the number of steps increased. No problems were observed
when the horizontal distance between the train and the platform was less than 5 cm;
however, problems were observed for the passengers when this distance reached a value
greater than 15 cm.

More recent studies [25] indicate that congestion at the PTI is a function of the fare
collection system, the type of passengers, and the amount of crowding situation, among
other factors. Surveys have been conducted by Currie et al. [26], in which the congestion
was found to be influenced by the number of passengers on board (congestion inside
the vehicle). Christoforou et al. [27] studied this congestion using data collected from
an automatic passenger counting system on board urban light rail systems. The authors
state that the volumes of boarding passengers, alighting passengers, and passengers on
board affect the LOS, as well as vehicle design (e.g., low floor), time of day, and station
location. Li et al. [28] proposed a model for Dutch railway stations when the demand for
passengers getting on and off is not available on real-time. In the case of metro services,
D’Acierno et al. [29] reported a new methodology based on crowding on platforms and the
behavior of passengers getting on and off. Furthermore, Yazdani et al. [30] established that
the allocation of seats could affect the congestion in rail systems. Moreover, in the case of
delays and queues in stations caused by the excessive time taken by vehicles completing
their electric charge or visual inspection, Ullah et al. [31] proposed to include precise
planning in which knowing the availability at the station to reduce congestion is required.

Although there are important advances in the literature, these models and field obser-
vation approaches are based on existing stations, which limits the analysis only to the trains
and platforms that currently exist, without being able to know the density of passengers
at the PTI in real-time and, therefore, only through observation can the congestion be
estimated, as for when it might be necessary to activate a crowd management measure.
This visual inspection method makes it impossible to generate measurements in a standard-
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ized and automated way, depending on each inspection and the interpretation of what is
observed. Furthermore, the effect of these measures on the density (i.e., the inverse of the
personal space) is unknown, and therefore their impact on passenger behavior is not quanti-
fied for different types of passengers. For example, when wheelchair users are boarding the
train, there is an additional time required for the opening and closing of doors, the time to
unfold and retract ramps, and the additional time it takes for each wheelchair user to reach
a reserved area inside the vehicle, which is not necessarily included in current models.

To address the above problem, a new method is developed to estimate the density of
passengers waiting to board urban railway platforms by means of laboratory experiments,
which is the main objective of this study. The specific objectives are: (a) define the exper-
imental set-up to represent a carriage of a train and its adjacent platform; (b) define the
parameters to detect passengers boarding and alighting; (c) develop a method to estimate
the density of passengers using Voronoi polygons; (d) evaluate the errors and the density
obtained using the method compared to the LOS.

The structure of the paper is divided into five sections. In Section 2, different studies
of passenger interaction in the process of boarding and alighting urban railway systems
are reported. Next, in Section 3, the experimental method is described. In Section 4, the
results are analyzed, followed by the conclusions in Section 5.

2. Passengers’ Interaction in the Boarding and Alighting Process

To address the problem presented by models and field observations, different studies
based on full-scale experiments have allowed the testing of different station configurations
to reduce congestion and improve efficiency and safety at the PTI. Regarding the interface
design, Fernández et al. [32], in the Pedestrian Accessibility Movement Environment
Laboratory (PAMELA) of the University of London, reported that congestion depends
not only on the number of passengers getting on and off but also on the platform height,
the width of the door, the method of fees collection, internal vehicle design, and vehicle
occupancy. Another experiment conducted by Rudloff et al. [33] showed that the congestion
decreased as the width of the door increased.

According to Holloway et al. [34], the use of steps has also been shown to affect the
congestion at the PTI, in which the passengers getting on took longer (4.13 s on average)
than those who get off (3.68 s on average). Recently, some authors [2,35] reported in
PAMELA that the use of platform edge doors does have an important impact on the
congestion of passengers, influenced by other variables such as the formation of flow lines,
distribution of passengers, the distance between passengers, and the speed and space
used by each passenger. To reduce the congestion, Seriani and Fernandez [3] reported
that a rectangular area should be used in front of train doors as a “keep-out zone” to
prevent passenger boarding from being an obstacle for those who are alighting. These
authors concluded that the experimentation allowed the testing of different designs for
the vehicle–platform interface based on existing stations, where a single variable changes
while the rest of the variables (for example, light, sound, information, physical design, etc.)
remains the same. In this way, laboratory experimentation makes it possible to control the
variables and to use computer vision tools for pedestrian study.

To measure the interaction at the PTI, Shen [36] proposed two main areas: circula-
tion and waiting zones. Both areas have their own characteristics and functionality for
passengers. Passengers in the waiting areas behave differently from those who are in the
circulation zone. For Wu and Ma [37], there are two main types of interaction between
passengers who are waiting: queuing or clustering to the side or in front of the train
doors. One of the main variables, which is common in both types of interaction, is personal
space. As reported in the HCM [10,11], in any standing area (e.g., PTI), a pedestrian can be
represented as an ellipse of area 0.30 m2 comprising a body depth of 50 cm and a shoulder
breadth of 60 cm [19]. However, when the pedestrian starts to walk, this area increases to
0.75 m2 because there is extra space used for leg and arm movements [38]. In the presence of
obstacles, Gérin-Lajoie et al. [39] reported that pedestrians need a space represented by an
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ellipse of area 0.96 m wide by 2.11 m deep, which is smaller when overtaking a static versus
a moving obstacle. In addition, Gérin-Lajoie et al. [40] demonstrated that this space can
be asymmetrical in shape and side (left and right) during the circumvention of a cylinder
(or column) as an obstacle, in which the longitudinal axis of the ellipse is related to the
speed. These studies are related to the concept of the sensory zone, which is “the distance
a person tries to maintain between the body and other parts of the environment, so there
will always be enough time to perceive, evaluate, and react to approaching hazards” [41].
For example, for a normal walking speed, the sensor zone can be estimated as an elliptical
area of 1.06 m wide by 1.52 m deep. Similarly, Fruin [19] calculated that the sensory zone
reached a distance of 1.48 m for a normal walking speed of 1.37 m/s.

Other studies [42] reported that older people need more space to move in high-density
situations. However, this increase can be moderated with social support and self-control.
In this sense, Webb and Weber [43] state that personal space is affected by vision, hearing,
mobility, age, and gender (e.g., when mobility is reduced, each pedestrian needs more
space). In addition, Sakuma et al. [44] reported that personal space is defined by an inner
critical circle, within which there is immediate avoidance of any agent appearing in it,
and by an external circle where caution is applied to avoid pedestrians who appear there.
According to Daamen and Hoogendoorn [45], other characteristics of pedestrians should
be considered, such as age, gender, and health. In addition, the authors identified that
walking purpose, route familiarity, and luggage can affect the interaction of pedestrians.
Similarly, Willis et al. [46] state that men walk faster than women. The authors also found
that age, mobility conditions (e.g., bags and luggage), and time of the day affect the walking
behavior of pedestrians. Other studies [47] also include the effect of cultural differences, for
example, the speed of Indian pedestrians is less affected by density, whereas it does affect
the speed of German pedestrians. The effect of intimacy is also affected by culture, which
was first studied by Hall [48], in which the intimate distance was classified into different
groups according to the relationship between pedestrians. For example, if the distance
between two pedestrians’ heads is less than 1 m (taking into account 0.5 m plus two times
half the body depth reported by Fruin [19]), then pedestrians will feel that their space is
being invaded. However, this feeling of invasion is based on perception (e.g., comfort)
rather than physical space (e.g., available space or density), which is difficult to calibrate at
the PTI zone [49].

To measure this interaction, it is necessary to use technological instruments. In the
case of observation at existing stations, the use of videos and passenger counting tools
enables the interaction of passengers at the PTI to be identified [4]. However, currently, the
extraction of videos for subsequent analysis presents challenges, with automatic detection
through computer vision being one of the most relevant [50–53]. Although there have been
improvements using computer vision at the PTI, this space in metro stations presents some
problems to solve which involve occlusion, recognition of people in a high-density crowd
or using mobility aids, and interactions between people waiting to board the train, among
others [54]. Consequently, manually counting people using videos takes a long time in
terms of data capture and analysis, and therefore automatic counting systems are required
to obtain the density at the PTI, which can be used to suggest a crowd management measure.
Therefore, two approaches can be used [55]. The first approach is to train a machine learning
model based on swipe card data to infer the number of people on the platform, while the
second one is to use cell phone signaling data to estimate the number of people on the
platform. Both approaches are interesting and can be used as further research to compare
the method proposed in this study with existing station data analysis.

3. Experimental Method of Detection and Estimation of Density

An experimental method is proposed to define the available area for each passenger
boarding and alighting. This method is carried out through four sequential stages (see
Figure 1): (1) selection of the area of interest; (2) head detection; (3) feet projection; and
(4) calculation of the available area per passenger using Voronoi polygons. Different from
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previous studies, the available area is calculated on the platform, and therefore occlusion
problems are reduced, considering the feet projection of each passenger after detecting their
heads. The reason for using the Voronoi polygons is that it helps to identify the geometric
proximities of the projections of the passengers’ feet within the area of interest, allowing
the identification of the available area for each passenger. In the following sections, the
stages are explained to better understand the proposed experimental method.
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Figure 1. Flowchart for the proposed method to obtain the platform density of passengers boarding
and alighting: (a) selection of the area of interest (shown in yellow dots); (b) head detection (shown
in blue squares); (c) feet projection on the platform floor.

Figure 1 shows dotted lines representing the virtual output stages, while thick lines
are part of the flowchart. The virtual output in Figure 1a shows the selected yellow points
for the area of interest. The virtual output in Figure 1b shows the heads detected (shown in
blue squares) by the object detector. In Figure 1c the feet-projection section calculates the
projections and decides if each detection is inside the area of interest. In this stage, the red
squares are detections discarded, while the blue ones are allowed. Finally, as an output, the
Voronoi polygons (shown in green) are obtained, in which detected heads inside the area
of interest (blue squares), the projections as red dots, and the orange dot as the reference
point, are represented.

3.1. Area of Interest

The area of interest is a polygon, i.e., a fully closed boundary, that satisfies the convexity
property. This polygon, manually drawn on the image to be analyzed as a set of points,
represents the zone to be measured, and its layout and area in square meters are assumed to
be known beforehand. Because of the convexity property, the minimum number of points
of this polygon must be three. The main purpose of this area is to encapsulate the zone
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which will be used for the Voronoi polygons and the corresponding occupancy surface per
passenger. Figure 2a represents an example.
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Figure 2. Example of parameters used in the experiments (h = 1.75, H = 2.7, and ϕ = 14◦). The x
coordinate of the orange dot (in c) indicates the x-centroid of the area of interest on the platform,
while the y coordinate indicates the shift due to ϕ. (a) Selection for the area of interest on the platform.
(b) Detected heads (shown in blue squares) and their corresponding feet projections (shown in red
dots). (c) Voronoi polygons (shown in green) over the area of interest, and the estimated red dots
indicate the projections.

3.2. Detection of Passengers

To detect each passenger and estimate the density at the PTI, a novel method has been
used. This stage is related to the detection of heads through a Faster RCNN detector, which
is a deep learning model trained specifically for this experiment. The second stage consists
of explaining the estimation of the feet projection, continuing with the Voronoi polygons,
which represent the area of interest for measuring the density of pedestrians. This selected
area included the 6 m2 on the platform defined in Section 3.1.

For detecting heads, the selected object detection model was the Faster RCNN [56]
and InceptionV2 [57] as its CNN backbone. Faster RCNN is similar to YOLO [58], which is
a model that works mainly with two modules in parallel. The first module is a deep fully
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convolutional network that proposes regions, namely a region proposal network (RPN),
and the second module is the Fast RCNN detector [58]. The RPN module indicates to the
Fast RCNN module the places to consider. To generate region proposals, a small network
must be slipped over the output feature map from the last shared convolutional layer of
the CNN backbone. This small network simultaneously predicts multiple region proposals
delivering data in parallel to the regression and classification layers. The regression layer
encodes the proposal coordinates, and the classification layer estimates the probability
of each proposal being an object or not an object. The InceptionV2 architecture extracts
information from low to high-level features. However, this is not performed following the
classical structure of a densely connected architecture (also known as fully connected), but
by a sparsely connected architecture, where convolutional factorization and asymmetric
convolution can be found. This network is 42 layers deep and uses batch normalization for
training stabilization [59].

This model was trained with images extracted from this experiment in a random way
for head and wheelchair classes.

3.3. Feet Projection

This stage is used to estimate the coordinates of the feet of each detected person. This
operation is achieved by scene projection, that is, from the real-world 3D scene to the
projected 2D image.

The camera used was a GoPro 5, which has a 90◦ FOV (Field of View). The height at
which the camera was positioned will be referred to as H meters above the ground, and
the angle normal (horizontal angle) to the floor is ϕ. For the calculation of projections,
it is assumed that all people in the images have the same nominal height h. The area of
interest is a polygon, i.e., a fully closed boundary, that satisfies the convexity property. This
polygon, manually drawn on the image to be analyzed as a set of points, represents the
zone to be measured, and its layout and area in square meters are assumed to be known
beforehand. Because of the convexity property, the minimum number of points of this
polygon must be three. The main purpose of this area is to encapsulate the zone which will
be used for the Voronoi polygons and the corresponding occupancy surface per passenger.
Figure 2a represents an example.

Thanks to the area of interest, a foot projection algorithm is used to alleviate the
occlusion problem at the PTI, where crowded situations are likely to occur [60,61]. This
stage also requires the object detection model. This requires setting a reference point in the
image (shown in orange in Figure 2c), which is obtained as follows:

νx = ρx (1)

νy = ρy + Ωh · ϕ (2)

where v→ =
(
νx, νy

)
is the reference point coordinate, ρ→ =

(
ρx, ρy

)
is the centroid of

the convex polygon, and Ωh is the height H of the image, in pixels. As can be seen, the
reference point depends on the angle of inclination of the camera and the positioning of the
centroid of the polygon.

The centroid of each head is then expressed with v→ as the origin by:

γp = ‖ν→ − ξ→‖2 (3)

where ξ→ represents the centroid vector of the head’s bounding box. Clearly, γp is a pixel
distance value. However, for a reliable estimate of the projection of the feet, the need to
use information from the 3D plane arises, as shown in Figure 3, from which the following
equations apply:

D = tan(γ]) · H (4)

d = D− tan(γ]) · h (5)
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α] = tan−1(
d
H
) (6)

β] = γ] − α] (7)

where γ] corresponds to:

γ] = γp ·
π

2
· ∆−1 (8)
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In this case, ∆ is equivalent to the L2 norm in the image, that is, ∆ = ||Ω||, where
Ω = {Ωh, Ωw} is a tuple indicating both the height and the width of the image, respectively.
In Equation (8), the weighting of π/2 occurs because of the FOV of the camera.

Once the value of β] is obtained, it is important to return its value in pixel units using
the same process as Equation (8) but solving for βp for this case.

Although the objective of finding βp was achieved, it should be noted that the captured
scenes always depend on the camera angle of inclination, and therefore, the estimated
values will be influenced by that angle. With this, we have the following:

d′ = d · ϕ (9)

βp
′ = βp

(
1− d′

)
(10)

In this way, we modify the value of βp by weighting it with the angle of inclination.
Finally, the coordinates of the feet η→, for their respective person represented by ξ→,

are calculated as follows (Equations (11)–(14)):

ηy = m · (ηx − ξx) + ξy (11)

βp
′ = ||η→ − ξ→|| (12)

After the calculations, η→ is obtained as:

ηx = ξx +
βp
′

√
1 + m2

(13)
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ηy = ξy + m ·
βp
′

√
1 + m2

(14)

where m is the slope between ξ→ and η→. Figure 2b shows an example of these feet projections.

3.4. Voronoi Polygons

Once the projections are obtained in a given image, a Voronoi polygon [62] is calculated
to estimate spatial occupation (i.e., the available area by each passenger or, equivalently,
the inverse of density).

Given a metric space (M, τ), M ε R2 is defined as a set of particles (e.g., passenger), τ
as the Euclidean distance S ⊂ M with S = {s1, s2, . . . , sn}. The Voronoi polygon concept is
established for each particle as the intersection of all half-planes.

Ψ(si) = ∩ Hij j, i ε S, j 6= i (15)

where Hij is defined as half-space:

Hij =
{

x ε M
∣∣ τ(x, si) ≤ τ

(
x, sj

)}
(16)

Equation (16) denotes the half-plane of all points that are closer to si than to sj. These
cells can have different areas, as well as different numbers of borders. These cells are
influenced by the neighborhood of si, so that two particles are neighbors if they share an
edge. Every point on these edges is equidistant from both particles. Finally, these cells are
characterized by being convex polygons. Figure 2c shows the Voronoi polygons applied to
the projections of the detections.

4. Results
4.1. Experimental Set-Up

In order to carry out the experiments in a controlled environment (see Figure 4),
a mock-up was used to represent the PTI, in which the number of participants and the
sequences of boarding and alighting were defined. In all the experiments, the platform had
a length of 3 m to represent the boarding and alighting in front of one door. In addition, the
platform had a width of 3 m, in which a yellow safety line was located 1 m from the edge
of the platform (i.e., 2 m of effective platform width). In other words, the platform had an
area of 6 m2 (3 m long by 2 m wide), which is defined as the area of interest.
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The experiments included a total number of 22 volunteer passengers, and therefore
a density of around 4 passengers/m2. One passenger used a wheelchair and has used
this mobility aid for 24 years due to spastic diplegia. The wheelchair user was a young
person (between 18–24 years old) whose weight was 70 kg. Another passenger had a
baby pram, representing a passenger with reduced mobility. Another three passengers
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also represented those passengers with reduced mobility as they were more than 60 years
old and had difficulties walking. The rest of the participants (18 passengers) were young
students (18–24 years old), who regularly used the metro system in Santiago de Chile.

Ten repetitions were carried out, in which users entered the train from the platform
area to later get off the train once the doors were open. In this way, each of these repetitions
of boarding and alighting consisted of three phases. In the first phase, participants entered
the platform area randomly, thereby waiting for the arrival of a train. Furthermore, at this
stage, five users were randomly told that they were in a hurry to get on the train, better
representing a situation in existing urban railway stations. Then, in the second phase, the
doors were opened, and all participants entered the train, ending with the closing of the
doors. Finally, in the third phase, the doors were opened so that the users alighted from the
train, and the phase ended with the closing of the doors.

4.2. Passenger Detection and Error Calculations

The experiments carried out were labeled based on the premise of how many people
were, on average, inside the platform, that is, the target convex polygon. This task was
carried out through rigorous labeling of each situation with the average area available per
person (i.e., the inverse of the density). There were situations in which it was difficult to
discriminate if the people were actually inside the polygon or not. A person was considered
as a candidate within the polygon if they had at least one foot inside it, and if their head
was visibly detected (Figure 5 serves as an example).

Sustainability 2023, 15, x FOR PEER REVIEW  11  of  21 
 

 

Figure 5. Examples of different cases in which candidates were considered as ground truth. 

The experiments were evaluated using the standard MSE (Mean Square Error) for‐

mula: 

𝑀𝑆𝐸 ൌ
1
𝑁
෍ሺ𝐴௜ െ 𝐴ప෡ ሻ

ே

௜ୀଵ

  (17)

where  𝐴௜ corresponds to the ground truth average area per person within the convex pol‐

ygon in image  𝑖 , while  𝐴ప෡  is the average area per person within the convex polygon esti‐

mated by the developed algorithm, and 𝑁  is the number of images. 

Experiments were carried out using different parameters, such as the height of the 

camera  (𝐻),  the average height of  the people  (ℎ), and  the number of people  inside  the 

convex polygon, using MSE to measure the errors in each case to assess the variability of 

the algorithm. 

The error calculations of the algorithm were carried out. The image set used had 344 

images, from 1 to 18 people. Additionally, the parameters of the experiments were with 

values of 𝐻 from 2.5 to 2.9 m with steps of 0.2 m;  ℎ from 1.6 to 1.8 m with steps of 0.05 m; 

and with situations ranging  from 1  to 18 people within  the convex polygon. As  far as 

verified values for the experiment were concerned, the values of 𝐻  = 2.7 m and 𝜑 = 14° 
were assigned. 

Table 1 shows the MSE values for all combinations of H and h, and ground truths 

from 1 to 9 passengers within the convex polygon. Table 2 follows the same process, but 

from 10 to 18 passengers.   

Tables 1 and 2 show that there is variability in the algorithm with respect to the as‐

signed parameters. However, apart from measuring the sensitivity of the algorithm, Table 

3 shows the values for the average error per experiment. 

   

Figure 5. Examples of different cases in which candidates were considered as ground truth.

The experiments were evaluated using the standard MSE (Mean Square Error) formula:

MSE =
1
N

N

∑
i=1

(
Ai − Âi

)
(17)

where Ai corresponds to the ground truth average area per person within the convex
polygon in image i , while Âi is the average area per person within the convex polygon
estimated by the developed algorithm, and N is the number of images.

Experiments were carried out using different parameters, such as the height of the
camera (H), the average height of the people (h), and the number of people inside the
convex polygon, using MSE to measure the errors in each case to assess the variability of
the algorithm.

The error calculations of the algorithm were carried out. The image set used had
344 images, from 1 to 18 people. Additionally, the parameters of the experiments were
with values of H from 2.5 to 2.9 m with steps of 0.2 m; h from 1.6 to 1.8 m with steps of
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0.05 m; and with situations ranging from 1 to 18 people within the convex polygon. As far
as verified values for the experiment were concerned, the values of H = 2.7 m and ϕ = 14◦

were assigned.
Table 1 shows the MSE values for all combinations of H and h, and ground truths from

1 to 9 passengers within the convex polygon. Table 2 follows the same process, but from
10 to 18 passengers.

Table 1. MSE values for H and h, for 1 to 9 passengers (ground truth).

Camera Height
(m)

Passenger Height
(m)

Passengers (Ground Truth)

1 2 3 4 5 6 7 8 9

2.5

1.6 0.15 0.175 0.209 0.194 0.13 0.126 0.135 0.123 0.042

1.65 0.191 0.192 0.195 0.207 0.125 0.101 0.118 0.149 0.071

1.7 0.225 0.156 0.209 0.218 0.114 0.101 0.134 0.168 0.071

1.75 0.266 0.191 0.237 0.235 0.141 0.095 0.145 0.168 0.097

1.8 0.32 0.213 0.308 0.223 0.162 0.14 0.145 0.149 0.109

2.7

1.6 0.075 0.175 0.486 0.347 0.219 0.23 0.176 0.087 0.072

1.65 0.075 0.157 0.378 0.317 0.174 0.165 0.142 0.095 0.05

1.7 0.125 0.157 0.331 0.263 0.138 0.149 0.142 0.08 0.042

1.75 0.166 0.175 0.209 0.194 0.13 0.126 0.121 0.123 0.042

1.8 0.191 0.192 0.182 0.216 0.125 0.101 0.118 0.149 0.071

2.9

1.6 0.025 0.149 0.533 0.567 0.316 0.255 0.318 0.138 0.154

1.65 0.025 0.175 0.533 0.468 0.316 0.255 0.252 0.13 0.131

1.7 0.05 0.175 0.5 0.41 0.295 0.23 0.208 0.115 0.072

1.75 0.075 0.175 0.445 0.329 0.188 0.205 0.166 0.098 0.05

1.8 0.1 0.157 0.331 0.317 0.174 0.15 0.142 0.095 0.05

Table 2. MSE values for H and h, for 10 to 18 passengers (ground truth).

Camera Height
(m)

Passenger Height
(m)

Passengers (Ground Truth)

10 11 12 13 14 15 16 17 18

2.5

1.6 0.072 0.073 0.101 0.075 0.07 0.058 0.064 0.044 0.091

1.65 0.072 0.078 0.107 0.093 0.072 0.053 0.066 0.046 0.091

1.7 0.096 0.089 0.105 0.093 0.072 0.052 0.066 0.048 0.091

1.75 0.076 0.08 0.105 0.097 0.081 0.056 0.073 0.048 0.091

1.8 0.085 0.088 0.115 0.086 0.087 0.056 0.073 0.048 0.091

2.7

1.6 0.051 0.146 0.121 0.075 0.087 0.079 0.068 0.073 0.091

1.65 0.035 0.096 0.112 0.071 0.08 0.071 0.074 0.057 0.091

1.7 0.048 0.085 0.104 0.07 0.074 0.055 0.061 0.047 0.091

1.75 0.072 0.073 0.101 0.08 0.07 0.058 0.064 0.044 0.0911

1.8 0.072 0.078 0.107 0.093 0.072 0.053 0.066 0.046 0.091

2.9

1.6 0.154 0.239 0.185 0.182 0.136 0.151 0.155 0.196 0.144

1.65 0.112 0.214 0.164 0.125 0.109 0.113 0.093 0.116 0.117

1.7 0.087 0.176 0.137 0.08 0.084 0.084 0.079 0.093 0.091

1.75 0.051 0.134 0.121 0.078 0.082 0.082 0.068 0.07 0.091

1.8 0.035 0.088 0.112 0.071 0.08 0.075 0.073 0.054 0.091

Tables 1 and 2 show that there is variability in the algorithm with respect to the
assigned parameters. However, apart from measuring the sensitivity of the algorithm,
Table 3 shows the values for the average error per experiment.
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Table 3. Averaged errors for the experiments with different parameters.

Camera Height (m) Passenger Height (m) Average Error (m2)

2.5

1.6 0.107
1.65 0.112
1.7 0.109
1.75 0.127
1.8 0.139

2.7

1.6 0.148
1.65 0.124
1.7 0.115
1.75 0.107
1.8 0.112

2.9

1.6 0.222
1.65 0.191
1.7 0.165
1.75 0.139
1.8 0.122

According to Table 3, the best error averages correspond to H = 2.5 m and h = 1.6 m,
and H = 2.7 m and h = 1.75 m. Another result, seen in Table 3, is that those passengers
who exceeded the value of h were not detected by the algorithm within the area of interest.
For example, in Figure 6, the same situations are presented for different values of h. The
difference between them is that the lower image reached an additional detection compared
to the upper image. The red bounding box (upper image in Figure 6) means that it is
detection not considered in the algorithm since its estimate is not within the polygon. This
example serves to glimpse the power of the different parameters.
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Figure 6. Images of passengers waiting to board, considering the same situation of H = 2.7 and
ϕ = 14◦ but under different values of h. For the upper image, h = 1.65 m (16 detections shown by blue
squares within the area of interest and 1 detection shown by the red square out of the area of interest),
while in the lower image, h = 1.75 m (17 detections shown in blue squares within the area of interest).
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4.3. Voronoi Polygons and Density Estimation

Other experimental results are presented here for H = 2.7 m, h = 1.75 m, and ϕ = 14◦.
In addition, detection results were included for each experiment, used to verify the internal
operation of the algorithm.

The demarcated area for the experiments has a value of 6 m2. Additionally, the
implemented algorithm includes an option to remove the so-called fisheye effect pro-
duced by the GoPro camera lenses used in the experiments, and this option was used in
these experiments.

Figure 7 shows the boarding passengers who move from the platform to the carriage,
while Figure 8 presents the alighting process in which passengers move from the carriage
to the platform. In both cases, the method is presented, considering the Voronoi polygons
and the detections of passengers using the algorithm in the area of interest.
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Figure 7. Experiment considering boarding passengers on the platform. For the upper image, the
Voronoi polygons are shown in green, while in the lower image the detection results are shown as
blue squares (red squares are considered out of the area of interest).
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Figure 7 shows that nine passengers were detected on the platform (area of 6 m2), i.e.,
the average density on the platform was 1.50 passengers/m2 (i.e., average available space
of 0.666 m2/passenger). However, this average density (or available space per passenger)
can be compared to the Voronoi polygons, in which each polygon represented an area used
by each passenger (i.e., the inverse of the density). The results for each polygon are reported
in Table 4, in which the difference between the density using Voronoi polygons and Fruin’s
Level of Service reached up to +301.6%. It is also important to notice that the variability of
the density also presented a reduction in a range between 45.1% and 16.6%. This is caused
because the Voronoi polygons represented the interaction between passengers in a more
detailed manner. In other words, the Voronoi polygons represented the personal space
occupied in the boarding process, while the average values of density using Fruin’s Level
of Service are focused on the number of passengers on the whole platform. Therefore, if
the Voronoi polygons are used, it is possible to identify where passengers are located and
which part of the platform is more congested, thereby generating the data to support the
need to redesign the platform–train interface which should have an improved LOS (Level
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of Service). In fact, the LOS is applied to the Voronoi polygons, in which Table 4 shows
that each boarding passenger represented a different LOS, reaching a value from A to F
depending on the density of each polygon, which is affected by the number of passengers
boarding on the platform.

Table 4. Density estimation using Voronoi polygons compared to the average values of density using
Fruin’s Level of Service considering boarding passengers on the platform.

Polygon Number Voronoi’s Occupied
Space [m2/Passenger]

Voronoi’s Density
[Passenger/m2] and

Level of Service (LOS)

Fruin’s Density
[Passenger/m2] and

Level of Service (LOS)

Density Difference
between Voronoi and

Fruin Method

1 0.166 6.024 (LOS F) 1.50 (LOS C) +301.6%
2 0.303 3.300 (LOS D) 1.50 (LOS C) +120%
3 0.527 1.897 (LOS D) 1.50 (LOS C) +26.5%
4 0.392 2.551 (LOS D) 1.50 (LOS C) +70%
5 0.800 1.250 (LOS C) 1.50 (LOS C) −16.6%
6 1.057 0.946 (LOS B) 1.50 (LOS C) −36.9%
7 0.420 2.380 (LOS D) 1.50 (LOS C) +58.6%
8 1.115 0.896 (LOS B) 1.50 (LOS C) −40.2%
9 1.215 0.823 (LOS A) 1.50 (LOS C) −45.1%

Similarly, in Figure 8, three alighting passengers were detected on the platform and,
therefore, the average density reached is equal to 0.50 passengers/m2 (2.0 m2/passenger).
This average density (or available space per passenger) is different from the results obtained
when using the Voronoi polygons. Table 5 shows the difference between the average density
using Fruin’s LOS and the Voronoi polygons, reaching a difference of up to +142.6%. It is
important to mention that the variation also presented a negative variation of−48.8% in the
case of polygon N◦3, which is represented by the wheelchair passenger. It can also be no-
ticed that polygon N◦3 (corresponding to the passenger in a wheelchair) needed assistance
from another passenger (polygon N◦2). This means that both passengers (polygons N◦2 and
N◦3) will need more space to move than a single passenger without reduced mobility.

Table 5. Density estimation using Voronoi polygons compared to the average values of density using
Fruin’s Level of Service considering alighting passengers on the platform.

Polygon Number Voronoi’s Occupied
Space [m2/Passenger]

Voronoi’s Density
[Passenger/m2] and

Level of Service (LOS)

Fruin’s Density
[Passenger/m2] and

Level of Service (LOS)

Density Difference
between Voronoi and

Fruin Method

1 0.824 1.213 (LOS C) 0.50 (LOS A) +142.6%
2 1.278 0.782 (LOS A) 0.50 (LOS A) +56.4%
3 3.897 0.256 (LOS A) 0.50 (LOS A) −48.8%

Consequently, crowd management measures should be implemented, in which passen-
gers could have some preferential space on the platform. For instance, some authors [35,49]
have presented the use of waiting areas to facilitate the boarding and alighting processes,
which will be explored in future experiments (see Figure 9).
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generation of waiting areas to allow alighting passengers to get off before getting on the carriage (e.g.,
passengers waiting to board the train stay at the sides of the doors instead of in front of them).

5. Conclusions

The study of the density of passengers on the platform is essential to determine the
normal functioning of the platform–train interface (PTI). Therefore, this allows us to study
which part of the PTI is more congested so that some crowd management measures for a
station can be implemented (e.g., implementation of waiting areas on the platform).

The implementation of crowd management measures can be used by transport plan-
ners to provide certainty to passengers that the train will not stay at the platform for
additional time when a crowded situation is reached. In addition, it can be used to identify
when the platform needs to be redesigned to reduce the interaction between passengers
boarding and alighting.

Nowadays, these crowd management measures and other design recommendations
are also used to keep passengers safe due to COVID-19. In the case of urban railways, the
Fruin’s Level of Service (LOS) is used, in which an LOS = B is recommended to maintain a
social distance of at least 1.0 m between passengers, i.e., between 0.9 and 1.1 passengers per
square meter. Therefore, if a density of 1.1 or more passengers per square meter is reached
at the PTI, a crowd management measure should then be implemented. The use of the
Level of Service B as a recommendation for the PTI is based on passengers who have a
breadth of 0.66 m and a body depth of 0.33 m. However, there is a lack of recommendations
in the case of other types of passengers, such as Chilean wheelchair users, in which the
passenger breadth is 0.8 m and the body depth is 1.2 m (or 1.3 m if the wheelchair user
needs assistance from another passenger), which will be considered in future experiments
at the laboratory facility.

In addition, the method can allow the identification of wheelchair users in high-
density situations at the PTI who may need additional assistance. However, passengers
with reduced mobility need more space to move and, therefore, the method could help
identify which passengers need more space when using mobility aids.

For the development of the method, the use of computer vision was necessary through
the training of neural networks and image processing. The algorithm is presented as a
novelty compared to the calculation of the area available per passenger within a certain
convex area. It is important to highlight that the use of Voronoi polygons was more
representative of the interaction between passengers at the PTI than the average values
of density used in Fruin’s LOS. However, one of the main drawbacks occurring in the
developed technique is the use of a constant value for the height of passengers. The best



Sustainability 2023, 15, 1000 17 of 19

case was presented for a height of 1.75 m, which reached the lowest error. This has an
impact on the measurements when presenting a varied population. Further research will
seek to progress the preparation of a technique capable of dispensing with the variable of
height, or that can calculate it autonomously.

With respect to the experiments, the approach used presented an ideal opportunity
to test “what if” scenarios, in which the boarding and alighting process was represented
considering a mock-up of a train carriage and its adjacent platform. The objective was to
represent the variation in one variable, “X”, considering the rest of the variables without
change. Therefore, the effect of the “X” variable on the passenger’s space or density at the
platform–train interface could be analyzed. In the case of the boarding process, the Voronoi
polygons represented up to 300% variation compared to the average values of density
using Fruin’s Level of Service. In the case of the alighting process, the variation reached
up to 142% of the difference between both methods, considering the need of wheelchair
users. As a next step, the density of existing stations will be considered using the Voronoi
polygons to compare them with Fruin’s Level of Service.

Finally, it is expected that this technique can contribute to further studies and develop-
ment in the transportation field, using techniques derived from artificial intelligence. The
field is still very wide and presents the possibility of experimenting with real scenarios.
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