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Abstract: Digital image correlation (DIC) is widely used in material experiments such as ores; the
quality of a speckle image directly affects the accuracy of the DIC calculation. This study aims to
acquire high-quality speckle pattern images and improve the calculation accuracy and stability. A
gradient-based image quality metric was selected to evaluate the image quality, and its validity was
verified by a rigid body experiment and a numerical experiment. Based on the maximum image
quality metric, an automatic exposure control algorithm and the control procedure were proposed to
obtain the optimal exposure time. Finally, nine sets of images with different poses and illuminations
were captured, and displacement and strain fields were calculated at the fixed exposure time and the
optimized exposure time. The results of the rigid-body motion experiment show that the calculated
data at the optimized exposure time is smoother and less noisy, and the error is smaller, which verifies
the effectiveness of the exposure control procedure and its algorithm and improves the accuracy and
stability of DIC calculation.
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1. Introduction

Digital image correlation (DIC) is a common optical measurement method for measur-
ing full-field deformation and strain, which is widely used in material experiments such
as ores [1–4]. In the calculation of DIC, the quality of the speckle image directly affects
the calculation accuracy [5,6]. In most practical measurement environments, a uniform
illumination environment is usually required to illuminate the tested object so as to cap-
ture the speckle images with a uniform background intensity under different deformation
states. However, in practical engineering and experiments, especially for multi-camera,
outdoor or low-speed dynamic experiments, it is more feasible and convenient to use
sunlight or skylight than a light source with a specific wavelength. Furthermore, due
to the large size of the measured object, the long experiment period, the motion of the
object, the partial occlusion of the light caused by the deformation of the object, etc., the
illumination conditions may be changed, and the illumination variation directly affects the
accuracy of the DIC calculation [7–9]. In addition, the CCD camera is generally nonlinear
due to its response function and involutional characteristics, which makes the pixel value
of the image obtained from the measured object at different positions and different light
intensities different and also causes nonuniform background intensity distribution to the
obtained speckle image. Therefore, it is necessary to study the influence of illumination
variation and modify the related influencing factors to improve the accuracy and stability
of the DIC algorithm.
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Recently, considerable literature has emerged around the theme of overcoming the
difficulties caused by illumination variations. Generally, it can be divided into two solutions.
One is to improve the correlation algorithms. The commonly applied correlation criteria
including zero-mean normalized cross correlation (ZMCC), zero-mean normalized sum
of squared difference (ZMSSD) and parametric sum of squared differences (PSSD) are
recommended to deal with linear intensity variations [10]. Some researchers improved
the correlation algorithm to deal with nonlinear intensity changes, such as Liu [11] and
Xu [8]. The other solution is to improve the quality of speckle pattern images. A number
of studies [5,12,13] have reported and demonstrated that high-quality speckle pattern
images are the prerequisite and basis for performing high-accuracy DIC measurements. To
acquire high-quality speckle pattern images, various factors should be carefully considered
to control the amount of light reaching the camera sensor (i.e., camera exposure) [14,15].
Without proper exposure control, images would be overexposed or underexposed. There
are several parameters for adjusting the camera exposure [7,16]; the critical and most
practical approach is to adjust the exposure time automatically without physically touching
the system [15,16].

In this study, with the purpose of acquiring high-quality speckle pattern images for
DIC calculation, the nonlinear response of the camera and the nonuniform illumination
were considered to improve the calculation accuracy and stability. To this end, an existing
gradient-based image quality metric was chosen as the evaluation metric, and a rigid body
experiment and a numerical experiment were carried out to verify the efficiency of the
image quality metric. Then, based on the maximum image quality metric, the optimal
exposure time can be found according to the exposure control algorithm. Finally, nine
sets of images at the fixed exposure time and the optimized exposure time were captured
and compared, which verifies the efficiency and accuracy of the exposure control and
its algorithm.

2. Existing Problems

The correlation criterion is defined to quantify the degree of similarity (or difference)
between the reference subset and its deformed counterpart; thus, it is of fundamental
importance in DIC. In this study, the widely used zero-mean normalized sum of squared
difference (ZNSSD) [17] is chosen as the correlation function. The correlation function is
insensitive to the translation and scaling of the gray scale of the target sub-region. For a
rectangular sub-region image, there are three deformation modes of translation, scaling and
translation + scaling, as shown in Figure 1. If the sub-region of the reference image f (x, y) is
linearly transformed into the sub-region of the current image g(x, y) = a f (x, y) + b, where
a and b are constant coefficients, then there is no difference among the variation in the
image pixel of the three deformation modes calculated by ZNSSD theory.
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Figure 1. (a) Translation, (b) scaling, (c) translation + scaling of image pixels between the reference
image and current image.

However, when the image of the sub-region is subject to nonuniform illumination
or the illumination is occluded, in addition to translation and scaling, the change in
the pixel value in the sub-region may also have a deflection of the pixel value, such as
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g(x, y) = a f (x, y) + α(x− xc) + b, where xc is the central position of the sub-region and
α is the coefficient of deflection, as shown in Figure 2a. Similarly, due to the nonlinear
response function of the image acquisition equipment (h( f (x, y) )), the variation in the pixel
value no longer conforms to the form of a f (x, y) + b, as shown in Figure 2b. In fact, the real
collected data come from the image combining the nonlinear response of the equipment and
nonuniform illumination, as shown in Figure 2c. Therefore, in addition to the correlation
function, the nonlinear response of the equipment and the nonuniform illumination must
be considered in DIC calculation.
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2.1. Nonlinear Response of the Camara

The optical vignetting map is caused by the actual size of one or more lenses. The front
lens covers the rear lens, resulting in a reduction in the effective incident light of the rear
lens in the off-axis direction and a gradual decrease in the light intensity from the center of
the image to the periphery. The relationship between the input exposure and the output
brightness value is called the response function. Generally speaking, the response function
is nonlinear. In order to reduce the influence of illumination and obtain the experimental
image more accurately, the calibration method for the nonlinear response function of a
camera sensor is introduced, which is called photometric calibration [18]. For the details of
the photometric calibration process, please refer to [19,20].

2.2. Nonuniform Illumination

For the nonuniform illumination, in order to eliminate or reduce its influence, improv-
ing the quality of the light source is a feasible method. Generally, a more stable blue light
source [21,22] or fluorescence spraying [23,24] can be used. However, when sunlight or
skylight is used as the light source, it is necessary to reduce the influence of illumination
and improve the calculation accuracy of DIC in sub-regions.

The image pixel value in the sub-region is regarded as a changing waveform, as shown
in Figure 3. When the exposure time is low, the image in the sub-region looks dark; thus,
the difference between the peak and trough is small. When the exposure time is high,
the image in the sub-region looks bright, the value of the waveform is generally high
and the difference between the peak and trough is small, too. However, for the normal
exposure time, there is a large difference between the peak and trough. Therefore, the
maximum difference between the waveforms (i.e., the maximum gradient information) can
be found by adjusting the exposure time so as to improve the accuracy of DIC calculation in
the sub-region.
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3. Image Quality Metrics
3.1. Gradient-Based Metrics

In order to acquire high-quality images, a proper metric for image quality is critical,
although the metrics are highly application-dependent [18,25,26]. Regarding DIC applica-
tions, the gradient-based image metrics are usually used as the image quality metrics [27]
because the gradient is a dominant source of visual information [28] and the gradient
domain is robust against illumination changes [29]. The two existing image quality metrics
are analyzed below.

For an image I, when the exposure time is ∆t, the magnitude of the gradient at a pixel
p is:

G(p, ∆t) = ‖∇I(p, ∆t)‖2 (1)

where ∇I(·) =
[

∂I
∂x , ∂I

∂y

]T
.

Usually, the direct gradient sum can be used as the evaluation metric of pixel quality:

Msum = ∑
pi∈I

G(pi) (2)

Shim et al. [30] defined the gradient information at pixel location pi as:

mpi
=

{
1
N log(λ(

∼
G(pi)− σ) + 1), G(pi) ≥ σ

0, G(pi) < σ
s.t. N = log(λ(1− σ) + 1)

(3)

where σ is an activation threshold,
∼
G is the gradient magnitude normalized to the range of

[0, 1], λ is a control parameter for adjusting mapping tendencies and N is a normalization
factor for binding the gradient information to the range of [0, 1].

Then, the total gradient information in an image is:

Mshim = ∑
pi∈I

mpi
(4)

Zhang et al. [18] defined the soft percentile metric as a weighted sum of the sorted
gradient magnitudes:

Msoftperc(p) = ∑
i∈[0,s]

Wi(p)Gi (5)
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where p means the percentage of the pixels whose gradient magnitudes are smaller than
a certain percentile of all the gradient magnitudes, s is the total number of pixels in the
image and Gi is the sorted gradient magnitudes in an ascending order.

The weights are

Wi =


1
N sink

(
π

2bp.s+0.5c i
)

i ≤ bp.s + 0.5c
1
N sink

(
π
2 −

π
2bp.s+0.5c (i− bp.s + 0.5c)

)
i > bp.s + 0.5c

(6)

where b·c rounds a number down to the closest integer, N = ∑s
i=0 Wi.

3.2. Experimental Evaluation

In order to understand the difference in the aforementioned metrics and verify the
efficiency and accuracy of the subsequent algorithms, the following experiment model
was designed. A steel cube specimen with a side length of 10 cm was processed by a
high-precision machine tool. There was a control point every 10 mm in the vertical and
horizontal directions on one of the faces of the specimen and a total of 100 control points on
this face, which was sprayed with speckle, as shown in Figure 4. The control points were
designed for the follow-up SFM (structure-from-motion) calculation.
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Figure 4. Photographs of the specimen.

A sequence of images of the same scene at different exposure times ranging from 1 ms
to 10 ms with 0.2 ms intervals were taken. Figure 5 shows the images at the exposure
times of 2, 3, 4, 5, 6, 7, 8, 9 and 10 ms. After computing the metrics for all the images by
using the above two metrics, Figure 6 displays the comparison of the two metrics. It can be
observed that the whole image quality cannot be evaluated well when using Mshim due
to the monotonic rise of the curve, while Msoftperc can better evaluate the image quality
according to the extreme point of the curve. It can also be concluded that there exists an
optimal exposure time for a specific image under the fixed illumination conditions, and the
image quality metric Msoftperc can be used to find the optimal exposure time. Based on the
above observations, Msoftperc will be used in the rest of the work.
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3.3. Numerical Evaluation

In order to verify the efficiency of the image quality metric in image calculation, the
reference image function in Section 3.2 at different exposure times is set as f (x, y), the
influence of illumination centered on point (xc, yc) is linearly superimposed—α(x− xc) +
β(y− yc) (α and β are constants)—and then the uniformly distributed noise term rand(s)
is superimposed as well; finally, the changed image function can be obtained:

g(x, y) = f (x, y) + α(x− xc) + β(y− yc) + rand(s) (7)

Four cases of α, β, s are selected for the calculation: (1) α = 0, β = 0, s = 50,
(2) α = sin8

◦
, β = sin10

◦
, s = 50, (3) α = 0, β = 0, s = 30, (4) α = sin8

◦
, β = sin10

◦
, s = 30.

Figure 7 shows the evaluation of image quality metrics at different exposure times
for the above four cases. The black curve is the image quality metric Msoftperc, which is
obtained from Equations (5) and (6), where p = 0.8. The orange area corresponds to the
calculated horizontal displacement Ux (pixel) or vertical displacement Uy (pixel) between
the changed image g(x, y) and the original reference image f (x, y) at different exposure
times. It can be observed that when the exposure time is 1 ms, the maximum horizontal
and vertical displacement values are 0.16 pix and 0.21 pix, respectively, which reflects that
the change in illumination has a great impact on the calculation results. When the exposure
time is within the range of 7–9 ms, the calculation error is basically kept within the range of
0.03 pix, which reflects that the change in illumination has little impact on the calculation
results and that the image has a strong robustness. It can be inferred that the calculation
error is the smallest at the peak of the evaluation metric Msoftperc, and this method can
describe the image quality at different exposure times in DIC calculation well.
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4. Exposure Control

Figure 8 shows the schematic diagram of exposure control. First, the vignetting map
and camera response curves are obtained from the series of images by using the photometric
calibration method. Then, the image quality evaluation is carried out on the photometric
calibration image so as to maximize the image quality metric. Based on the maximum
image quality evaluation metric, the optimal exposure time can be found, and, finally, the
improved current image can be obtained.
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Figure 9 shows the schematic diagram of the search algorithm for the optimal exposure
time. First, two images at exposure times t1 and t2 are taken, so the relationship of the
two exposure times is t2 = t1 + ∆t. Then, the image quality metrics of two consecutive
frames (Mso f tperc,1 and Mso f tperc,2) are calculated according to Equations (5) and (6), and
the approximate partial derivative of the first two frames (exposure interval is ∆t) can be
obtained:

∂Mso f tperc

∂∆t

∣∣∣∣
1
=

Mso f tperc,2 −Mso f tperc,1

∆t2 − ∆t1
(8)
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Define the first secant magnification as η1 (initial coefficient); then, the predicted
location of the next exposure time point is:

t3 = t2 + ∆t + η1
∂Mso f tperc

∂∆t

∣∣∣∣
1

(9)
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The exposure times of the second consecutive two frames are t3 and t4, and the relation
is t4 = t3 + ∆t. The approximate partial derivative can be calculated as:

∂Mso f tperc

∂∆t

∣∣∣∣
2
=

Mso f tperc,4 −Mso f tperc,3

t4 − t3
(10)

The second secant magnification is:

η2 =
η1

∂Mso f tperc
∂∆t

∣∣∣
1

∂Mso f tperc

∂∆t

∣∣∣∣
2

(11)

Similarly, the exposure times of the ith consecutive two frames are t2i−1 and t2i, and
the relation is t2i = t2i−1 + ∆t. The approximate partial derivative can be calculated as:

∂Mso f tperc

∂∆t

∣∣∣∣
i
=

Mso f tperc,2i −Mso f tperc,2i−1

t2i − t2i−1
(12)

The ith secant magnification is:

ηi =
η1

∂Mso f tperc
∂∆t

∣∣∣
1

∂Mso f tperc

∂∆t

∣∣∣∣
i

(13)

The predicted location of the next exposure time point is:

t2i+1 = t2i + ∆t + ηi
∂Mso f tperc

∂∆t

∣∣∣∣
i

(14)

If |t2i+1 − t2i−1| ≤ ε (ε is the error control parameter), then x*(x* = t2i+1
)

is the

optimal exposure time. Or, if
∂Mso f tperc

∂∆t

∣∣∣
i
→ δ and

∂Mso f tperc
∂∆t

∣∣∣
i+1
→ δ (δ is the error control

parameter), then x*
(

x* =
t2i+1+t2i−1

2

)
is the optimal exposure time. If either of the above

two conditions is satisfied, the program is complete.

5. Experiments and Results
5.1. Experimental Procedures

In order to verify the efficiency and accuracy of the above exposure control and its
algorithm, the rigid body motion experiments under different exposure conditions using
the above exposure control method were carried out. The specimen in Section 3.2 was used
again. Nine sets of images were designed for the analysis, among which (a) was designed
to keep the specimen’s pose and illumination unchanged; (b–e) were designed to be in
the same second pose but with varying illumination conditions; (f–i) were designed to
be in the same third pose but with varying illumination conditions. Four direct-current
LED lights with a power of 40 W were used, and the position and angle of the lights were
randomly placed in the experiment. It is worth noting that both the second pose and the
third pose are obtained by rotating the first pose around the vertical, and the motion of
the specimen is a rigid body motion. Under the same working condition, two kinds of
exposure time were used to capture images; one was the fixed exposure time of 6 ms, and
the other was the optimal exposure time using the exposure control algorithm. A group of
images under this illumination condition was obtained. Adjust the pose of the specimen
or the illumination condition and repeat the above process so as to obtain the sequence
images of the specimen under the two exposure conditions. Figure 10 shows the nine sets
of images at the two kinds of exposure times in the above nine working conditions. Herein,
the images without superscript, such as (a), represent the case of the fixed exposure time,
and the images with superscript, such as (a′), represent the case of the optimized exposure
time, and this is true hereafter.
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Figure 10. Images at (A) the fixed exposure time, (B) the optimal exposure time. ((a–i) represent the
case of the fixed exposure time, (a′–i′) represent the case of the optimized exposure time).

Figure 11 shows the schematic diagram for searching for the optimal exposure time. A
Hikvision MV-CA023-10UM/C camera with a 25 mm lens was used to capture the images.
Zhang’s calibration method [31] was used for the camera calibration. The specimen was
placed on an optical platform, and the monocular camera was adjusted so that the specimen
was in the view of the camera. First, the exposure time of the camera was adjusted to 6 ms
to capture image (a), and then the camera was set to automatic exposure; next, the optimal
exposure time was calculated according to the image quality metric Msoftperc (Set p = 0.7,
η1 = 1000, ∆t = 0.2 ms and t1 = 6 ms) so as to obtain the optimal exposure image (a′).
Similarly, the other eight sets of images were obtained. After calculation, the optimized
exposure time was 4.00 ms, 7.39 ms, 4.21 ms, 8.42 ms, 9.56 ms, 3.92 ms, 6.77 ms, 4.99 ms
and 4.57 ms, respectively.
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Next, the displacement and strain calculation were performed by DIC technology.
The image resolution was 1920× 1200, the window size for displacement calculation was
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45 × 45 and the window size for strain calculation was 15 × 15; then, the displacement
field and strain field could be obtained.

5.2. Results

Due to the space limitation, only the typical calculation results of three sets of images—(a),
(c) and (i)—are taken out for comparison, as shown in Figures 12 and 13. In terms of
displacement data as a whole, they are basically the same at the two exposure times,
except for images (a) and (a′). However, after careful observation of the degree of the color
fluctuation in the displacement fields, it can be found that the data at the optimal exposure
time are smoother and that the noise is smaller than that at the fixed exposure time. By
comparing the two images, (a) and (a′), it can be seen that the displacement error under
exposure control is significantly lower than that at the fixed exposure time, and the data
are more uniform and reasonable because the rigid body does not actually move.
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Figure 12. Comparison of displacement fields (ux and uy) under different working conditions at the
two exposure times. ((a,c,i) represent the case of the fixed exposure time, (a′,c′,i′) represent the case
of the optimized exposure time).

Figure 13 shows the comparison of the strain fields (εxx, εxy and εyy) in the above
three working conditions at the two different exposure times. On the whole, by comparing
(a) and (a′) for εxx, εxy and εyy, it can be seen that the strain under the exposure control
is smaller than that under the fixed exposure, and the strain data are more uniform and
reasonable; by comparing (c) and (c′) and (i) and (i’), it can be seen from the degree of the
color fluctuation that the strain data under the exposure control are more continuous and
smooth and less noisy than those under the fixed exposure. In addition, since the pose of
(c) and (i) are obtained by rotating the pose of (a) around the vertical, these images will
have a large horizontal strain and a small vertical strain. From the comparison of εxx, it
can be observed that the strain increases as the rotation angle increases (i.e., from (c) to
(i)). After enlarging the local area of the strain fields (i) and (i’), it is found that the relative
error of the strain in the horizontal direction is small, and the data of them are basically
consistent. This is mainly because, compared with the larger horizontal strain caused by
the rotation of the specimen, the illumination has little influence on the horizontal strain;
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thus, the relative error is small. For εxy and εyy, the strain distribution fluctuates obviously
because the value of the shear strain or vertical strain is small. It is worth noting that the
fluctuation of εxy and εyy is caused by the influence of illumination, which is inconsistent
with the deformation generated by the specimen’s rigid motion.
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Figure 13. Comparison of strain fields in different working conditions at the two exposure times.
((a,c,i) represent the case of the fixed exposure time, (a′,c′,i′) represent the case of the optimized
exposure time).

Figure 14 shows the boxplots for the error comparison of the five sets of data at the two
exposure times. The errors are obtained by comparing the aforementioned DIC calculation
results of the displacement and strain in the case of (i) and (i’) with those calculated by the
existing SFM method [32]. In the SFM calculation, the pose of control points is estimated
from multiple perspectives, and then the displacement and strain field caused by the change
in perspective can be calculated. Generally, the SFM calculation of control points is more
robust to illumination variation than DIC calculation. Since the motion of the measured
specimen is a rigid body motion, the SFM method has a higher accuracy; thus, it is regarded
as the benchmark for comparison. It can be observed in Figure 14 that the errors of all of
the five sets of data at the optimized exposure time are much smaller than those at the fixed
exposure time, and the data distribution is more concentrated, which reflects that the DIC
calculation method at the optimized exposure time effectively reduces the data noise and
improves the calculation accuracy.
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Figure 14. Boxplots for the error comparison of the five sets of data at the two exposure times. (The
left part of each boxplot represents the data distribution at the fixed exposure time, and the right part
represents that at the optimized exposure time).

5.3. Discussion

Since the motion of the measured specimen is a rigid-body motion, its true strain
equals 0. For the monocular camera, the strain caused by image deformation due to the
pose change of the specimen in the image is regarded as the strain of the specimen in
this study. In fact, this strain is caused by visual affine, not the real strain. The reason
for designing the experiment is to exclude other external influences and more intuitively
compare the effects of different exposure conditions. Compared with the real mechanical
experiment, the design of the experiment in this study has the following advantages:
(1) The cost of the mechanical experiment is high, and the mechanical experiment is easily
affected by many external factors; thus, it is more difficult to measure the error magnitude
of the proposed exposure control method. (2) The deformation of the specimen caused by
the change in the pose in the image can be calculated by the existing SFM method so as
to obtain the strain of the specimen. It can be seen from the experimental results that the
data obtained by this experiment are smoother, more consistent and more stable under
the exposure control, which proves the effectiveness of this experiment and the exposure
control method.

6. Conclusions

Based on the existing image quality metric, the applicability and effectiveness of the
metric in DIC application was evaluated and verified for the first time. On this basis, the
exposure control algorithm and control procedure were proposed to calculate the optimal
exposure time. At last, the effectiveness of the exposure control method in DIC calculation
was verified through the comparative analysis of displacement and strain fields at the fixed
exposure time and the optimal exposure time in nine sets of rigid body motion experiments.
The experimental results show that the calculation results under exposure control are more
reasonable, i.e., the data are smoother and more consistent, and the error is smaller, which
improves the calculation accuracy and stability in DIC calculation.

Author Contributions: Conceptualization, W.T.; formal analysis, W.T.; funding acquisition, J.C. and
W.T.; investigation, J.C.; methodology, W.T.; project administration, J.C. and W.T.; resources, J.C.;
software, W.T.; supervision, J.C. and W.T.; visualization, W.T.; writing—original draft, J.C. and
W.T.; writing—review & editing, J.C. All authors have read and agreed to the published version of
the manuscript.
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