A Practical Green Infrastructure Intervention to Mitigate Air Pollution in a UK School Playground
Abstract
:1. Introduction
- (i)
- Can site-specific multi-species thin green barriers provide enough protection against NO2 and PM2.5 air pollution in a school facility?
- (ii)
- What is ambient PM around an inner-city school made of?
- (iii)
- What has a larger influence on school air quality: multi-species thin green barrier implementation or low-vehicle traffic (due to COVID-19 lockdown)?
2. Materials and Methods
2.1. Study Design
Data Collection Period | Abbreviation | Date | Description |
---|---|---|---|
Pre-green barrier | pre-gb | July–October 2019 | Baseline period: before the green barrier was implemented in Sch-GB site’s playground. |
COVID-19 lockdown | lock | April–June 2020 | Period after the green barrier implementation with first national lockdown measures to contain the COVID-19 pandemic. Vehicle traffic and citizens’ mobility were highly restricted. |
Post-green barrier20 | post-gb20 | July–October 2020 | Period one year after the green barrier implementation. COVID-19 restrictions were eased from 23 June to 31 October 2020. Second national lockdown came in force on 5th of November 2020. |
Post-green barrier21 | post-gb21 | July–October 2021 | Period two years after the green barrier implementation. Last phase of COVID-19 pandemic restrictions ease, and full reopening of all economic activities on 19 July 2021. |
Period | Site | ||
---|---|---|---|
Sch-GB Mean ± SE | City Mean ± SE | Sch-NoGB Mean ± SE | |
pre-gb | 331.2 ± 4.2 | 231 ± 3.6 | NA |
lock | 197.4 ± 3.6 | 83.4 ± 1.8 | 268.2 ± 3.6 |
post-gb20 | 303.0 ± 4.2 | 160.2 ± 2.4 | 386.4 ± 3.6 |
post-gb21 | 342.0 ± 9.0 | 200.4 ± 3.0 | 463.2 ± 4.8 |
2.2. Green Infrastructure Intervention
2.3. Air Quality Data Collection
2.3.1. Continuous Monitoring with Fixed Devices—NO2 and PM2.5
2.3.2. Monthly Monitoring with Diffusion Tubes—NO2
2.3.3. Intermittent Monitoring with a Mobile Device—PM2.5
2.4. Air Quality Assessment
2.4.1. Data De-Seasonalisation
- Step 1—Deweather:
- ii.
- Step 2—Meteorological normalisation:
2.4.2. Air Quality Pattern Trends
2.4.3. Qualitative Spatial Analysis
2.5. Qualitative PM Elemental Composition Identification
3. Results and Discussion
3.1. Impact of Green Barrier on Playground Air Quality
3.2. Elemental Composition of PM Captured by Green Barrier Plants
3.3. Impact of Low-Vehicle Traffic and Low-Citizens’ Mobility Period (COVID-19 Lockdown) on Air Quality
4. Conclusions
- This study suggests that the site-specific and multi-species thin green barrier (0.9–1.3 m max width) built in a UK school playground reduced air pollution. The reduction in pollutants concentration was significant for NO2 (between 13% to 23%) and slight for PM2.5 (about 2%). The downward pre-post intervention trend was statistically significant.
- Composition of PM deposited on the green barrier plant Hedera helix ‘Woerner’ suggests PM of natural and anthropogenic origin. The latter include catalytic converters from motorised vehicles.
- Low-vehicle traffic and low-citizen mobility (lockdown) seem to have significantly reduced NO2; such reduction exceeds the effects of the green barrier. These mobility restrictions do not seem to significantly reduce PM pollution in the UK case study, most likely because meteorological patterns and conditions have a stronger influence on PM than traffic levels.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Air Pollution and Child Health: Prescribing Clean Air Summary; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Calderón-Garcidueñas, L.; Engle, R.; Mora-Tiscareño, A.; Styner, M.; Gómez-Garza, G.; Zhu, H.; Jewells, V.; Torres-Jardón, R.; Romero, L.; Monroy-Acosta, M.E.; et al. Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain Cogn. 2011, 77, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Freire, C.; Ramos, R.; Puertas, R.; Lopez Espinosa, M.J.; Julvez, J.; Aguilera, I.; Cruz, F.; Fernandez, M.F.; Sunyer, J.; Olea, N. Association of traffic-related air pollution with cognitive development in children. J. Epidemiol. Community Health 2010, 64, 223–228. [Google Scholar] [CrossRef]
- Roberts, S.; Arseneault, L.; Barratt, B.; Beevers, S.; Danese, A.; Odgers, C.L.; Moffitt, T.E.; Reuben, A.; Kelly, F.J.; Fisher, H.L. Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. Psychiatry Res. 2019, 272, 8–17. [Google Scholar] [CrossRef] [PubMed]
- An, F.; Liu, J.; Lu, W.; Jareemit, D. A review of the effect of traffic-related air pollution around schools on student health and its mitigation. J. Transp. Health 2021, 23, 101249. [Google Scholar] [CrossRef]
- Brugha, R.; Grigg, J. Urban air pollution and respiratory infections. Paediatr. Respir. Rev. 2014, 15, 194–199. [Google Scholar] [CrossRef]
- Payne-Sturges, D.C.; Marty, M.A.; Perera, F.; Miller, M.D.; Swanson, M.; Ellickson, K.; Cory-Slechta, D.A.; Ritz, B.; Balmes, J.; Anderko, L.; et al. Healthy air, healthy brains: Advancing air pollution policy to protect children’s health. Am. J. Public Health 2019, 109, 550–554. [Google Scholar] [CrossRef]
- Sofia, D.; Gioiella, F.; Lotrecchiano, N.; Giuliano, A. Mitigation strategies for reducing air pollution. Environ. Sci. Pollut. Res. 2020, 27, 19226–19235. [Google Scholar] [CrossRef] [PubMed]
- Amann, M.; Kiesewetter, G.; Schöpp, W.; Klimont, Z.; Winiwarter, W.; Cofala, J.; Rafaj, P.; Höglund-Isaksson, L.; Gomez-Sabriana, A.; Heyes, C.; et al. Reducing global air pollution: The scope for further policy interventions: Achieving clean air worldwide. Philos. Trans. R. Soc. A 2020, 378, 2183. [Google Scholar] [CrossRef]
- European Commission. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- del Bermúdez, M.C.R. Plants, Ambient Air Quality, and Human Health. In Good Health and Well-Being. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Wall, T., Azul, A.M., Brandli, L., Özuyar, P.G., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–12. ISBN 9783319696270. [Google Scholar]
- Baldauf, R. Air pollution mitigation through vegetation barriers and green space. In Traffic-Related Air Pollution; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 437–453. ISBN 9780128181225. [Google Scholar]
- Deshmukh, P.; Isakov, V.; Venkatram, A.; Yang, B.; Zhang, K.M.; Logan, R.; Baldauf, R. The effects of roadside vegetation characteristics on local, near-road air quality. Air Qual. Atmos. Health 2019, 12, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G.; Fares, S.; Thiec, D.L.; Niinemets, Ü.; Mikkelsen, T.N.; et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 2016, 14, 543–550. [Google Scholar] [CrossRef]
- US EPA. Best Practices for Reducing Near-Road Pollution Exposure at Schools; US EPA: Washington, DC, USA, 2015. [Google Scholar]
- Landscape & Urban Design. Highlighting Britain’s toxic air scandal: How C4’s dispatches & Hedges Direct reduced air pollution by 53%. Landsc. Urban Des. 2019, 38, 58–59. Available online: https://viewer.joomag.com/landscape-urban-design-issue-38-2019/0706808001561646708?short& (accessed on 20 July 2022).
- Groundwork. Air Quality Green Infrastructure: A Toolkit for Schools; Groundwork: London, UK, 2019. [Google Scholar]
- BBC. Newsround Air pollution: How a School in Manchester Is Fighting Back against Air Pollution; BBC: London, UK, 2021. [Google Scholar]
- Barrett, T. ‘Life-Saving’ Scheme to Tackle Air Pollution at Manchester Schools. 2019. Available online: https://airqualitynews.com/2019/06/24/life-saving-scheme-to-tackle-air-pollution-at-manchester-schools/ (accessed on 4 April 2022).
- Mayor of London Press Office. Mayor’s Green Fund Helps Schools Fight Toxic Air; Mayor of London Press Office: London, UK, 2019. [Google Scholar]
- Abhijith, K.V.; Kukadia, V.; Kumar, P. Investigation of air pollution mitigation measures, ventilation, and indoor air quality at three schools in London. Atmos. Environ. 2022, 289, 119303. [Google Scholar] [CrossRef]
- Al-dabbous, A.N.; Kumar, P. The influence of roadside vegetation barriers on airborne nanoparticles and pedestrians exposure under varying wind conditions. Atmos. Environ. 2014, 90, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.R. Effect of porous hedge on cross ventilation of a residential building. Build. Environ. 2006, 41, 549–556. [Google Scholar] [CrossRef]
- Xing, Y.; Brimblecombe, P. Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmos. Environ. 2019, 201, 73–83. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Ng, A.W.M.; Muthukumaran, S.; Perera, B.J.C. Green infrastructure practices for improvement of urban air quality. Urban For. Urban Green. 2017, 21, 34–47. [Google Scholar] [CrossRef]
- Jeanjean, A.P.R.; Gallagher, J.; Monks, P.S.; Leigh, R.J. Ranking current and prospective NO2 pollution mitigation strategies: An environmental and economic modelling investigation in Oxford Street, London. Environ. Pollut. 2017, 225, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Pugh, T.A.M.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [Green Version]
- Morakinyo, T.E.; Lam, Y.F. Simulation study of dispersion and removal of particulate matter from traffic by road-side vegetation barrier. Environ. Sci. Pollut. Res. 2016, 23, 6709–6722. [Google Scholar] [CrossRef]
- Maher, B.A.; Gonet, T.; Karloukovski, V.V.; Wang, H.; Bannan, T.J. Protecting playgrounds: Local-Scale reduction of airborne particulate matter concentrations through particulate deposition on roadside ‘tredges’ (green infrastructure). Sci. Rep. 2022, 12, 14236. [Google Scholar] [CrossRef] [PubMed]
- UK Department for Transport Road Traffic Statistics—Local Authority Sheffield. Available online: https://roadtraffic.dft.gov.uk/local-authorities/159 (accessed on 20 July 2022).
- Institute for Government Timeline of UK Government Coronavirus Lockdowns and Restrictions. Available online: https://www.instituteforgovernment.org.uk/charts/uk-government-coronavirus-lockdowns (accessed on 4 April 2022).
- Ortiz, P.F. Urban Flows Observatory Portal. Available online: https://sheffield-portal.urbanflows.ac.uk/uflobin/ufportal/ (accessed on 30 October 2021).
- Redondo-Bermúdez, M.d.C.; Jorgensen, A.; Cameron, R.W.; Val Martin, M. Green Infrastructure for Air Quality plus (GI4AQ+): Defining critical dimensions for implementation in schools and the meaning of ‘plus’ in a UK context. Nat.-Based Solut. 2022, 2, 2–13. [Google Scholar] [CrossRef]
- Redondo-Bermúdez, M.d.C.; Gulenc, I.T.; Cameron, R.W.; Inkson, B.J. ‘Green barriers’ for air pollutant capture: Leaf micromorphology as a mechanism to explain plants capacity to capture particulate matter. Environ. Pollut. 2021, 288, 117809. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Heydon, J.; Mayfield, M.; Mihaylova, L. Indoor air pollution from residential stoves: Examining the flooding of particulate matter into homes during real-world use. Atmosphere 2020, 11, 1326. [Google Scholar] [CrossRef]
- Munir, S.; Mayfield, M.; Coca, D.; Jubb, S.A. Structuring an integrated air quality monitoring network in large urban areas—Discussing the purpose, criteria and deployment strategy. Atmos. Environ. X 2019, 2, 100027. [Google Scholar] [CrossRef]
- Environmental Instruments Ltd Global Co-Location Comparison Trials. Available online: https://www.aqmesh.com/performance/co-location-comparison-trials/ (accessed on 20 May 2022).
- Breathe London. Breathe London Technical Report. Pilot Phase (2018–2020); Breathe London: London, UK, 2021. [Google Scholar]
- Zauli-Sajani, S.; Marchesi, S.; Pironi, C.; Barbieri, C.; Poluzzi, V.; Colacci, A. Assessment of air quality sensor system performance after relocation. Atmos. Pollut. Res. 2021, 12, 282–291. [Google Scholar] [CrossRef]
- Merico, E.; Dinoi, A.; Contini, D. Development of an integrated modelling-measurement system for near-real-time estimates of harbour activity impact to atmospheric pollution in coastal cities. Transp. Res. Part D 2019, 73, 108–119. [Google Scholar] [CrossRef]
- Wong, P.P.Y.; Lai, P.C.; Allen, R.; Cheng, W.; Lee, M.; Tsui, A.; Tang, R.; Thach, T.Q.; Tian, L.; Brauer, M.; et al. Vertical monitoring of traffic-related air pollution (TRAP) in urban street canyons of Hong Kong. Sci. Total Environ. 2019, 670, 696–703. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, W.; Shantz, N.; Neil, L.; Townend, T.; Adamescu, A.; Al-Abadleh, H.A. Air Quality Measurements in Kitchener, Ontario, Canada Using Multisensor Mini Monitoring Stations. Atmosphere 2022, 13, 83. [Google Scholar] [CrossRef]
- Castell, N.; Schneider, P.; Grossberndt, S.; Fredriksen, M.F.; Sousa-Santos, G.; Vogt, M.; Bartonova, A. Localized real-time information on outdoor air quality at kindergartens in Oslo, Norway using low-cost sensor nodes. Environ. Res. 2018, 165, 410–419. [Google Scholar] [CrossRef]
- Environmental Instruments Ltd. AQ Mesh an Air Quality Monitoring System. Available online: https://www.aqmesh.com/products/aqmesh/ (accessed on 18 November 2021).
- UK Air Information Resource Site Information for Sheffield Devonshire Green (UKA00575). Available online: https://uk-air.defra.gov.uk/networks/site-info?uka_id=UKA00575 (accessed on 19 November 2021).
- Sheffield City Council Air quality in Sheffield. Available online: https://www.sheffield.gov.uk/home/pollution-nuisance/air-quality (accessed on 19 November 2021).
- DEFRA Diffusion Tubes Overview. Available online: https://laqm.defra.gov.uk/air-quality/air-quality-assessment/diffusion-tubes-overview/ (accessed on 10 March 2022).
- Loader, A. NO2 Diffusion Tubes for LAQM: Guidance Note for Local Authorities; DEFRA: Didcot, UK, 2006. [Google Scholar]
- Sheffield City Council Map of Diffusion Tubes. Available online: https://sheffieldcc.maps.arcgis.com/apps/webappviewer/index.html?id=199b788e3efc4bfdb75be866cf3bd01e (accessed on 2 February 2022).
- Oguntoke, O.; Emoruwa, F.O.; Taiwo, M.A. Assessment of air pollution and health hazard associated with sawmill and municipal waste burning in Abeokuta Metropolis, Nigeria. Environ. Sci. Pollut. Res. 2019, 26, 32708–32722. [Google Scholar] [CrossRef] [PubMed]
- Embiale, A.; Zewge, F.; Chandravanshi, B.S.; Sahle-Demessie, E. Commuter exposure to particulate matters and total volatile organic compounds at roadsides in Addis Ababa, Ethiopia. Int. J. Environ. Sci. Technol. 2019, 16, 4761–4774. [Google Scholar] [CrossRef]
- Apparicio, P.; Gelb, J.; Carrier, M.; Mathieu, M.È.; Kingham, S. Exposure to noise and air pollution by mode of transportation during rush hours in Montreal. J. Transp. Geogr. 2018, 70, 182–192. [Google Scholar] [CrossRef]
- Urban Flows Observatory The MOBIUS Project. Available online: https://urbanflows.ac.uk/mobius/ (accessed on 18 November 2021).
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of lockdown measures to combat COVID-19 on air quality over western Europe. Sci. Total Environ. 2020, 741, 140426. [Google Scholar] [CrossRef]
- Ropkins, K.; Tate, J.E. Early observations on the impact of the COVID-19 lockdown on air quality trends across the UK. Sci. Total Environ. 2021, 754, 142374. [Google Scholar] [CrossRef]
- Mohajeri, N.; Walch, A.; Gudmundsson, A.; Heaviside, C.; Askari, S.; Wilkinson, P.; Davies, M. COVID-19 mobility restrictions: Impacts on urban air quality and health. Build. Cities 2021, 2, 759–788. [Google Scholar] [CrossRef]
- Carslaw, D.C. Deweather—An R Package to Remove Meteorological Variation from Air Quality Data. Available online: https://github.com/davidcarslaw/deweather (accessed on 10 December 2021).
- Ridgeway, G. gbm—Generalized Boosted Models. R Package. Available online: https://cran.r-project.org/package=gbm (accessed on 3 January 2022).
- Carslaw, D.C. Worldmet—R Package for Accessing NOAA Integrated Surface Database (ISD) Meteorological Observations. Available online: https://davidcarslaw.github.io/worldmet/ (accessed on 3 January 2022).
- Carslaw, D.C.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Munir, S.; Mayfield, M.; Coca, D.; Mihaylova, L.S.; Osammor, O. Analysis of air pollution in urban areas with airviro dispersion model-A case study in the city of Sheffield, United Kingdom. Atmosphere 2020, 11, 285. [Google Scholar] [CrossRef] [Green Version]
- Greater London Authority. Using Green Infrastructure to Protect People from Air Pollution; Greater London Authority: London, UK, 2019. [Google Scholar]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; Mcnabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Kumar, P.; Zavala-Reyes, J.C.; Tomson, M.; Kalaiarasan, G. Understanding the effects of roadside hedges on the horizontal and vertical distributions of air pollutants in street canyons. Environ. Int. 2022, 158, 106883. [Google Scholar] [CrossRef]
- Pearce, H.; Levine, J.G.; Cai, X.; MacKenzie, A.R. Introducing the Green Infrastructure for Roadside Air Quality (GI4RAQ) Platform: Estimating Site-Specific Changes in the Dispersion of Vehicular Pollution Close to Source. Forests 2021, 12, 769. [Google Scholar] [CrossRef]
- Baldauf, R. Roadside vegetation design characteristics that can improve local, near-road air quality. Transp. Res. Part D 2017, 52, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Neft, I.; Scungio, M.; Culver, N.; Singh, S. Simulations of aerosol filtration by vegetation: Validation of existing models with available lab data and application to near-roadway scenario. Aerosol. Sci. Technol. 2016, 50, 937–946. [Google Scholar] [CrossRef] [Green Version]
- Morakinyo, T.E.; Lam, Y.F.; Hao, S. Evaluating the role of green infrastructures on near-road pollutant dispersion and removal: Modelling and measurement. J. Environ. Manag. 2016, 182, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Kumar, P.; Baldauf, R.; Zhang, K.M.; Pilla, F.; Di Sabatino, S.; Brattich, E.; Pulvirenti, B. Considerations for evaluating green infrastructure impacts in microscale and macroscale air pollution dispersion models. Sci. Total Environ. 2019, 672, 410–426. [Google Scholar] [CrossRef] [Green Version]
- Tomson, M.; Kumar, P.; Barwise, Y.; Perez, P.; Forehead, H.; French, K.; Morawska, L.; Watts, J.F. Green infrastructure for air quality improvement in street canyons. Environ. Int. 2021, 146, 106288. [Google Scholar] [CrossRef]
- Li, X.B.; Lu, Q.C.; Lu, S.J.; He, H.D.; Peng, Z.R.; Gao, Y.; Wang, Z.Y. The impacts of roadside vegetation barriers on the dispersion of gaseous traffic pollution in urban street canyons. Urban For. Urban Green. 2016, 17, 80–91. [Google Scholar] [CrossRef]
- Temper, A.H.; Green, D.C. The Impact of a Green Screen on Concentrations of Nitrogen Dioxide at Bowes Primary School, Enfield; Prepared for the London Borough of Enfield; King’s College London: London, UK, 2018; pp. 1–19. [Google Scholar]
- DEFRA Emissions of Air Pollutants in the UK—Particulate Matter (PM10 and PM2.5). Available online: https://www.gov.uk/government/statistics/emissions-of-air-pollutants/emissions-of-air-pollutants-in-the-uk-particulate-matter-pm10-and-pm25#major-emission-sources-for-pm10-and-pm25-in-the-uk (accessed on 10 April 2022).
- Amato, F.; Rivas, I.; Viana, M.; Moreno, T.; Bouso, L.; Reche, C.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; Querol, X. Sources of indoor and outdoor PM2.5 concentrations in primary schools. Sci. Total Environ. 2014, 490, 757–765. [Google Scholar] [CrossRef]
- Zeb, B.; Alam, K.; Sorooshian, A.; Blaschke, T.; Ahmad, I.; Shahid, I. On the morphology and composition of particulate matter in an urban environment. Aerosol. Air Qual. Res. 2018, 18, 1431–1447. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, T.; Singla, V.; Satsangi, A.; Lakhani, A.; Maharaj Kumari, K. SEM-EDX characterization of individual coarse particles in Agra, India. Aerosol. Air Qual. Res. 2013, 13, 523–536. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Khlystov, A.; Norford, L.K.; Tan, Z.K.; Balasubramanian, R. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications. Atmos. Environ. 2017, 161, 132–143. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Gonet, T.; Maher, B.A.; Kukutschová, J. Source apportionment of magnetite particles in roadside airborne particulate matter. Sci. Total Environ. 2021, 752, 141828. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, C.L.S.; Zereini, F. Airborne particulate matter, platinum group elements and human health: A review of recent evidence. Sci. Total Environ. 2009, 407, 2493–2500. [Google Scholar] [CrossRef]
- Ravindra, K.; Bencs, L.; Van Grieken, R. Platinum group elements in the environment and their health risk. Sci. Total Environ. 2004, 318, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 2017, 27, 173–186. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P. Quantifying particulate matter reduction and their deposition on the leaves of green infrastructure. Environ. Pollut. 2020, 265, 114884. [Google Scholar] [CrossRef]
- Diener, A.; Mudu, P. How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective—With implications for urban planning. Sci. Total Environ. 2021, 796, 148605. [Google Scholar] [CrossRef]
- Barwise, Y.; Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. Clim. Atmos. Sci. 2020, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- DEFRA Emissions of Air Pollutants in the UK—Nitrogen Oxides (NOx). Available online: https://www.gov.uk/government/statistics/emissions-of-air-pollutants/emissions-of-air-pollutants-in-the-uk-nitrogen-oxides-nox (accessed on 17 May 2022).
- Hewitt, C.N.; Ashworth, K.; Mackenzie, A.R. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 2019, 49, 62–73. [Google Scholar] [CrossRef] [Green Version]
- London Fire Brigade. London Lockdown Sees Spike in Outdoor Fires; London Fire Brigade: London, UK, 2020. [Google Scholar]
- Munir, S.; Coskuner, G.; Jassim, M.S.; Aina, Y.A.; Ali, A.; Mayfield, M. Changes in air quality associated with mobility trends and meteorological conditions during COVID-19 lockdown in Northern England, UK. Atmosphere 2021, 12, 504. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Redondo Bermúdez, M. del C.; Kanai, J.M.; Astbury, J.; Fabio, V.; Jorgensen, A. Green Fences for Buenos Aires: Implementing Green Infrastructure for (More than) Air Quality. Sustainability 2022, 14, 4129. [Google Scholar] [CrossRef]
Study Site | Air Quality Monitor Type | Air Quality Monitor Specifications | Monitoring Technique | Ref. |
---|---|---|---|---|
Sch-GB (green barrier intervention) | Low-cost (medium data accuracy) Data quality:
| AQ Mesh V5.0 Developed by Environmental Instruments Ltd. Monitor at 1.7 m above ground level, 3 m away from closest road | NO2: Electrochemical PM2.5: Optical particle counter | [36,37,44] |
City (control site—city centre) | Reference (high data accuracy) | Monitoring station from DEFRA’s AURN Station from ground level to 3 m high, 15 m away from closest road | NO2: Chemiluminescence PM2.5: Tapered Element Oscillating Microbalance | [36,45] |
Sch-NoGB (control site—school) | Reference (high data accuracy) | Monitoring station from Sheffield City Council Station from ground level to 2.5 m high, 3.5 m away from closest road | NO2: Chemiluminescence PM2.5: Tapered Element Oscillating Microbalance | [36,46] |
Air Quality Data Collection | Period | Study Site | |||||
---|---|---|---|---|---|---|---|
Sch-GB | City | Sch-NoGB | |||||
Mean ± SE (µg m−3) | Conc. diff. 1 | Mean ± SE (µg m−3) | Conc. diff. | Mean ± SE (µg m−3) | Conc. diff. | ||
NO2—fixed monitor (de-seasonalised) | pre-gb | 27.53 ± 0.05 | - | 19.04 ± 0.10 | - | 24.82 ± 0.11 | - |
lock | NA 2 | NA | 14.37 ± 0.03 | −24.43% | 18.50 ± 0.03 | −25.44% | |
post-gb20 | NA | NA | 16.02 ± 0.08 | −15.76% | 19.02 ± 0.06 | −23.34% | |
post-gb21 | 22.88 ± 0.11 | −16.88% | 17.67 ± 0.10 | −6.98% | 24.73 ± 0.10 | −0.37% | |
NO2—diffusion tubes (weather-influenced) | pre-gb | 24.58 ± 2.17 | - | 22.25 ± 0.66 | - | 28.58 ± 0.30 | - |
lock | 11.50 ± 1.50 | −53.22% | 14.22 ± 0.29 | −36.09% | 19.05 ± 0.31 | −33.36% | |
post-gb20 | 16.08 ± 1.17 | −34.58% | 17.83 ± 0.46 | −19.87% | 26.33 ± 0.51 | −7.87% | |
post-gb21 | 14.11 ± 0.63 | −42.62% | 16.43 ± 0.41 | −26.16% | 25.12 ± 0.59 | −12.12% | |
PM2.5—fixed monitor (de-seasonalised) | pre-gb | 5.98 ± 0.01 | - | 6.74 ± 0.01 | - | 6.64 ± 0.01 | - |
lock | 7.50 ± 0.01 | 25.32% | 7.96 ± 0.03 | 18.16% | 7.98 ± 0.03 | 20.13% | |
post-gb20 | 6.09 ± 0.01 | 1.71% | 6.63 ± 0.01 | −1.52% | 6.62 ± 0.01 | −0.27% | |
post-gb21 | 5.85 ± 0.01 | −2.31% | 6.74 ± 0.01 | 0.033% | 6.65 ± 0.01 | 0.078% |
Air Quality Data Collection | Period | Location Inside Playground | |||||
---|---|---|---|---|---|---|---|
North Tube | South Tube | West Tube | |||||
Mean ± SE (µg m−3) | Conc. diff. 1 | Mean ± SE (µg m−3) | Conc. diff. | Mean ± SE (µg m−3) | Conc. diff. | ||
NO2—diffusion tubes (weather-influenced) | pre-gb | 24.75 ± 2.24 | - | 20.75 ± 3.33 | - | 28.25 ± 2.29 | - |
lock | NA | - | 10.00 | −51.81% | 13.00 | −53.98% | |
post-gb20 | 15.75 ± 1.11 | −36.33% | 14.25 ± 1.11 | −31.33% | 18.25 ± 1.11 | −35.39% | |
post-gb21 | 13.72 ± 1.70 | −44.57% | 13.25 ± 1.21 | −36.14% | 15.35 ± 1.55 | −45.66% |
Weather Conditions | Period | Sampling Points | Mean ± SE (µg m−3) | Conc. diff. 1 against Street |
---|---|---|---|---|
High hum–low temp | pre-gb | street | 5.82 ± 0.21 | - |
playground | 6.45 ± 0.20 | 10.95% | ||
post-gb20 | street | 7.03 ± 0.17 | - | |
playground | 7.07 ± 0.11 | 0.60% | ||
Low hum–high temp | pre-gb | street | 5.63 ± 0.12 | - |
playground | 5.79 ± 0.11 | 2.79% | ||
post-gb20 | street | 6.34 ± 0.14 | - | |
playground | 6.04 ± 0.06 | −4.69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redondo Bermúdez, M.d.C.; Chakraborty, R.; Cameron, R.W.; Inkson, B.J.; Val Martin, M. A Practical Green Infrastructure Intervention to Mitigate Air Pollution in a UK School Playground. Sustainability 2023, 15, 1075. https://doi.org/10.3390/su15021075
Redondo Bermúdez MdC, Chakraborty R, Cameron RW, Inkson BJ, Val Martin M. A Practical Green Infrastructure Intervention to Mitigate Air Pollution in a UK School Playground. Sustainability. 2023; 15(2):1075. https://doi.org/10.3390/su15021075
Chicago/Turabian StyleRedondo Bermúdez, María del Carmen, Rohit Chakraborty, Ross W. Cameron, Beverley J. Inkson, and Maria Val Martin. 2023. "A Practical Green Infrastructure Intervention to Mitigate Air Pollution in a UK School Playground" Sustainability 15, no. 2: 1075. https://doi.org/10.3390/su15021075
APA StyleRedondo Bermúdez, M. d. C., Chakraborty, R., Cameron, R. W., Inkson, B. J., & Val Martin, M. (2023). A Practical Green Infrastructure Intervention to Mitigate Air Pollution in a UK School Playground. Sustainability, 15(2), 1075. https://doi.org/10.3390/su15021075