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Abstract: Aiming to solve the problems of large environmental interference and complex types of
personnel behavior that are difficult to identify in the current identification of unsafe behavior in
mining areas, an improved spatial temporal graph convolutional network (ST-GCN) for miners’
unsafe behavior identification network in a transportation roadway (NP-AGCN) was proposed. First,
the skeleton spatial-temporal map constructed using multi-frame human key points was used for
behavior recognition to reduce the interference caused by the complex environment of the coal mine.
Second, aiming to solve the problem that the original graph structure cannot learn the association
relationship between the non-naturally connected nodes, which leads to the low recognition rate of
climbing belts, fighting and other behaviors, the graph structure was reconstructed and the original
partitioning strategy was changed to improve the recognition ability of the model for multi-joint
interaction behaviors. Finally, in order to alleviate the problem that the graph convolution network
has difficulty learning global information due to the small receptive field, multiple self-attention
mechanisms were introduced into the graph convolution to improve the recognition ability of the
model for unsafe behaviors. In order to verify the detection ability of the model regarding identifying
unsafe behaviors of personnel in a coal mine belt area, our model was tested on the public datasets
NTU-RGB + D and the self-built datasets of unsafe behaviors in a coal mine belt area. The recognition
accuracies of the proposed model in the above datasets were 94.7% and 94.1%, respectively, which
were 6.4% and 7.4% higher than the original model, which verified that the proposed model had
excellent recognition accuracies.

Keywords: miners; unsafe behavior; skeleton spatial-temporal map; spatial-temporal graph convolution;
self-attention

1. Introduction

In recent years, China has gradually attached importance to coal mine safety in
production, but accidents still occur frequently. The death toll caused by coal mine accidents
exceeds that of all other accidents combined [1]. By analyzing the causes of coal mine
accidents, it was found that man-made unsafe behaviors accounted for more than 85%
of accidents [2]. At present, the management of miners in coal mines mainly involves
manually supervising the real-time behaviors of coal miners through surveillance video [3].
This method makes it difficult to have a timely response to emergencies, and a large number
of cameras are unattended, resulting in a waste of resources. How to identify the unsafe
behavior of miners under the influence of fuzzy monitoring imaging, uneven illumination
and complex human behavior is an urgent problem to be solved.

Early image-based human behavior recognition is mainly achieved using feature
extraction carried out on a single image. Researchers hope to use object detection and
other methods for behavior recognition [4,5], but this ignores the correlation between
successive actions, and thus, it is difficult to accurately describe the complicated movement
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and the recognition accuracy is generally not high. Subsequently, more and more people
proposed video-based behavior recognition methods that are mainly based on a two-stream
convolutional neural network [6–9] and a long short-term memory network [10–12]. The
method based on a two-stream convolutional neural network uses the spatial information
and multi-frame optical flow information extracted from the video that is fed into the
convolutional neural network as the input of spatial and temporal flow to realize behavior
recognition. The method based on a long short-term memory network uses the feature
of a recurrent neural network that can save the previous time series information to learn
the feature information of the current moment and the feature information of the previous
moment to realize the behavior recognition of video. When applied to a coal mine, the
above methods cause difficulty in behavior recognition due to the influence of dust and illu-
mination in the coal mine environment and the problem of human shielding. However, the
use of human joint information for behavior recognition will greatly reduce the interference
caused by the environment due to the characteristics of high robustness and insensitivity
to light conditions in the general way of acquiring human joint information [13,14]. There-
fore, some people apply the method of acquiring human joint information in the harsh
environment of a coal mine as the pre-processing of subsequent tasks [15–17].

With the introduction of advanced human pose estimation algorithms, such as Open-
Pose [18], and the popularity of depth sensors, such as Kinect [19], it is increasingly easier
for us to obtain human joint node data, which also makes some research on behavior recog-
nition change from the traditional method of using RGB image information recognition to
the method of joint point data recognition. Compared with RGB images, the advantage
of the joint data is that it can better filter out the interference of background obscuration,
illumination, imaging conditions and other noises to make the data cleaner. In addition, the
joint data only need to store the joint coordinates and confidence of the human body, which
greatly reduces the difficulty of data collection and storage. At present, the research on the
behavior recognition of joint data is mainly based on manual features and deep learning. In
the deep learning method, three different directions are derived through different methods
of processing joint node data, which are a convolutional neural network (CNN), a long
short-term memory network (LSTM) and a graph convolutional network (GCN). (1) A CNN
represents joint node data as pseudo-images and then performs convolution, pooling and
other operations on the images to realize behavior recognition. For example, Li et al. [20]
proposed a method based on a 3D skeleton data mapped into RGB images through multi-
scale neural networks, and Le et al. [21] used a CNN architecture that went from thin to
coarse to simultaneously extract the temporal and spatial features of joint nodes to learn
the correlation of skeleton information in different periods. (2) An LSTM network can learn
long temporal information while retaining the characteristics of a recurrent neural network,
which enables it to realize the recognition of long temporal behavior by learning the vector
sequence constructed from key point data. For example, Shahroudy et al. [22] proposed a
recurrent neural network that could learn the long-term temporal correlation of the features
of each node while proposing the NTU RGB + D dataset. In order to solve the problem of
structural information loss when transforming the node data to fit the input format of CNN
or RNN, Zheng et al. [23] proposed an attention cycle relationship network that modeled
the temporal and spatial dynamics and added an adaptive attention module for behavior
recognition. (3) The method based on a GCN can transform the data of the joint points
by considering the human body joint points and limbs as the vertices and edges of the
topological graph, respectively; this method can better retain the feature information of the
joint points compared with other methods. The ST-GCN proposed by Yan et al. [24] is the
first network that uses graph convolution for behavior recognition. It uses the spatial and
temporal information in the graph structure constructed by human joint nodes to realize the
recognition of continuous actions. Many subsequent methods based on graph convolution
take it as the baseline or improve it. For example, Shi et al. [25] proposed a two-stream
adaptive graph convolution network (2S-AGCN), which fused bone point information
and bone length and direction information ignored by the ST-GCN through a two-stream



Sustainability 2023, 15, 1041 3 of 15

framework to improve the model performance. Zhang et al. [26] added more advanced
semantic information, including joint type and frame index, to the input information to
enhance the feature representation ability. Alsawadi et al. [27] improved the partitioning
strategy of an ST-GCN so that the network no longer only aimed at neighboring nodes
but learned through multi-layer nodes, which improved the detection performance. Yang
et al. [28] introduced time and channel attention into the ST-GCN to enable the network to
better learn important nodes. Wu et al. [29] proposed the addition of dense connections and
spatial residual layers into the spatial-temporal graph convolution network to improve the
efficiency of the model at processing spatial-temporal information. Liu et al. [30] improved
the feature extraction ability of the model for the time dimension by adding a residual
network to the time information processing of the node. The abovementioned work greatly
improved some of the problems that exist in an ST-GCN, but few people have considered
the problems that exist in the network identification of miners’ behavior. Shi et al. [31] used
an ST-GCN for behavior recognition in a coal mine, but without improving the network,
there were some problems of unsatisfactory behavior recognition.

However, an ST-GCN is limited by its structure and has a small receptive field, where
it can only learn the behavior characteristic information through the learning of adjacent
nodes and it is difficult to learn the mutual relationship between different limbs. When
recognizing the behavior of coal miners, it is difficult to detect the unsafe behaviors of
hands and feet, such as when using climbing equipment. To solve the above problems, a
new partition self-attention spatial temporal graph convolutional network (NP-AGCN)
was proposed. The main contributions of this study are summarized as follows:

• We proposed a completely new partition strategy that connects some non-naturally
connected nodes, divides new partitions and assigns weights to improve the learn-
ing ability of the model for association relationships between non-naturally con-
nected joints.

• We introduced a multi-head self-attention mechanism into the graph convolution
module of an ST-GCN to increase the receptive field. Therefore, the feature learning
ability of the model was improved to improve the recognition ability of the model for
all actions.

• A spatial-temporal graph convolution network with self-attention was constructed by
using a new partitioning strategy and introducing a multi-head self-attention module,
which can effectively solve the problems encountered in coal mine environmental
behavior recognition.

2. Methods to Study
2.1. Definition of Unsafe Behavior of Miners in a Transport Roadway

The unsafe behavior of miners refers to the behavior miners exhibit that fails to strictly
comply with safety rules and regulations in the production process, which may have a
negative impact on organizational and personal safety [32]. For the staff of a transport
roadway, these behaviors can be generally divided into two categories: “operator error” and
“venturing into dangerous places” [33]. Operator error refers to the behavior of the operator
that does not conform to the safety rules and regulations and results in injuring themself
and damaging equipment, mainly via the behaviors of damaging equipment, throwing
sundry equipment, fighting and running. Venturing into dangerous places is defined as
people approaching or contacting large equipment in a coal mine without compliance,
including mechanical, hydraulic and electrical equipment, which is mainly divided into
climbing equipment and riding belts. The definition of unsafe behavior should also include
passive abnormal behavior after a person is injured, such as falling and getting in contact
with equipment. The unsafe behaviors of miners in the belt area are shown in Table 1
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Table 1. Unsafe behavior of miners.

Category Behavior

Operator error
Throwing sundry equipment

Fighting
Running

Venturing into dangerous places
Climbing equipment
Hitting equipment

Riding belts

Passive abnormal behavior
Falling

Body entering a device

2.2. Constructing a Spatial-Temporal Map of a Human Skeleton

Since the ST-GCN realizes behavior recognition based on the graph structure con-
structed from the human joint node data, it is necessary to transform the discrete joint node
coordinates into topological graphs, that is, to form a spatial skeleton graph by connecting
the joint nodes in pairs. The spatial skeleton visualization is shown in Figure 1.
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Figure 1. Spatiotemporal diagram of the skeleton sequence. Blue dots indicate body joints. Inter-
articular connections are defined by natural connections in the human body, with the dotted lines
connecting identical joints between successive frames. The green arrow indicates the time dimension.
The joint coordinates are used as the input to an ST-GCN.

Then, the adjacency matrix required by the graph convolution was constructed. An
undirected graph G = (V, E) was constructed on a skeleton sequence with N nodes and
T frames, with characteristics of V for the node (the node) and E (edge) for edge features
such that V = {Vti|t = 1, . . . , T, i = 1, . . . , N} is the set of features of a node, where
Vti represent the different node characteristics, T is a different frame node (that is, the
time domain) and i is the different body key points in the same frame (nodes). The
dimension of Vti is (x, y, confidence), where x and y are the coordinates of the key point and
confidence is the confidence of the key point. The V node can be composed of a single
frame graph. The edge set E consists of two parts, namely, ES and EF, to construct the
inter-frame graph. ES represents the relationship between different joints in the same frame,
denoted as ES =

{
vtivtj|(i, j) ∈ H

}
, where H is the maximum number of human joint

connections; EF represents the relationship between the same joints in different frames,
denoted as ES =

{
vtiv(t+1)j

}
, where i and j indicate the different frame indexes. The

two sets eventually jointly construct the spatial-temporal map of the human skeleton so
that the spatial-temporal map convolution can obtain spatial and temporal information
simultaneously.
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2.3. Spatial-Temporal Graph Convolutional Networks

As a behavior recognition network, an ST-GCN can autonomically learn the spatial
and temporal characteristics of data through its graph convolution block and temporal
convolution block to realize the recognition of dynamic behaviors. An ST-GCN transforms
the temporal and spatial dimensions through two parts: spatial graph convolution (SGCN)
and temporal convolution (TCN). Finally, it uses average pooling and a fully connected
layer to classify features. According to the constructed human skeleton diagram, the
operation of spatial graph convolution can be defined as follows:

fout(vti) = ∑
vti∈B(vti)

1
Zti
(
vtj
) fin·W

(
lti
(
vtj
))

(1)

where B(vti) is the set of sampling centers vti; for the elements with a path length less than
or equal to constant D, the value of D is 1. Zti is equal to the cardinality of the corresponding
subset. fin is the input feature data, namely, the human body joint data. W is the weight
function that provides the weight vector. lti

(
vtj
)

is the mapping function between the root
node of the partitioning policy and the labels of its neighboring nodes. Since the number of
weight vectors in W is unchanged, it is used to assign weights to the feature vectors, which
are represented as

lti
(
vjj
)
=


0 if rj = ri
1 if rj < ri
2 if rj > ri

(2)

where ri represents the average coordinates of all joints in a coordinate system, namely, the
center of gravity.

After constructing the spatial graph convolution, the spatial graph structure was
connected in the time dimension. The time graph structure was constructed by connecting
the same points between different frames, and the set of data of different frames of the
same point was obtained:

B(vti) =
{

vqj
∣∣d(vtj, vti

)
≤ K, |q− t| ≤ Γ/2

}
(3)

where Γ is the time range of adjacent graphs, that is, the incoming frame number informa-
tion. q and t are the frame index numbers and d

(
vtj, vti

)
is the minimum distance between

nodes and adjacent frames. Then, the label grouping mapping function was changed and
denoted as

lst
(
vqj
)
= lti

(
vtj
)
+ (q− t + Γ/2)× K (4)

where lti
(
vtj
)

is the label mapping result of the node. Finally, the formula for the convolu-
tion of the space-time graph was obtained.

3. Identification Network of Unsafe Behavior of Miners

In order to improve the defects of the graph convolutional network in the identifi-
cation of miners’ unsafe behaviors, we proposed an improved spatial temporal graph
convolutional network for miners’ unsafe behaviors in a transportation roadway, which
was named a new partition self-attention spatial temporal graph convolutional network.
In this section, we introduce the overall network and some components of our proposed
new partition self-attention spatial temporal graph convolutional network (NP-AGCN) in
detail. This includes the construction of graph structure and partition strategy, the overall
construction of the network and the improved self-attention module; these parts constitute
our proposed NP-AGCN.

3.1. Model Structure

Our model took multi-frame human points as the data input. First, the skeleton
graph sequence was constructed with human joints as the graph vertices and bones as
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the graph edges. The initial feature of the vertices was the 3D coordinates corresponding
to the human joints to obtain the graph structure data of dimension V × T × C, where
V is the number of joint points, T is the number of frames of input video data, and C is
the information of a single node. Then, using a partitioning strategy, different moving
nodes were classified so that the network could learn behavior information from the graph
structure. We set the center of gravity of the whole skeleton as the root node, and the nodes
with different distances from the root node were put into different partitioning subsets.
Different from the traditional ST-GCN partitioning, we connected some non-naturally
connected joints and divided them into different subsets by distance. Finally, the graph
structure and the obtained learnable adjacency matrix were input into the multi-head
self-attention spatial-temporal graph convolutional network.

Each basic unit of the self-attention spatial temporal graph convolution network con-
sisted of two parts, namely, a spatial graph convolution module and a temporal convolution
module. The spatial graph convolution module included a spatial graph convolution layer
for extracting spatial features, a batch normalization layer and a ReLU activation func-
tion layer, and a multi-head self-attention module was added to part of the spatial graph
convolution layer. The temporal convolution module is located after the spatial graph
convolution module, which contained a temporal convolution layer for extracting temporal
features, a batch normalization layer and a ReLU activation function layer. The temporal
graph convolution layer was similar to the traditional two-dimensional convolution on
images, that is a convolution with the size of 1 × 1 was used to carry out the convolution
operation on the feature map to extract features in the temporal dimension. Finally, residual
connections were used in each basic unit to make the training more stable. The overall
network structure was composed of the nine basic units mentioned above, as shown in
Figure 2. The number of channels of input data was three. Before being input into the
network, the data was normalized through the BN layer to accelerate the convergence and
then input to the subsequent network. The number of output channels of the first three
basic units was 64; the number of output channels of the three basic units in the middle
was 128. The number of output channels of the last three cells was 256, and the residual
mechanism was used in each basic cell. In the fourth and seventh layers of the model,
the time convolution step was set to 2, and in order to reduce the loss of graph structure
information, multiple self-attention modules are used only in the last six layers. After nine
basic units, the output feature map was sent to the pooling layer for global average pooling
to get a fixed-size feature vector. At the end of the network was a softmax classifier, which
could realize the classification of actions and was used to predict the final result.
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Figure 2. NP-AGCN structure. X(V,T,C) is the input node information, where V is the number of
nodes, T is the number of video frames, and C represents the characteristics of different nodes. A is
an adjacency matrix, which was divided into a three-dimensional matrix A[3] after a new partitioning
strategy and given a learnable weight. After the data were normalized, a GCN was used to extract
spatial information and a TCN was used to extract time information. The self-attention module was
added to the last six layers of the network to learn the global information about the human skeleton.
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3.2. Structure Construction of the In-Frame Interaction Graph

The connection of the ST-GCN was realized by referring to the natural connection of
human nodes in reality. In this way, although the spatial variation relationship between
various joint nodes in the process of human movement can be extracted well, regarding
the movement of multiple limbs cooperating with climbing equipment in an underground
coal mine, it is likely to be confused with other movements if only the changes in the limbs
themselves are used for the recognition. At the same time, the increase in joint connections
can also improve the discrimination ability of the model for similar actions, which can
significantly reduce the probability of misjudgment in the identification process of coal
mine unsafe behaviors. The connection is shown in Figure 3.
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In this study, it was considered that different non-adjacent nodes with potential
correlation were connected in the process of graph structure construction so that the
ST-GCN could obtain the association information between different joints. However,
after testing, the detection performance of the model could not be improved simply by
connecting nodes. In the original partitioning strategy, after the aggregation of the node
information, the ST-GCN divided nodes into root nodes, centripetal groups and centrifugal
groups to simulate the concentric and eccentric movements of actual body parts. However,
there was no such relationship between nodes that were not physically connected. As a
result, the network aggregated the wrong information. Therefore, the original partitioning
strategy was improved, where the nodes that were not physically connected were divided
into regions via a distance judgment and re-assigned weights. The partitioning of regions
is shown in Figure 3. Finally, the neighbor set was divided into three subsets: (1) the root
node itself, (2) adjacent nodes that were closer to the skeleton barycenter than the root node
or non-naturally connected nodes that were longer than the root node and (3) adjacent
nodes that were farther from the barycenter than the root node or non-naturally connected
nodes that were shorter than the neighboring nodes. The center of gravity of the skeleton
was obtained by averaging the coordinates of all joints. Finally, the mapping function of
the labels of the root node and neighboring nodes was as follows:

lti
(
vtj
)
=


0 if rj = ri
1 if rj< ri or rj > rk
2 if rj > ri or rj < rk

(5)

where ri represents the average coordinates of all joints in a coordinate system, namely, the
center of gravity. rk is another node connected to the root node.
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3.3. Multi-Head Self-Attention Module

In order to solve the problem of “short-sightedness” during feature learning of the
spatiotemporal graph convolutional network and reduce the interference of additional
connected nodes on some behaviors, multiple self-attention mechanisms were introduced
into the graph convolutional network to enlarge the receptive field and improve the
network’s learning ability for global information in the process of spatial feature extraction.
The module structure is shown in Figure 4.
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First, the input was normalized by the BN layer. Then, the input data structure was
changed to merge the joint data of all frames to obtain the global joint information. Through
the learnable parameter matrices Wq ∈ RCin×dq , Wk ∈ RCin×dk and Wv ∈ RCin×dv , the query
vector qt

n ∈ Rdq , key vector kt
n ∈ Rdk and value vector kt

n ∈ Rdk of each node j in time
t were obtained, where dq, dk and dv are the dimensions of the query vector, key vector
and value vector, respectively, and C is the number of input features. For each pair of
joint connection points (jt

i , jt
j), the score αt

ij was obtained via the dot product of qt
i and kt

j
transposed, which was divided by

√
dk to prevent gradient explosion. Then, each vt

j was
weighted by the obtained score and the weighted sum of all nodes was calculated to obtain
the final output zt

i . The formula can be expressed as follows:

zt
i = ∑

j
so f tmaxj(

αt
ij√
dk

)vt
j (6)

In order to prevent the self-attention mechanism from excessively focusing its attention
on its position in the operation process and producing overfitting, the multi-head attention
mechanism was added. Instead of using a single attention mechanism, we transformed
queries, keys and values by obtaining h different linear projections from learnable parameter

matrices Wq ∈ RCin×Nh×dh
q , Wk ∈ RCin×Nh×dh

k and Wv ∈ RCin×Nh×dh
v . Then, the transformed

queries, keys and values of the h-group were pooled in parallel. The formula can be
expressed as follows:

headi = So f tmax(
(qiwqi)(kiwki)√

dNh
k

)(viwvi) (7)
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Finally, the output of the h attention pool was concatenated and transformed using
another parameter matrix Wo that was learned to produce the final output. The formula
can be expressed as

zt
i = Concat

(
head1, . . . , headNh

)
Wo (8)

At the same time, in order to avoid information loss in the process of self-attention, a
residual structure was added to the module to retain the original input information. After
the final output of the self-attention module was obtained, the data were separated into
different frames of joint data and passed to the temporal convolution module to extract
temporal features.

4. Experiment
4.1. Introduction to Experimental Datasets

NTU-RGBD: This is one of the most widely used datasets in action recognition tasks.
The dataset was collected using three Kinect V2.0 sensors, which took pictures of the target
from different angles at the same height. The NTU-RGBD dataset contained a total of
60 different action categories and a total of 56,880 action sample sequences. Each sample
sequence contained no more than two action implementation objects, which were composed
of the 3D coordinates of 25 human joints from all frames. The actions mainly included the
daily behaviors of a single person or pair. There were two evaluation benchmarks for this
dataset: (1) a CS (cross-subject) benchmark, where the datasets in this benchmark were
divided into a training set and test set, whose action execution subjects were different; (2) a
CV (cross-view) benchmark, which uses the data collected on the second and third devices
as the training set and the data collected on the first device as the test set.

Datasets of unsafe behavior of miners in transportation roadway: This is a self-built
dataset that was built based on some common unsafe behaviors of miners in a coal mine
belt working area. It contains 10 action categories, specifically the eight unsafe behaviors
defined above and the normal operation of equipment and carrying items as positive
samples, giving a total of 2897 video samples. These data samples were obtained from field
video collection and Internet collection. The length of each video sample was about 10 s. If
the length was short, it was completed via stitching. If the length was longer, the timeout
part was trimmed. When making the datasets, the OpenPose human pose estimation
algorithm was used to extract the position and confidence information of 18 joint points
of people in a video, and the joint point information of the two people with the highest
confidence in the video was selected for saving. The datasets were divided into two parts:
a training set (2000 samples) and a testing set (897 samples). Part of the sample is shown in
Figure 5.
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4.2. Experimental Parameter Setting

All experiments were carried out on the PyTorch deep learning framework and the
hardware platform used two CPUs (Intel Xeon 4214R) and a GPU (NVIDIA A100 40 GB).
Stochastic gradient descent (SGD) with Nesterov momentum (0.9) was used as the opti-
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mization strategy. The cross-entropy was chosen as the loss function of the backpropagation
gradient, and the weight decay was set to 0.0001, which is defined as shown in the equation

Ls = −
m

∑
i=1

ln
eyi

∑N
j=1 eyj

(9)

where y is the ith output of the full connection and represents the probability of the ith
class, m is the input bich_size and N is the number of categories. The performance of the
behavior recognition network was evaluated using the recognition accuracy of all targets,
which can be calculated using the following formula:

Acc. =
∑N

k=0 TPk

∑N
k=0(TPk + FNk)

(10)

where TP is the number of correctly identified samples, FN is the number of samples
identified as other categories and k is the category index. During training, bich_size was
set to 8, the number of heads of the multi-head attention was set to 8, and in all these
experiments, the dq, dk and dv dimensions of each layer were 0.25 × Cout. A variable
learning rate was used for learning. For the training of the NTU-RGBD dataset, the initial
learning rate of the model was set to 0.1 and the number of iterations was set to 80. When
the number of iterations reached 30 and 70, the learning rate was adjusted to decay, where
the decay rate was 0.1. For the training of the dataset of miners’ unsafe behavior, the
initial learning rate of the model was set to 0.1 and the number of iterations was set to 120.
When the number of iterations reached 20, 40 and 70, the learning rate was attenuated and
adjusted, where the decay rate was 0.1.

4.3. Ablation Experiments

In order to verify the promotion effect of different improvements on the original model,
comparative experiments were conducted on the NTU-RGBD datasets using different par-
titioning strategies and adding self-attention modules in different network layers. The
specific experimental results are shown in Table 2, where X-Sub and X-View respectively
represent the results obtained from different targets or different camera angles for test sam-
ples. In order to verify whether the new partitioning policy can improve the performance
of the model, the original partitioning policy was replaced by the new partitioning policy in
the original ST-GCN and our NP-AGCN, namely, ST-GCNNP and NP-AGCNNP in the table.
A self-attention module was added after each of layers 1, 3 and 7 to verify the influence of
multiple self-attention modules added to different layers in the model.

Table 2. Comparative experimental results of different model structures.

Methods X-Sub (%) X-View (%)

ST-GCN 81.5 88.3
ST-GCNNP 82.7 89.1

NP-AGCNNP 87.1 94.7
NP-AGCN1 85.5 92.1
NP-AGCN3 86.7 93.5
NP-AGCN7 86.1 92.9

The experimental results showed that the new partitioning strategy could improve
the recognition accuracy of the model when added to the original model and the improved
model, and it was shown that the multi-joint connection could improve the recognition
ability of the model for some behaviors. The experimental results of adding a self-attention
module to different layers showed that no matter which layer the module was added to,
it could obtain better recognition accuracy than the original model. At the same time,
it was found that adding the self-attention module after the third layer of the network
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could obtain better results than other layers because adding the self-attention mechanism
too early may lose part of the graph structure information and adding the self-attention
mechanism only in the last three layers led to the failure of the maximum performance
of the module. Therefore, the self-attention module was added to the third layer in the
subsequent experiments.

4.4. Ablation Experiments

In this part, in order to show the advantages of our model compared with other models,
it was shown that the improvement of the model was necessary for miners’ behavior
recognition. Therefore, the comparison test of different models was conducted on the
NTU-RGBD datasets and the self-built dataset of miners’ unsafe behavior, mainly from
the complexity and accuracy of the model to compare with ST-GCN and its improved
model. First, we compared the proposed NP-AGCN with the original ST-GCN and the
improved networks 1S-AGCN and 2S-AGCN using the NTU-RGBD 60 dataset. The reason
why it was compared with the ST-GCN was that as a baseline network, it could display
the improved effect of the model the most intuitively. The reason for comparison with
the 1S-AGCN was that it was more robust than the ST-GCN and it could also reflect the
advantages of the self-attention mechanism term over the adaptive graph convolutional
network. As an excellent two-stream STGCN model, the 2S-AGCN was compared with it
in order to reflect the performance of the model more objectively.

The final experimental results are shown in Table 3, where Params in the table indicates
the total number of network parameters, expressed in millions (M), and FPS indicates the
number of inference frames of the model. Our improvement increased the detection
accuracy of the original network ST-GCN by 5.6% and 6.4% relative to the 1S-AGCN
and 2S-AGCN, respectively. Compared with other single-stream networks, the detection
accuracy was improved by 1.1% and 1.0%, respectively. Compared with the 2S-AGCN,
the overall accuracy was slightly lower than that of this network. However, our model
was much more lightweight because it had 11% fewer parameters and a shorter runtime.
It was shown that the introduction of multiple self-attention modules could improve the
graph convolution and reduce the number of parameters while improving the network
performance.

Table 3. Comparison results of different models using the NTU-RGBD dataset.

Methods Params (M) FPS X-Sub (%) X-View (%)

ST-GCN 3.141 105 81.5 88.3
1S-AGCN 3.47 96 86.0 93.7

NP-AGCN (ours) 3.06 107 87.1 94.7
2S-AGCN 3.54 89 88.5 95.1

In order to verify the performance of the improved network for the identification of
miners’ unsafe behavior, different networks were compared on the dataset of miners’ unsafe
behavior. The final experimental results are shown in Table 4. Compared with the original
network, the accuracy of our model on this dataset was improved by 7.4%. Moreover, our
comparison model achieved the best result among all the comparison models. It can be
seen that the introduction of a multi-head self-attention mechanism could improve the
recognition performance of the model for some unsafe behaviors of miners.

Table 4. Comparison results of different models on the dataset of miners’ unsafe behavior.

Methods Acc. (%)

ST-GCN 86.7
1S-AGCN 89.29
2S-AGCN 94.06

NP-AGCN (ours) 94.1
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4.5. Validation of Model

The validity of the proposed model was verified on a validation set of 1200 data
samples of miners’ unsafe behavior, which was independent of the dataset and the test set
to ensure the objectivity of the data. Figure 6a,b represent the identification results of the
ST-GCN and our proposed NP-AGCN, respectively, which are represented by a confusion
matrix. Through the confusion matrix, we can visually see that the blue in Figure 6b is
darker than in Figure 6a, which represents the improvement of the recognition accuracy
of the improved model compared with the original model and it had a better recognition
effect for each category.

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 16 
 

Table 3. Comparison results of different models using the NTU-RGBD dataset. 

Methods Params (M) FPS X-Sub (%) X-View (%) 

ST-GCN 3.141 105 81.5 88.3 

1S-AGCN 3.47 96 86.0 93.7 

NP-AGCN (ours) 3.06 107 87.1 94.7 

2S-AGCN 3.54 89 88.5 95.1 

In order to verify the performance of the improved network for the identification of 

miners’ unsafe behavior, different networks were compared on the dataset of miners’ un-

safe behavior. The final experimental results are shown in Table 4. Compared with the 

original network, the accuracy of our model on this dataset was improved by 7.4%. More-

over, our comparison model achieved the best result among all the comparison models. It 

can be seen that the introduction of a multi-head self-attention mechanism could improve 

the recognition performance of the model for some unsafe behaviors of miners. 

Table 4. Comparison results of different models on the dataset of miners’ unsafe behavior. 

Methods Acc. (%) 

ST-GCN 86.7 

1S-AGCN 89.29 

2S-AGCN 94.06 

NP-AGCN (ours) 94.1 

4.5. Validation of Model 

The validity of the proposed model was verified on a validation set of 1200 data sam-

ples of miners’ unsafe behavior, which was independent of the dataset and the test set to 

ensure the objectivity of the data. Figure 6a,b represent the identification results of the ST-

GCN and our proposed NP-AGCN, respectively, which are represented by a confusion 

matrix. Through the confusion matrix, we can visually see that the blue in Figure 6b is 

darker than in Figure 6a, which represents the improvement of the recognition accuracy 

of the improved model compared with the original model and it had a better recognition 

effect for each category. 

  

(a) (b) 

Figure 6. Confusion matrix of two network recognition results: (a) behavior recognition confusion 

matrix of the ST-GCN and (b) behavior recognition confusion matrix of the NP-AGCN. 
Figure 6. Confusion matrix of two network recognition results: (a) behavior recognition confusion
matrix of the ST-GCN and (b) behavior recognition confusion matrix of the NP-AGCN.

In order to clearly show the improvement of each category, the histogram in Figure 7
shows the accuracy of the ST-GCN and NP-AGCN for different behaviors in the verification
set of miners’ unsafe behaviors. The horizontal axis represents all categories in the dataset,
while the vertical axis represents the accuracy. It can be seen that the ST-GCN is not ideal
for multi-limb motion detection of some movements, such as fighting, climbing equipment
and bodies entering a device. After the improvement of the model, the recognition accuracy
of these behaviors was greatly improved. The detection rate of equipment involvement
is generally lower than other behaviors, mainly because there are too few samples in
this part of the dataset construction process. The proposed two improvements to the
model could greatly enhance the weight allocation of global information and important
nodes in the recognition process of the model. Meanwhile, for some similar behaviors, the
accuracy could be effectively improved by learning the features between different nodes.
The accuracy of different behaviors increased after the model was improved. In the case of
throwing sundry equipment and bodies entering a device, the accuracy rate increased by
6.7% and 18.3%, respectively.

The comparison of actual detection effects is shown in Figure 8. The ST-GCN result is
on the left and the result from the NP-AGCN proposed by us is on the right. Each group of
images is divided into two parts: the upper part is the original input video frame and the
lower part is the confidence graph of the skeleton output by the network. It can be seen
from the confidence graph that compared with the ST-GCN, thanks to the introduction of
the new partitioning strategy, the NP-AGCN could mobilize more information about the
node during the identification process, and thus, it could have a good recognition effect on
the climbing actions in Figure 8a,b. As can be seen from Figure 8b, the original confidence
degree was no longer focused on a certain joint that was mainly involved in the action but
dynamically distributed the attention among multiple nodes that participated in the whole
action. This was basically the same as the original intention of introducing a multi-head
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self-attention module, and also showed that a multi-head self-attention module was well
used in the behavior recognition network. It can be seen from Figure 8c,d that both models
displayed good recognition performance on important nodes for actions such as falling
and carrying because the features of these two categories were more obvious; however, the
ST-GCN still had an error in identifying Figure 8d.
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5. Conclusions

In this study, we proposed a network model for unsafe behavior identification for
miners in a coal mine transportation roadway. The model was based on an ST-GCN with
two improvements. On the one hand, a new partitioning strategy was proposed to connect
some joints that were not physically connected and repartition all joints. In the accuracy
experiment of a single category, it was found that the addition of the new zoning strategy
could greatly improve the networks’ ability to identify the miners’ movements of multiple
limbs, such as when climbing equipment. On the other hand, the self-attention mechanism
was introduced into the graph convolution structure, and its learning ability for global
information was utilized to enable the model to combine global nodes when learning local
nodes. After visualizing the confidence graph of recognition results, it can be seen that
the self-attention mechanism was dynamically distributed among multiple nodes that
participated in the whole action, thus improving the detection accuracy. Finally, in order to
verify the improvement of the model, our model was compared with the original network
and some improved networks using the NTU-RGBD and miners’ unsafe behavior datasets.
The accuracies of the model on two different benchmarks, namely, 1S-AGCN and 2S-AGCN,
using NTU-RGBD were 87.1% and 94.7%, respectively, which were 5.6% and 6.4% higher
than that of the original model, respectively. An accuracy of 94.1% was obtained using the
dataset of miners’ unsafe behavior, which was the best result among all the comparison
models. These results demonstrated the performance improvement of the original model
and the applicability of our improved model for the identification of the unsafe behavior
of miners.
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