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Abstract: Detecting snow-covered solar panels is crucial as it allows us to remove snow using heating
techniques more efficiently and restores the photovoltaic system to proper operation. This paper
presents classification and detection performance analyses for snow-covered solar panel images. The
classification analysis consists of two cases, and the detection analysis consists of one case based
on three backbones. In this study, five deep learning models, namely visual geometry group-16
(VGG-16), VGG-19, residual neural network-18 (RESNET-18), RESNET-50, and RESNET-101, are
used to classify solar panel images. The models are trained, validated, and tested under different
conditions. The first case of classification is performed on the original dataset without preprocessing.
In the second case, extreme climate conditions are simulated by generating motion noise; furthermore,
the dataset is replicated using the upsampling technique to handle the unbalancing issue. For the
detection case, a region-based convolutional neural network (RCNN) detector is used to detect the
three categories of solar panels, which are all_snow, no_snow, and partial. The dataset of these
categories is taken from the second case in the classification approach. Finally, we proposed a blind
image deblurring algorithm (BIDA) that can be a preprocessing step before the CNN (BIDA-CNN)
model. The accuracy of the models was compared and verified; the accuracy results show that the
proposed CNN-based blind image deblurring algorithm (BIDA-CNN) outperformed other models
evaluated in this study.

Keywords: deep learning; CNN; image classification; solar panels; photovoltaic (PV); PV image detection

1. Introduction

In recent years, deep learning (DL) and other forms of artificial intelligence (AI) have
emerged as mainstays in numerous fields of study, including image classification and
recognition. Image classification and recognition are the subjects of many applications in
different fields [1], where they make up a sizable field with lots of room for further research
and debate [2]. With deep learning, we can obtain greater classification potential by first
extracting the relevant features from the fed feature spaces. The final decision is made in
the final layer (fully connected) using the output from the convolutional neural network
(CNN) model used to extract features and classify the images. The primary goal of feature
extraction in images is to streamline the image and classification process by eliminating
unnecessary large data and extracting useful features. There are very high similarities in
features between classes that cause the models to struggle with identifying them in some
image datasets, such as medical X-ray images, thermal images, and animal images of the
same breed.
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The main challenge is increasing the capabilities of deep learning techniques to distinguish
and classify images with high similarity. Deep learning techniques have been developed
specifically to deal with the classification of image data. Convolutional neural networks (CNN)
have many models, namely visual geometry group-16 (VGG-16), VGG-19 [3], residual neural
network-18 (RESNET-18), RESNET-50, and RESNET-101 [4], which we use in this study.

Several studies have demonstrated that various CNN models can be used to solve
many real-world issues and applications. Ahsan et al. [5] used six different models of
convolutional neural networks to detect COVID-19 using X-ray images. They used two
different types of datasets, one balanced and the other unbalanced. The results show that
the two models VGG-16 and MobileNetV2 outperformed the rest of the models according
to the recognition accuracy. In [6] and [7], the authors used the RESNET model with
segmentation on the computed tomography (CT) dataset of COVID-19 patients, and the
results verify the performance behavior by giving high accuracy. Ishengoma et al. [8],
in their study, relied on the image dataset they obtained through an unmanned aerial
vehicle (UAV) to detect the maize leaves that were infected by fall armyworms. The study
was conducted on deep learning models, namely VGG-16, VGG-19, InceptionV3, and
MobileNetV2; furthermore, the researchers added additional images which were produced
by using corner Shi-Tomas detection, and the results show that these models have high
accuracy in detecting infected leaves. On the other hand, the image optimization process
used for the images has significantly and positively increased the efficiency of the models
used. Zhu et al. [9] studied the quality of the appearance of the islands based on twelve (12)
models of deep learning, where the researchers added a support vector machine (SVM) to
the proposed models. Their results show that the addition of SVM significantly increased
the accuracy of the deep learning models.

Renewable energy has recently been in high demand due to environmental and
economic factors. Solar panels are essential to harness and transform solar energy into
usable energy. Any obstructions block sunlight, cause the panels to stop working, and
restrict the access of the photons, so solar panels can only be used in appropriate climatic
conditions. In areas with low temperatures, snowfall causes a layer of snow to form on
solar panels. This results in an insulating layer on the solar panels and the inability to
produce electrical energy.

Several studies have been conducted on snow loss. For instance, researchers [10]
presented methods for predicting daily snow losses based on intelligent techniques that
can help reduce operational risks. The reliance on solar energy has increased significantly
recently [11], as solar energy constitutes the most reliant percentage of renewable energies.
Solar panels are the only way to convert solar energy into electrical energy. These panels
are affected by the climate, as it is known, in the winter season, as lower temperatures and
snowfall have a negative impact on these panels, as snow prevents sunlight photons from
reaching the surface of the solar panels; thus, electricity production is reduced at the level
of the solar panel system used in the place of snowfall. The overall electricity production
losses from solar panels in winter are more than 25% [12] and can be more than 90% if the
panels are completely covered with snow [13]. In regions that receive a significant amount
of snowfall annually, such as Germany, Canada, Turkey, the U.K., and the U.S., system
performance is impacted; consequently, the output power is reduced as a result of the snow
that has accumulated on the panels [14,15].

Regarding some related works that depend on mathematical calculations; the state
estimation and prediction for the photovoltaic system are critical, as it is very important in
avoiding losses due to external influences on the system. The researchers in [16] proposed
a new method for calculating the efficiency of the solar panel system in case of snowy
weather and low levels of insolation. They clarified that using the Bouguer–Lambert Law,
the insolation level of a snow-covered solar panel surface can be estimated. The researchers
presented in [17] a state estimation study of two types of solar panels (monofacial and
bifacial) for severe winter climates. The study calculated the snow losses in winter for the
two types of models, the results achieved show that the snow losses for monofacial and
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bifacial panels are on average 33% and 16%, respectively, for the winter season and 16%
and 2%, respectively, for the annual rate.

The biggest threat to the long-term performance and overall reliability of photovoltaic
(PV) modules is faults that occur during operating conditions over time, during trans-
portation and installation, or due to challenging extreme climates. Fast and accurate fault
detection in PV modules is essential for the efficient and dependable operation of PV sys-
tems and provides sufficient lead time for long-term high performance. In order to locate
potential trouble spots, checks of operation and maintenance are conducted; methods of
operation and maintenance are costly because they take a long time, interfere with power
production, and frequently necessitate specialized laboratory equipment. It is important
to remember that PV panels are often situated in inaccessible locations, which makes
tampering with them extremely risky [18–21].

Several studies have also been conducted on solar farms to monitor PV panels based on
thermal imaging [22], deep learning [23], and Google Earth Engine (GEE) [24] techniques.
Many researchers have presented models based on deep learning techniques to detect
defects or damage in solar panels. In [25], researchers provided two deep learning models,
SVM and CNN multiclasses classification, to automatically detect defects in a single image
of PV cells. The researchers depended on the electroluminescence (EL) image dataset in
their experiment. The results prove that both models perform well in both training and
testing. The researchers in [26] have provided a novel feature descriptor (FD) named CPICS-
LBP, which can fuse the CPICS-LBP by thresholding each pixel of the image into binary
code. The experiment was conducted on the surface of heterogeneous backgrounds such as
polycrystalline silicon PV cells. The results show that the heterogeneous background defect
classification was enhanced. The other researchers in [27] proposed a new CNN model for
solar cell surface defect classification by fusing a random forest classifier with the CNN
model. For more informative features, the spatial attention module is used. Furthermore, a
spatial attention class activation map (SA-CAM) was designed, the SA-CAM suppressed
the background and highlighted the defect area in the foreground. Finally, the authors
applied segmentation to convert complex images to simple images to show surface defects.
Finally, the researchers [28] proposed a semantic segmentation model to predict the defects
of PV module surfaces based on electroluminescence images (EL). The Deeplabv3 model
with a RESNET-50 backbone was used in the experiment with many types of defects in PV
cells detected. The authors created ground truth for all datasets used and then compared it
with the predicted result to show the performance of the model. Their final result shows
that the model has a high performance to detect defects in PV cell images.

Previous studies have demonstrated the performance of deep learning models in
image classification. Therefore, in this study, we presented a performance analysis of
classification and detection approaches with three cases; the first and second cases classify
solar panels based on similarity in images, including size, color, and general appearance of
images using the CNN model. The third case detects the panels using the region-based
convolutional neural networks (RCNN). Five models are also used in the study, namely
VGG-16, VGG-19, RESNET-18, RESNET-50, and RESNET-101, for the classification parts;
furthermore, these models are then compared with our proposed blind image deblurring
algorithm (BIDA) and CNN (BIDA-CNN) model. The strengths and weaknesses of each
model are further investigated, as well as the classification performance of each model
considering three splitting datasets scenarios: training, validation, and testing datasets.
In the classification, we have two cases, as mentioned before. The first case is conducted
with data without any preprocessing, as it uses clear images and an unbalanced dataset. In
the second case, extreme climate conditions are simulated by generating motion noise. To
balance the data, we replicated the partial class samples using the upsampling technique
to improve the performance of the experiment. Snow-covered panels from 1% to 99% are
classified as partial and 100% as all_snow. Finally, the solar panels are classified into three
categories: “no snow”, “partial”, and “all snow”.
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The main contributions of this study can be summarized as follows:

• The study examined the climate challenges of snow-covered solar panels and how
to overcome them, as well as the urgent need to apply artificial intelligence methods,
such as classification and detection, to deal with these challenges.

• We provided comprehensive experiments and analysis on the roles of upsampling
images to solve the issue of insufficient availability of data samples and to significantly
enhance the performance of the deep learning models. In this study, the upsampling
technique is used for solar panel images.

• We proposed a BIDA-CNN model for images of snow-covered solar panel surface
detection and classification.

• The BIDA-CNN-based model for the photovoltaic module classification approach is
extensively assessed and validated through a series of experiments using the existing
state-of-the-art deep-learning-based solutions such as VGG-16, VGG-19, RESNET-
18, RESNET-50, and RESNET-101 as the comparative benchmarks. Moreover, the
performance of the different models is examined based on different metrics through a
comparative study.

• The paper not only validates the methods based on real-world data available in the
synthetic dataset but also has great success in conditions of extreme climate that can
be simulated by generating motion blur.

• Finally, the RCNN model based on a series network backbone is applied to detect the
solar panel modules and recognize whether they are snow-covered or not.

2. Materials and Methods
2.1. Case Study

In this study, we considered Karabuk University, located in Karabuk province west of
the Black Sea region in northern Turkey, as a case study. Karabuk Province is one of the
snowiest provinces in winter. Karabuk University is located in the state of Karabuk with
Geographical coordinates (41.211242◦,32.656032◦) [29]. In the Karabuk region, summers
are warm and clear and winters are very cold, snowy, and partly cloudy. The temperature
normally ranges between −1 ◦C and 29 ◦C throughout the year, rarely below −8 ◦C and
above 34 ◦C. With a temperature of 20.8 ◦C, August is the hottest month of the year. The
average temperature in January is 0.1 ◦C, which is the lowest average of the year, as we
see in Figure 1. Karabuk University is highlighted as a snowy area that causes losses in
photovoltaic energy. Karabuk University is characterized by the presence of a large number
of solar panels on its roofs and the sides of buildings. As we can see in Figure 2. Karabük
University makes use of these solar panels in the production of electrical energy.

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 30 
 

 

data without any preprocessing, as it uses clear images and an unbalanced dataset. In the 

second case, extreme climate conditions are simulated by generating motion noise. To bal-

ance the data, we replicated the partial class samples using the upsampling technique to 

improve the performance of the experiment. Snow-covered panels from 1% to 99% are 

classified as partial and 100% as all_snow. Finally, the solar panels are classified into three 

categories: “no snow”, “partial”, and “all snow”. 

The main contributions of this study can be summarized as follows: 

• The study examined the climate challenges of snow-covered solar panels and how to 

overcome them, as well as the urgent need to apply artificial intelligence methods, 

such as classification and detection, to deal with these challenges. 

• We provided comprehensive experiments and analysis on the roles of upsampling 

images to solve the issue of insufficient availability of data samples and to signifi-

cantly enhance the performance of the deep learning models. In this study, the up-

sampling technique is used for solar panel images. 

• We proposed a BIDA-CNN model for images of snow-covered solar panel surface 

detection and classification. 

• The BIDA-CNN-based model for the photovoltaic module classification approach is 

extensively assessed and validated through a series of experiments using the existing 

state-of-the-art deep-learning-based solutions such as VGG-16, VGG-19, RESNET-18, 

RESNET-50, and RESNET-101 as the comparative benchmarks. Moreover, the per-

formance of the different models is examined based on different metrics through a 

comparative study. 

• The paper not only validates the methods based on real-world data available in the 

synthetic dataset but also has great success in conditions of extreme climate that can 

be simulated by generating motion blur. 

• Finally, the RCNN model based on a series network backbone is applied to detect the 

solar panel modules and recognize whether they are snow-covered or not. 

2. Materials and Methods 

2.1. Case Study 

In this study, we considered Karabuk University, located in Karabuk province west 

of the Black Sea region in northern Turkey, as a case study. Karabuk Province is one of the 

snowiest provinces in winter. Karabuk University is located in the state of Karabuk with 

Geographical coordinates (41.211242°,32.656032°) [29]. In the Karabuk region, summers 

are warm and clear and winters are very cold, snowy, and partly cloudy. The temperature 

normally ranges between −1 °C and 29 °C throughout the year, rarely below −8 °C and 

above 34 °C. With a temperature of 20.8 °C, August is the hottest month of the year. The 

average temperature in January is 0.1 °C, which is the lowest average of the year, as we 

see in Figure 1. Karabuk University is highlighted as a snowy area that causes losses in 

photovoltaic energy. Karabuk University is characterized by the presence of a large num-

ber of solar panels on its roofs and the sides of buildings. As we can see in Figure 2. 

Karabük University makes use of these solar panels in the production of electrical energy. 

 

Figure 1. Temperature distribution at 2 m for all months. 

-40

-20

0

20

40

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 101010111111121212

T
em

p
er

a
tu

re
 (

C
)

Months

Figure 1. Temperature distribution at 2 m for all months.



Sustainability 2023, 15, 1150 5 of 32Sustainability 2023, 15, x FOR PEER REVIEW 5 of 30 
 

 

    

   

Figure 2. Sample images for Karabuk university solar panels with different side views. 

2.2. Irradiation Per Square Meter 

Winter has a significant impact on these panels, as low temperatures and snowfall 

lead to a layer of snow on the surface of the solar panels, as there are sunny days that can 

be used to produce electrical energy. However, the accumulation of snow that covers the 

surface of the solar panels reduces the energy production of the panels, making it difficult 

to utilize the energy on these days. Recently, several methods have been introduced to 

remove the snow accumulated on solar panel surfaces; one of the recently proposed tech-

niques is the solar panel heating system for photovoltaic systems. Proposing a new 

method for detecting snow-covered panels is extremely important, since it contributes to 

accelerating the snow-melting process where detection is handled and then instructs the 

heating system to carry out the snow-melting process or any other snow-removal process. 

The study presents a new methodology based on the historical climatic dataset (2021) 

that can be found on the NASA research website [30]. Figure 3a,b shows Direct Normal 

Irradiation (DNI), which is represented by the amount of radiation falling on the surface 

in an orthogonal manner without calculating the amount of radiation reflected from cloud 

particles or others; DNI carries the energy that solar panels use to produce electricity. Fig-

ure 3a shows the sum of the average amount of energy in units of Wh/m² for all months 

over a 24 h period. The months represented in blue color have lower temperatures and 

snowfall, while the months represented in black color have moderate temperatures and 

no snowfall. On the other hand, the months represented in red color mean that the number 

of sunshine hours is long, which indicates that most solar energy falls on the surface. 

Snowfall negatively affects the production of electrical energy from solar panels, as snow-

fall has two main issues: firstly, it prevents the radiation-carrying energy from contacting 

the solar panels and thus reduces the amount of energy; secondly, it constitutes a layer of 

snow on the solar panels, causing damage to the solar panels as well as making panels out 

of service. 

Figure 2. Sample images for Karabuk university solar panels with different side views.

2.2. Irradiation Per Square Meter

Winter has a significant impact on these panels, as low temperatures and snowfall
lead to a layer of snow on the surface of the solar panels, as there are sunny days that can
be used to produce electrical energy. However, the accumulation of snow that covers the
surface of the solar panels reduces the energy production of the panels, making it difficult to
utilize the energy on these days. Recently, several methods have been introduced to remove
the snow accumulated on solar panel surfaces; one of the recently proposed techniques
is the solar panel heating system for photovoltaic systems. Proposing a new method for
detecting snow-covered panels is extremely important, since it contributes to accelerating
the snow-melting process where detection is handled and then instructs the heating system
to carry out the snow-melting process or any other snow-removal process.

The study presents a new methodology based on the historical climatic dataset (2021)
that can be found on the NASA research website [30]. Figure 3a,b shows Direct Normal
Irradiation (DNI), which is represented by the amount of radiation falling on the surface in
an orthogonal manner without calculating the amount of radiation reflected from cloud
particles or others; DNI carries the energy that solar panels use to produce electricity.
Figure 3a shows the sum of the average amount of energy in units of Wh/m2 for all months
over a 24 h period. The months represented in blue color have lower temperatures and
snowfall, while the months represented in black color have moderate temperatures and no
snowfall. On the other hand, the months represented in red color mean that the number of
sunshine hours is long, which indicates that most solar energy falls on the surface. Snowfall
negatively affects the production of electrical energy from solar panels, as snowfall has
two main issues: firstly, it prevents the radiation-carrying energy from contacting the solar
panels and thus reduces the amount of energy; secondly, it constitutes a layer of snow on
the solar panels, causing damage to the solar panels as well as making panels out of service.
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Figure 3. (a) The sum of watt hours per meter square for one day. (b) Average monthly kilowatt-hours
per square meter.

Figure 3a shows the sum of irradiation energy by Wh/m2 for each month over a 24 h
period, as shown in the equation below,

Averagehours =
∑ E

N (1)

Figure 3b calculates the irradiation energy in kWh/m2 for all months as the following:

Total Averagemonth = (∑ Averagehours)× no. month days (2)

where E is irradiation energy and N the count of those hours. The Averagehours
(
Wh/m2) is

the E average of the same hour per day throughout the month, while the Total Averagemonth
(kWh/m2) is the total of Wh/m2 per month.

It is very important to determine the snowfall months to estimate and evaluate the
state of the photovoltaic system and forecast the percentage of snow losses to overcome
this challenge and solve it using intelligent techniques. Figure 3a,b shows the decrease
in the irradiation energy during the first three months and the last two months, which is
attributed to a lower temperature and snowfall. Snow losses in these five months are high
due to the formation of an insulating layer on the solar panels; the percentage of energy
losses is estimated by the time the insulation layer remains on the solar panels. Table 1
shows the specific photovoltaic power output (SPPO) values for the five months based on
irradiation energy in relation to the number of sunshine hours.

Table 1. DNI and SPPO rates for the five months that have snowfall.

Months Rate kWh/m2 kWh/kwp

Jan. 4.1% 59.2 56.4
Feb. 5.1% 73.5 70
Mar. 7% 98 93
Nov. 5.9% 86 81.9
Dec. 4% 57.8 55

According to our study, the snowfall days in January are nine days, and the panels
need five additional days to melt the remaining snow on the panels. Therefore, the panels
will be covered by snow for 14 days. This concludes that the energy produced by the panels
during these days is 0%. It has become necessary to find more efficient substitutions using
advanced and intelligent technologies that can overcome the obstacles and difficulties
facing photovoltaic energy systems, which can contribute to reducing snow losses and
improving energy production. This research contributes to the advancement of an advance
by directing artificial intelligence techniques to solve the problems of energy systems.
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2.3. Dataset

In this experiment, the conducted datasets were examined in two different cases, in the
first case, the dataset was conducted on the original size with 395 solar panel images in its
original size, then in the second and third cases, the dataset was preprocessed by applying
upsampling on the minority sampled classes to be 437 images. This dataset is divided into
three categories: all_snow, which represents the images of the panels completely covered
by snow; the next category, no_snow, which presents the images of the snow-free panels;
and the last category is partial, which presents the partial condensation of snow on the
panels. Before the data training process, some preprocessing was performed on the input
feature space by resizing the images to 224 × 224 for a regular training process; then, the
reconstructed images were fed into the training process. The dataset is divided into 60%
training, 20% validation, and 20% testing. Table 2 shows the classification and detection
dataset distribution for training, validation, and testing. Figure 4 illustrates samples of the
conducted datasets in this paper.

Table 2. Dataset distribution.

Approaches
Datasets Original Dataset Upsampling Dataset Motion Blur Dataset

Classification

First case
Training X

Validation X
Testing X

Second case
Training X

Validation X
Testing X

Detection Third case
Training X

Validation X
Testing X
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2.4. The Models and Features Extraction

The CNN architecture includes three basic layers through which important features
are extracted and the classification process is carried out: convolution layers, pooling layers,
and fully connected layers [31–33]. The convolution layer is a major component of the CNN
structure; it is an input-receiving layer applying two different operations, kernel or filter,
and Relu Function. By applying these two currencies, the feature map can be extracted.
The pooling layer is usually an appendage with a convolution layer, the purpose of adding



Sustainability 2023, 15, 1150 8 of 32

a pooling layer is to extract the most important features, thereby reducing data size, as
well as accelerating the learning process; there are two types of pooling layers that are the
most common: Average Pooling and Max Pooling. The fully connected layers make the
last decision, where the features map is extracted in the previous two layers and converted
to a one-dimensional array through Flatten Layer (global average pooling) before entering
the fully connected layers.

The output value was calculated for each of the convolution layers as described in the
Equation below:

Yconv, 1,2,3,... =

(
σ

(
∑
i

Xi ×Wi

)
+ b
)

(3)

where Yconv, 1,2,3,... is the output, σmean for each kernel scan, X is the input, W is the filter
weight matrix, and b is the bias matrix. The Relu Function is briefly described as follows:

f(input (x)) =

{
x, x > 0
0, x ≤ 0

(4)

Normalization is an essential technique of our analysis, it is a technique used to stan-
dardize data; in other words, our network may experience issues, making it significantly
more difficult to train it and slowing down its learning rate if the data are not normal-
ized during training. The RESNET model depends on batch normalization, while our
proposed method depends on cross-channel normalization. The Equations below describe
the batch normalization:

xnormaliz =
(

x∗−µ
σ

)
γ+ β, a =

∫
(xnormaliz) (5)

where xnormaliz is the neurons point value, x∗= (input (x) × weight (w)), µ = 0, σ = 1, γ, β
are batch norm learning parameters, and a is the output.

The Equation for cross-channel normalization can be described as follows:

bi = ai

(
k + α

jligh

∑
j=jbow

a2
j

)−β
,

{
jhigh = min

(
i + r

2 , Fn − 1
)

jlow = max
(
0, i− r

2
) (6)

where bi is the output of normalization, ai activation neurons point value, α,β, k are the
hyperparameters of cross-channel normalization, in which α = 0.0001, β = 0.75, and k = 1,
and r, Fn are the depth radius and feature map number. The following Equation is used to
calculate the max-pooling layer:

Ymax pooling = max(Yconv ,1,2,3......) (7)

The skip connection of the RESNET model can be defined as

Y = F(X, {Wi}) + x (8)

where X is the connection to the layers, and x is the skip connection.
Finally, the softmax function is defined as the function that converts a vector of real K

values into a vector of real values K whose sum is 1. There are three possible values for
the input values: zero, negative, and positive, however, softmax converts them to values
between 0 and 1, and as a consequence, they can be considered probabilities. The following
Equation can be used to describe this situation:

fj(z) = eZj

∑k eZk
(9)

zj =
(

w>j × Inputs
)
+ Bais (10)
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w>j =


w11 w12 w13 w14 . . .
w21 w22 w23 w24 . . .
w31 w32 w33 w34 . . .

...

 (11)

The visual geometry group (VGG-16, VGG-19) begins with input activations
224 × 224 × 3 for height, width, and depth. For the output activation with 1 × 1 × 1000, in
this study, VGG-16 consists of 41 layers, and VGG-19 consists of 47 layers. As a result, both
VGG-16 and VGG-19 use only a 3 × 3 convolutional layer with padding, followed by the
Relu Function and a padded 2 × 2 pooling layer throughout the network. There are two
fully connected layers, the first with 4096 nodes and the second with 1000 nodes, and these
layers are preceded by 50% dropout followed by a softmax activation layer that serves as
the classifier and probabilities. A visual architectural representation of the VGG-16 and
VGG-19 models can be seen in Figures 5a and 5b, respectively.
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Deep neural networks have an advantage over shallow neural networks, as they can
learn complex functions faster than their shallow counterparts. As deep neural networks
are trained, the performance of the model degrades (extracted features) as the depth of
the architecture increases. The degradation problem is the term used to describe this issue.
To overcome it, skip connections (also known as shortcut connections) are used; as the
name implies, some of the CNN layers are skipped and the output of one layer is used
as the input to the next layer. The skip connections are used to solve different problems
(degradation problems) in different architectures such as RESNET-18, RESNET-50, and
RESNET-101, as we present in Figure 6a, Figure 6b, and Figure 6c, respectively.
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The residual neural networks (RESNET) that we used in this study, namely RESNET-
18, RESNET-50, and RESNET-101, begin with input activations 224 × 224 × 3 for height,
width, and depth. For the output activation with 1 × 1 × 1000. In this study, RESNET-
18 consists of 71 layers, RESNET-50 consists of 177 layers, and RESNET-101 consists of
347 layers. Consequently, the convolutions of RESNET-18, RESNET-50, and RESNET-101
are preceded by the 7 × 7 inputs images with padding 3 and stride 2, followed by batch
normalization of 64 channels and the Relu Function. The pooling layer size is 2 × 2, and
padding 1 and stride 2 are used after the first convolution layer. The fully connected
layer contains 1000 nodes, preceded by Relu and global average pooling, followed by a
softmax activation layer that serves as a classifier and probabilities. A visual architectural
representation of these RESNET models RESNET-18, RESNET-50, and RESNET-101 can be
seen in Figure 7a, Figure 7b, and Figure 7c, respectively.

In this study, we proposed a new method called BIDA-CNN based on the blind
image deblurring algorithm (BIDA) and CNN approach to classifying solar panels images.
Originally, BIDA was proposed by Jiangxin Dong et al. [34] as an effective algorithm for
blind image deblurring that has outliers. BIDA can also be used to reduce the effects of
outliers on the estimation of the blur kernel. The challenge problem in digital imaging is
how to restore a clear image without motion blur from an image that has a motion blur
due to camera shake; our analysis will rely on BIDA to remove motion blur from the solar
panel images. The visual architectural representation of our proposed BIDA-CNN method
can be seen in Figure 8.
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In this study, we simulated the challenges surveillance cameras face while detecting
solar panel conditions. To simulate that, we applied motion blur on the original dataset
with linear motion across 21 pixels at an angle of 11 degrees. We convoluted between the
motion blur kernel to model the motion blur on a digital image. The motion blur can be
expressed as the following Equation:

y = x ∗ k + n (12)

where y is the blurred image, (x ∗ k) convolution operator between the clear image and
blur kernel, and n is the noise.

After the original image is exposed to motion blur, the original image becomes a latent
image with the blur matrix. BIDA handling preprocesses the used aim to estimate the latent
image (x) and blur kernel (k) from the blurred image (z).

The latent image (x) and the blur kernel (k) estimated can be describe by the
Equations (13) and (14) below, respectively.

min
x

R(x ∗ k− y) + λ ‖ ∇x ‖x∗ , x ∗ = 0.8 (13)

min
k

R(∇x ∗ k−∇y) + γ ‖ k ‖k∗ , k ∗ = 1 (14)

where ‖ ∇x ‖0.8 is the hyper-Laplacian for original priors of x, and ‖ k ‖1 is the `1 norm for
original priors of k and, to balance these two priors, there are weights γ and λ. Iteratively
reweighted least squares (IRLS) is used to solve the R(·), as we see in the Equations below
for x and k, respectively:

for x:

x[t+1] = argmin
x

∑
p

{
ωx
∣∣∣(x ∗ k− y)p

∣∣∣2 +λ(ωx
h

∣∣∣(∂hx)p

∣∣∣2 +ωx
v

∣∣∣(∂vx)p

∣∣∣2)} (15)

whereωx =
R′
(
(x[t] ∗ k−y)p

)
(x[t] ∗ k−y)p

(16)

andωx
h =

∣∣∣∣(∂hx[t]
)

p

∣∣∣∣−1.2
,ωx

v =

∣∣∣∣(∂vx[t]
)

p

∣∣∣∣−1.2
(17)

for k:

k[t+1] = argmin
k

∑
p

{
ωk

h

∣∣∣(∂hx ∗ k− ∂hy)p

∣∣∣2 +ωk
v

∣∣∣(∂vx ∗ k− ∂vy)p

∣∣∣2 + γωk
∣∣kp
∣∣2} (18)

whereωk
h =

R′
((

∂hx ∗ k[t]−∂hy
)

p

)
(

∂hx ∗ k[t]−∂hy
)

p

(19)

andωk
v =

R′
((

∂vx ∗ k[t]−∂vy
)

p

)
(

∂vx ∗ k[t]−∂vy
)

p

(20)

where argmin
x,k

mean x, k minimizing the reconstruction error
∣∣∣(x ∗ k− y)p

∣∣∣2,∣∣∣(∂hx ∗ k− ∂hy)p

∣∣∣2 with the prior preferring x and k to be as smooth as possible, R′(·) is
the derivation of R(·), p is the spatial pixel location, and t is the iteration index.

Figure 8 also shows the proposed convolutional neural network, which consists of
27 layers. The proposed CNN contains few layers compared with other networks imple-
mented in this paper, which is inspired by Alexnet [35]; we also updated its parameters
and added group normalization layers. A new CNN with a few layers is proposed to avoid
losing features during the process of feature extraction from convolutional neural networks
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with a high number of layers; therefore, this network can be expressed as a simple network.
The proposed CNN in this experiment begins with input activations 227× 227× 3 for
height, width, and depth. For the output activation with 1 × 1 × 1000,the learnable weight
begins with 11× 11× 3× 96 in Conv1 and ends with 1000× 4096 in the fully connected
layers; furthermore, the learnable bias begins with 1× 1× 96 and ends with 1000× 1 in the
fully connected layers. The used convolutional different stride begins with [4 4] and ends
with [1 1]; furthermore, padding [0 0 0 0], [1 1 1 1] has been used for the convolutional and
pooling layers. The fully connected layers are preceded by a 50% dropout, followed by a
softmax activation layer that serves as the classifier and probabilities.

2.5. Overall Proposed Model and Experimental Settings

Our overall proposed model is illustrated in Figure 9. The first part of our study is
illustrated in Figure 9a, which involved the dataset with the original size. The compared
models were applied to images executed with 224× 224× 3 and 227× 227× 3 activations.
The implementation process went through three steps: data collection, data visualization,
and data splitting. Figure 9b illustrates the second part of this study, the imbalance classes
with minority samples were handled. To perform that, we applied data upsampling on
partial class. Then, the samples of the partial class are increased. This can be accomplished
through the use of a variety of methods, such as rotating and inverting the images. The
upsampling process on the dataset aims to increase the variability and uniformity of the
CNN models. This process helped the models acquire more knowledge about the input
space. The Upsampling Equation can be expressed as the following:

du = do × 300% (21)

where du is the upsampling dataset, do is the original dataset, and 300% is the
percentage increase.
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Figure 9. The overall design of our proposed deep-learning-based model for solar panel image classi-
fication and detection: (a) without preprocessing, (b) with simulated motion blur and upsampling
preprocessing, and (c) RCNN for solar panel image detection.

Finally, training is performed on the bulk of the dataset. Training also includes a
validation process, and then testing is conducted to ensure the model’s level of accuracy
in classification. Figure 9c presents the third part of our study which is the region-based
convolutional neural networks (RCNN) [36] that is used to detect the panels.

All the classification and detection experiments are administered in a work environment
with an Intel® Core™ i7-9750H CPU @ 2.60GHz and an NVIDIA GeForce RTX 2060 on
MATLAB package. RCNN is based on a series network, the ImageNet package provides a
variety of pretrained advanced models and is trained on the ImageNet dataset; two of these
models are VGG-16 and VGG-19, which were used in this experiment and can accelerate the
learning of the network. Furthermore, the above two models are compared with the proposed
model. The max epochs are fixed to 80 with the Mini batch size set to 2 due to the GPU
memory limitation. The number of iterations per epoch = number of data samples/Mini
batch size, which can ensure that the solar panel images training data are looped through
completely. The learning rate is set to 0.0001 and the class number is set to 3.

The partial class in the state without upsampling consists of 27 images and with
upsampling consists of 80 images; all images in the two states are entered into RCNN. The
partial class is important because it contains both cases with snow and without snow, which
can contribute to (i) making experiments more complex, and thus giving deep analysis and
results, and (ii) to determining the performance of the models used in the detection.

The workflow of RCNN begins with extracting feature maps from input data by
a selective search focusing on the region of interest (ROI). Secondly, feature maps are
outputted from the first step to the convolution neural network, then the output of the fully
connected layer (fc_7) is an input to the support vector machine (SVM). Finally, the ground
truth iscompared with the predicted bounding box.

Due to the possibility that the proposed regions by the selective search algorithm may
not be able to capture all of the object features, bounding box regression is used to refine the
accuracy of the predicted bounding box precision. The ground truth

(
G =

(
Gx, Gy, Gw, Gh

))
and the predicted P =

((
Px, Py, Pw, Ph

))
region are proposed by the selective search

algorithm. Parameterizations of the transformation in terms of the four functions are
(dx(P), dy(P), dw(P), and dh(P)), where x, y are the coordinates of center and w, h are the
bounding box width and height.

Transformations are performed to make the prediction of ground truth (G) scale-
invariant in the following Equations:

Tx =
(Gx − Px)

Pw
, Tx =

(
Gy − Py

)
Ph

, Tw = log
(

Gw

Pw

)
, and Th = log

(
Gh
Ph

)
(22)
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where Tx, Ty, Tw, and Th are the target for the regression.
The last pooling feature from the CNN (pool5), denoted by ϕ5 (P), is fed into the

regression model. The four functions of parameterizations are the transformation denoted
by d?(P):

d?(P) = wT
?ϕ5 (P) (23)

where (?) is a placeholder for (x, y, w, h).
The learnable model parameters’ vector is denoted by (w?); through optimizing the

regularized least squares (RLS) objective (ridge regression), we learn (w?):

w? = argmin
ŵ?

N
∑
i

(
Ti
? − ŵT

?ϕ5

(
Pi
))2

+ ‖λŵ?‖2 (24)

When we take the scale-invariant coordinates from the regression model and add
them to the coordinates for the proposed regions, we obtain the final set of coordinates.

Ǧx = Pwdx(P) + Px, Ǧy = Phdy(P) + Py, Ǧw = Pw exp(dw(P)), and

Ǧh = Ph exp(dh(P)) (25)

2.6. Evaluation Metrics

In this study, the six different CNN architectures VGG-16), VGG-19, RESNET-18,
RESNET-50, RESNET-101, and BIDA-CNN are compared to investigate their performance.
Comparisons were conducted using different metrics such as error, accuracy, and conver-
gence behavior. These architectures are characterized by their high ability to understand
the patterns and features of the images and the ability to extract them through the structure
of the models, thus obtaining appreciated accuracy (ACC):

ACC =
TN + TP

TN + TP + FN + FP
(26)

In this context, a model that correctly predicts the positive solar panel classes is
commonly known as True Positive (TP), while a model that correctly predicts the negative
solar panel classes is commonly known as a True Negative (TN). On the other hand, a
model that incorrectly predicts the positive solar panel classes is commonly known as a
False Positive (FP), while a model that incorrectly predicts the negative solar panel classes
is commonly known as a False Negative (FN).

The Sensitivity (Recall (Se)) is defined as the ratio of the overall predicted True Positive
(TP) to the overall predicted True Positive (TP) and predicted False Negative (FN). See
Equation (7).

Se =
TP

TP + FN
(27)

On the other hand, Precision (Pr) can be defined in a similar manner to sensitivity,
except that we consider the predicted False Positive (FP) in this calculation as the ratio
of the overall predicted True Positive (TP) to the overall predicted True Positive (TP) and
predicted False Positive (FP) as follows,

Pr =
TP

TP + FP
(28)

In addition, F1 − score (F1) is the combination of the harmonic mean of precision
and recall. This combination comes with a single measure. It provides a more accurate
measurement of incorrectly classified cases using the following formula:

F1 =
2× Se × Pr

Se + Pr
(29)
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Furthermore, these Equations were updated to calculate the overall metrics for each
category. The overall sensitivity (Recall (Se)) is calculated as follows:

Overall Se =
∑classes Se

∑ classes
(30)

Overall Precision (Pr) is given as

Overall Pr =
∑classes Pr

∑ classes
(31)

and overall F1 − score (F1):

Overall F1 =
∑classes F1

∑ classes
(32)

Finally, statistical functions were used, especially measures of central tendency such
as median and mode. The value was calculated for each median and mode, respectively, as
described in the Equations below:

Medianodd =

(
n + 1

2

)th
observation (33)

Median even =

(n
2
)th

+
(n

2 + 1
)th

2
observation (34)

Mode = L + h
(fm − f1)

(fm − f1) + (fm − f2)
(35)

where n is the sum of values number, th is the order in which the number is located, and
the mode is equal to the most common value.

3. Results and Discussions

In this section, the performance of the study is extensively examined and discussed.
Due to the diversity of climatic challenges, experiments are designed to simulate surround-
ing climatic conditions on solar panels depending on Equation (12).

3.1. Classification Performance Results

For the first classification case, we used the original dataset without any type of
preprocessing or noise; for the second classification case, we used the motion blur dataset
for training with upsampling on partial class; the idea is to use motion blur as training data
to indicate whether these datasets are valid for training or not and whether this type of
dataset can be relied upon to obtain better test results with extreme climate.

The conducted dataset is divided into 60% of the data utilized for training, while 20%
was used for each validation and testing. Figure 10 shows the accuracies and losses of all
compared architectures for the first proposed approach in the experimental setup. For the
training, Figure 10a,c illustrated the accuracy and loss results of VGG-16, VGG-19, RESNET-18,
RESNET-50, and RESNET-101, respectively. The learning behavior of VGG-16 is more stable
with less fluctuation than VGG-19: it can reach a steady state before 100 iterations. On the other
hand, VGG-19 reaches stability after 183 iterations. The learning behavior of RESNET-101
outperformed RESNET-18 and RESNET-50 architectures by achieving steady-state results with
fewer iterations (approximately 60 iterations). The training performance also shows that the
BIDA-CNN model with a series network outperforms the other models, which supports the
effectiveness of fast learning. The learning behavior of the BIDA-CNN model is nonvolatile
and steadier with less fluctuation than RESNET. The performance of the BIDA-CNN model is
close to VGG, but it is not possible to rely on VGG because it contains a high number of layers
that can be lost in the features of the images in the next cases.
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Figure 10. First case comparison results of accuracy and losses for VGG-16, VGG-19, RESNET-18,
RESNET-50, RESNET-101, and BIDA-CNN proposed based on (a) training accuracy, (b) validation
accuracy, (c) training losses, and (d) validation losses.

For the validation, validation is performed after every 1 iteration for all models used
in the analysis. The validation process is devoid of underfitting and overfitting. Figure 10b
shows the minimum and maximum accuracies for VGG-16 are 60% and 100%, and VGG-19
are 80% and 100%, while the median and mode for VGG-16 are 99.18% and 100% and
VGG-19 are 100% and 100%, respectively. The minimum and maximum accuracies for
RESNET-18 are 43.75% and 100%, for RESNET-50 68.75% and 100%, and for RESNET-101
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26.25% and 100%. In addition, the median and mode for RESNET-18 are 100% and 100%,
for RESNET-50 100% and 100%, and for RESNET-101 100% and 100%, respectively. The
minimum, maximum, median, and mode for the BIDA-CNN model are 20%, 100%, 100%,
and 100%, respectively.

Figure 10d shows that the loss results confirm the accuracy results, where the loss
of VGG-16 suffers from a high fluctuation at the beginning of learning. Tables 3 and 4
show the numerical results and the evaluation metrics of all compared architectures for
the first proposed approach (original data). The experiment runs with 30 epochs and 690
iterations (for each epoch (E) 27 iterations (I)), and Mini batch accuracy (Macc) results for
the last iterations of the last 5 epochs). The best-obtained validation accuracy (Vacc) is 100%
for all models without RESNET-101. The lowest Mini batch loss (mloss) is 0, obtained by
VGG-19, where the lowest loss validation (vloss) obtained from VGG-19 is 1.4901 × 10−8.
The learning rate (LR) for all the architectures is 0.0003. The average of the lowest validation
loss for all iterations (vloss mean) is 0.01865, which was achieved by the BIDA-CNN model.

Table 3. Validation comparison results for first case based on the last iterations of the epochs.

Models E I Macc Vacc mloss vloss vloss Mean LR

VGG-16

26 598 100.00% 100.00% 5.9631 × 10−5 0.0001

0.03312

0.0003
27 621 100.00% 100.00% 5.1497 × 10−6 0.0001 0.0003
28 644 100.00% 100.00% 1.6808 × 10−6 8.8603 × 10−5 0.0003
29 667 100.00% 100.00% 1.1682 × 10−6 8.7807 × 10−5 0.0003
30 690 100.00% 100.00% 1.4209 × 10−5 8.8387 × 10−5 0.0003

VGG-19

26 598 100.00% 100.00% 0 1.4901 × 10−8

0.02139

0.0003
27 621 100.00% 100.00% 7.6294 × 10−7 1.4901 × 10−8 0.0003
28 644 100.00% 100.00% 7.1526 × 10−8 1.4901 × 10−8 0.0003
29 667 100.00% 100.00% 5.9605 × 10−8 1.4901 × 10−8 0.0003
30 690 100.00% 100.00% 5.4836 × 10−7 1.4901 × 10−8 0.0003

RESNET-18

26 598 100.00% 100.00% 0.0006 0.0141

0.05048

0.0003
27 621 100.00% 100.00% 0.0008 0.0073 0.0003
28 644 100.00% 100.00% 0.0009 0.0101 0.0003
29 667 100.00% 100.00% 0.0007 0.0153 0.0003
30 690 100.00% 100.00% 0.0014 0.0099 0.0003

RESNET-50

26 598 100.00% 100.00% 0.0007 0.0038

0.02047

0.0003
27 621 100.00% 100.00% 0.0006 0.0067 0.0003
28 644 100.00% 100.00% 0.0003 0.0100 0.0003
29 667 100.00% 100.00% 0.0013 0.0049 0.0003
30 690 100.00% 100.00% 0.0002 0.0040 0.0003

RESNET-101

26 598 100.00% 100.00% 0.0001 0.0017

0.01996

0.0003
27 621 100.00% 100.00% 0.0003 0.0046 0.0003
28 644 100.00% 100.00% 0.0011 0.0061 0.0003
29 667 100.00% 100.00% 0.0010 0.0044 0.0003
30 690 100.00% 98.75% 0.0002 0.0117 0.0003

Proposed
BIDA-CNN

26 598 100.00% 100.00% 0.0003 0.0006

0.01865

0.0003
27 621 100.00% 100.00% 0.0011 0.0005 0.0003
28 644 100.00% 100.00% 0.0047 0.0005 0.0003
29 667 100.00% 100.00% 0.0016 0.0005 0.0003
30 690 100.00% 100.00% 9.7633 × 10−5 0.0004 0.0003

Note: The bold is the minimum losses values, which shows the researchers which model is the best and which
model gets the least loss.

Table 4. Comparison of the testing results based on evaluation metrics for first case.

Models Classes Se Pr F1 ACC

All Models
all snow 1 1 1

100%no snow 1 1 1
partial 1 1 1

The evaluation metrics and accuracies for the testing used to determine the level of
model quality are presented in Table 4. Table 4 shows the sensitivity, precision, F1-score,
and final accuracies for testing. The five CNN-based models VGG-16, VGG-19, RESNET-18,
RESNET-50, and RESNET-101, as well as the BIDA-CNN model, achieved a testing accuracy
of 100% in the first case. We can observe three findings by comparing Table 3 with Figure 10:
(i) with the excessive convolutional network layers, the input will lose some important
features, affecting the training and testing process; (ii) the skip connection process of
RESNET does not always provide the network with informative features that would raise
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the training accuracy and thus obtain high results; and (iii) this high performance of the
models may result from the clean dataset. Thus, motion blur will be applied to simulate
extreme climate and complicate the analysis process. In return, the data of the minority
class will be increased using upsampling preprocessing to avoid issues resulting in the
dataset suffering from inadequate knowledge that can appear due to the complexity of the
analysis process after applying the motion blur.

When evaluating the models, it is essential to utilize a variety of different metric eval-
uations. This is due to the fact that the performance of a model may be satisfactory when
using one measurement from one metric of evaluation, but it may be unsatisfactory when
using another measurement from another metric of evaluation. It is essential to use evaluation
metrics in order to ensure that your model is functioning correctly and to its full potential.

A confusion matrix is a table used to show the performance and effectiveness analysis
of the classification model. The evaluation performance of a classification model can be
represented graphically and summarized using a confusion matrix. Figure 11a shows that
the proposed solar panel classification models are evaluated using confusion-matrix-based
performance metrics. The confusion matrix includes actual classes and predicted classes
by displaying the values of true positive, true negative, false positive, and false negative.
Moreover, through these values, the sensitivity, specificity, precision, and overall accuracy
metrics can be calculated. Consequently, the comparison results for our models can be seen in
Figure 11a, where the five CNN-based models and BIDA-CNN model metrics achieved high
accuracies by providing more accurate diagnostic performance on the solar panels’ dataset.
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Figure 11. (a) Confusion matrix results of VGG-16, VGG-19, RESNET-18, RESNET-50, and RESNET-
101 and our proposed BIDA-CNN; (b) predicted distribution over classes of the compared models,
namely VGG-16, VGG-19, RESNET-18, RESNET-50, and RESNET-101, as well as BIDA-CNN.

Figure 11b shows the results obtained by VGG-16, VGG-19, RESNET-18, RESNET-50,
and RESNET-101 models, as well as our proposed BIDA-CNN model, where no class missed
to classify from the all_snow, no_snow, and partial classes. The RESNET-101 model struggled
with the issues in the training process, but there are no labels missed in the testing process
(all_snow, no_snow, and partial classes); this is because the probability of classification in the
softmax layer was high (approximately higher than 95%), and because of that, no labels were
missed in the testing process, as we present in Figure 12, taking into account that the result is
compared in the confusion matrix with 20% out of the conducted dataset.
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(f) our proposed BIDA-CNN.
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In the second proposed approach, the upsampling method is applied to the imbalance
classes with minority samples. The partial class in the conducted dataset suffers from
inadequate knowledge that could provide better prediction performance. This can be
accomplished by using a variety of techniques, such as rotating and inverting the images.
The dataset upsampling process aims to increase the variability and uniformity of the CNN
models. This procedure aids the models in learning more about the input space. Moreover,
in this approach, we simulate the challenges faced by surveillance cameras while detecting
the condition of solar panels to simulate that we applied motion blur on the original dataset
with linear motion across 21 pixels at an angle of 11 degrees.

The balance dataset is trained using the five implemented models and the BIDA-CNN
model. The accuracy and loss results of VGG-16, VGG-19, RESNET-18, RESNET-50, and
RESNET-101 are shown in Figures 13a and 13c, respectively. We can analyze that VGG-16
is more stable with less fluctuation than VGG-19 from a learning behavior perspective, it
converges faster and reaches the steady state at an earlier stage of iterations (250 iterations);
furthermore, VGG-19 reaches stability after 167 iterations with fluctuation between 390
to 470. The learning behavior of RESNET-101 outperformed RESNET-18 and RESNET-50
architectures by achieving steady-state results with 100 iterations. Our proposed BIDA-
CNN model achieved higher fast learning and operation speed than other models. The
BIDA-CNN model achieved a steady state with 260 iterations; furthermore, the fluctuations
of the BIDA-CNN model were fewer than other models, as observed in Figure 13c.

The other part of the dataset is validated with 20%. The same with the first section of
this experiment, the validation is performed after every 1 iteration for all models used in the
analysis. As used for the validation process, it does not involve underfitting and overfitting.
The obtained accuracies of validation for all models are shown in Figure 13b; the accuracies
improve iteratively with time. The minimum and maximum accuracies for VGG-16 are
36.67% and 100%, and for VGG-19 17.78% and 100%, while the median and mode for VGG-
16 are 98.89% and 98.89%, and for VGG-19 100% and 100%, respectively. The minimum
and maximum accuracies for RESNET-18 are 17.78% and 100%, for RESNET-50 18.89% and
98.89%, and for RESNET-101 35.56% and 98.89%. In addition, the median and mode for
RESNET-18 are 96.67% and 98.89%, for RESNET-50 91.11 and 92.22%, and for RESNET-101
91.11% and 93.33%, respectively. Figure 13d shows the loss results confirm the validation
accuracy results, where the lowest Mini batch loss

(
mloss) and the lowest validation loss

(vloss) were obtained from VGG-19. The minimum, maximum, median, and mode for the
BIDA-CNN model are 21.11%, 100%, 100%, and 100%, respectively; this indicates that
the model outperforms the rest of the models used in this experiment. Furthermore, the
BIDA-CNN model outperformed the other five models used in this experiment by an
average lowest validation loss (vloss mean) of 0.03797.

We can deeply observe three findings by comparing Figures 10 and 13: (i) the motion
blur increased the fluctuation in the training process; (ii) the motion blur led to the instability
of the validation process accuracy in networks with a high number of layers (RESNET-
18, RESNET-50, and RESNET-101), and this led to there being fluctuations until the end
of the validation process, however, the fluctuations remained confined between 90% to
100%, which represents the positive probability in the softmax layer, and we observe that
all classification categories are correct with a variable probability that always tends to
be positive; and (iii) the deblurring model is the ideal solution under extreme climates,
which helps to obtain clean and clear data that can be conducted within classification and
detection models and achieve high performance results.
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To determine the level of model quality, the evaluations, metrics, and testing accuracies
for all models are included in Tables 5 and 6. These are used to determine how well the
model is constructed. The quantitative results are well presented in Tables 5 and 6, and
the numerical results and the evaluation metrics of all compared architectures for the
second proposed approach are clearly discussed. The experiment runs with 30 epochs
and 810 iterations (for each epoch (E) 27 iterations (I)), and the Mini batch accuracy (Macc)
results for the last 5 epochs are 100%. The best validation accuracy (Vacc) is 100%, obtained
from the VGG-16, VGG-19, and BIDA-CNN models. The lowest Mini batch loss (mloss)
is 3.5763 × 10−8, obtained by VGG-19, whereas the loss validation (vloss) obtained from
VGG-19 is 2.0662 × 10−6. The learning rate (LR) for all the architectures is 0.0003. Based on
vloss mean, the best model in this experiment is the BIDA-CNN model, achieving 0.03797.
In addition, all models used in this experiment recorded 100% overall precision, sensitivity,
F1-score, and accuracy in the testing. Achieving high accuracy does not mean that the
model probability is 100%; the probability ranges from 50% to 99%. We always work on
proposing models that increase the probability of being correct through a mathematical
model that improves the process of extracting features with important information that is
input into the decision layer.

Figure 14 shows that the diagonal matrix represents a true positive that the model
has correctly predicted class dataset values; moreover, the values that are biased from the
diagonal matrix are false predicted values. In addition, Figure 14a shows there are no
objects that were missed in the classes, taking into account that the result is compared in
the confusion matrix with 20% out of the conducted dataset. Figure 14b represents the data
distribution over the classes; it shows which class gives high-performance prediction and
which class struggles with noise and outliers. Each of the tested models achieves different
data distribution or classification. In Figure 14b, the classes are presented in the form of
a histogram. Each bar contains part of the data (class). Figure 14b shows the predicted
classes by all models, where all classes are well-predicted (no missed classification).

In this experiment, the softmax activation function is used in the output hidden layer of
tested architectures. The softmax function normalizes the received outputs from the previous
layers by translating them from weighted sum values into probabilities that add up to one,
then determines the class values. After that, the achieved probability values of the predicted
classes from the output layer are compared with the desired target. Cross-entropy is frequently
used to calculate the difference between the expected and predicted multinomial probability
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distributions, and this difference is then used to update the model (see Equations (9)–(11)).
Figure 15 shows the practical investigation of this activation function.

Table 5. Comparison results for second case based on the last iterations of the epochs.

Models E I Macc Vacc mloss vloss vloss Mean LR

VGG-16

26 702 100.00% 98.89% 2.8537 × 10−5 0.0420

0.07938

0.0003
27 729 100.00% 96.67% 0.0006 0.2663 0.0003
28 756 100.00% 100.00% 1.0395 × 10−5 1.5562 × 10−5 0.0003
29 783 100.00% 100.00% 0.0002 0.0017 0.0003
30 810 100.00% 100.00% 3.7628 × 10−5 0.0028 0.0003

VGG-19

26 702 100.00% 100.00% 8.4398 × 10−6 2.1099 × 10−6

0.1194

0.0003
27 729 100.00% 100.00% 3.5763 × 10−8 2.3045 × 10−6 0.0003
28 756 100.00% 100.00% 1.7643 × 10−6 2.3482 × 10−6 0.0003
29 783 100.00% 100.00% 6.1989 × 10−7 2.1430 × 10−6 0.0003
30 810 100.00% 100.00% 0.0006 2.0662 × 10−6 0.0003

RESNET-18

26 702 100.00% 100.00% 0.0017 0.0360

0.1123

0.0003
27 729 100.00% 94.44% 0.0001 0.0912 0.0003
28 756 100.00% 100.00% 0.0321 0.0219 0.0003
29 783 100.00% 97.78% 6.4626 × 10−5 0.0367 0.0003
30 810 100.00% 96.67% 0.0003 0.0509 0.0003

RESNET-50

26 702 100.00% 96.67% 0.0006 0.1680

0.2628

0.0003
27 729 100.00% 92.22% 0.0057 0.2466 0.0003
28 756 100.00% 92.22% 0.0086 0.1849 0.0003
29 783 100.00% 96.67% 0.0001 0.1257 0.0003
30 810 100.00% 94.44% 4.6536 × 10−5 0.1453 0.0003

RESNET-101

26 702 100.00% 92.22% 7.6751 × 10−5 0.2197

0.2633

0.0003
27 729 100.00% 93.33% 0.0005 0.1845 0.0003
28 756 100.00% 95.56% 0.0008 0.1203 0.0003
29 783 100.00% 93.33% 0.0019 0.1500 0.0003
30 810 100.00% 93.33% 0.0006 0.1504 0.0003

Proposed
BIDA-CNN

26 702 100.00% 100.00% 0.0019 0.0002

0.03797

0.0003
27 729 100.00% 100.00% 0.0031 0.0002 0.0003
28 756 100.00% 100.00% 0.0006 0.0002 0.0003
29 783 100.00% 100.00% 0.0086 0.0002 0.0003
30 810 100.00% 100.00% 0.0017 0.0003 0.0003

Note: The bold is the minimum losses values, which shows the researchers which model is the best and which
model gets the least loss.

Table 6. Comparison of the testing results based on evaluation metrics for second case.

Models Classes Se Pr F1 ACC

All Models
all snow 1 1 1

100%no snow 1 1 1
partial 1 1 1
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3.2. Detection Performance Results

For the second proposed approach (detection case), the image datasets used in this
experiment consist of 442 images for training and 150 for testing. In the first step, we
create ground truth for all datasets by using a rectangular box for annotation; after that,
we begin the training with a negative overlap range of 0.3, 30 epochs, 19,530 iterations,
and a 0.0001 learning rate. The RCNN detector used in this experiment depends on three
different backbones: VGG-16, VGG-19, and our proposed BIDA-CNN. At time t, distortion
may occur in the image pixels captured by the imaging system, which is crucial for the
detection model. The detector cannot work as well with images that have distorted pixels
that give an unclean image; therefore, we propose a deblurring model to restore the features
of the images. Figure 16 and Table 7 show that the detector based on the VGG-16 and
VGG-19 backbones have a breakdown at time t. the BIDA-CNN model achieves high
performance at time t. Accordingly, the use of models that depend on preprocessing images
is very important and necessary. It increases the efficiency of the models and gives high
performance in real time. Figure 17 shows the visual results of all models used in the
detection process. The results show the accuracy of the proposed model in recovering the
original images, as well as detecting the panels.
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Figure 16. RCNN testing results with backbone (a) VGG-16, (b) VGG-19, and (c) proposed BIDA-CNN.

Table 7. Results evaluation of three RCNN backbones.

Models Classes E I AP

- Training Testing

VGG-16
all snow

30 19,530
0.00

no snow 0.21
partial 0.01

VGG-19
all snow

30 19,530
0.00

no snow 0.14
partial 0.00

Proposed
BIDA-CNN

all snow
30 19,530

0.71
no snow 0.72
partial 0.87

Note: The bold shows the performance of the proposed model.
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4. Conclusions

It is crucial to investigate the factors that affect solar panels and reduce their efficiency
in photovoltaic energy production. One main factor that prevents solar panels from working
properly is snowfall. Snow must be cleared from solar panels to maximize solar energy
production and reduce losses due to snow. Before starting the snow removal process,
snow-covered panels should be effectively identified to improve snow removal speed
and removal efficiency. The study presented a comprehensive analysis of classification
and detection to identify whether solar panels are covered by snow or not. The proposal
incorporates five deep learning architectures constructed from the ground up and the
proposed BIDA-CNN model, which preprocesses the images before the classification and
detection processes. The investigated architectures extract meaningful features based on
highly connected deep learning layers. The study performance shows how the augmented
classes perform and can give appreciated results. Within the scope of this experiment, six
different models, namely VGG-16, VGG-19, RESNET-18, RESNET-50, RESNET-101, and
BIDA-CNN, were trained, tested, and compared in terms of their overall performance. For
the classification approach, the experiments were conducted in two different cases. The
first case showed the comparative performance of all models tested on the original dataset
without any preprocessing. The second case simulated extreme climate conditions by
generating motion noise and showed how to deal with this issue. The dataset is replicated
using the upsampling technique to handle the unbalancing issue. The implemented dataset
is tried in two different cases; the first case is with 395 images, and for the second case, the
dataset after upsampling is 437 images. The datasets are divided into three classes for both
cases—all_snow, no_snow, and partial.

The testing accuracy results for the classification analysis approach show that all six
models give the same results with 100% accuracy; for the first case, in the loss metric, the
average of the lowest validation loss for all iterations was 0.01865 vloss mean, achieved
by the BIDA-CNN model. For the second case, the best model in this experiment was the
BIDA-CNN model, which achieved 0.03797 vloss mean. In addition, all models used in
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this experiment recorded 100% overall precision, sensitivity, F1-score, and testing accuracy.
Achieving high accuracy does not mean that the probability of the model was 100%; the
probability ranges from 50% to 99%. We always work on proposing models that increase
the probability of being correct through a mathematical model input in the decision layer
that improves the process of extracting features with important information. Finally,
for classification, the learning behavior of BIDA-CNN is more robust than the others by
convergence with fewer iterations. The detection analysis consists of one case based on
three backbones, namely VGG-16, VGG-19, and BIDA-CNN. The RCNN detector based
on BIDA-CNN achieved the best result when recognizing the three categories: all_snow,
no_snow, and partial. From this performance analysis, we can conclude that the accuracy
results in all cases show that the proposed BIDA-CNN outperformed its peers.

From a future perspective, we plan to investigate other factors and apply any kind
of preprocessing and other advanced deep learning techniques. This paper presented
a proposal for a new research area, where it is possible through researcher to expand
studies and integrate advanced technologies to work on reducing the factors that limit the
production of electrical energy; moreover, it is also possible to benefit from the proposals of
the paper in the future, especially to detect the defect or damage to which the solar panels
are exposed.
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