Design Thinking to Envision More Sustainable Technology-Enhanced Teaching for Effective Knowledge Transfer
Abstract
:1. Introduction
1.1. DT in Educational Settings
1.2. Objectives and Research Questions
- RQ1: Are there some differences in the self-assessed ability for DT and the level of interpersonal and evaluative skills as perceived by students enrolled in different teaching/learning modes?
- RQ2: Which DT profiles can be discerned based on students’ adoption of design cognition and DT during technology-intensive learning through distance and face-to-face teaching/learning modes?
- RQ3: How are DT profiles related to students’ interpersonal and evaluative skills?
- RQ4: Which DT profiles, as well as interpersonal and evaluative skills in students might be predictors in decision-making for technology use to attain higher order thinking skills?
2. Materials and Methods
2.1. Research Design and Sample
2.2. Design and Technology Education: Main Settings and Intervention
2.3. Measures
2.3.1. Basic Attributes
2.3.2. DT
2.3.3. Interpersonal and Evaluative Skills
2.3.4. Technology Use
2.4. Procedure and Data Analysis
2.5. Ethical Consideration
3. Results
3.1. Validity and Relability Analysis
3.1.1. Common Method Bias
3.1.2. Convergent and Discriminant Validity
3.2. Descriptive Analysis
3.2.1. Perceived Ability for DT
3.2.2. Perceived Interpersonal and Evaluative Skills and the Level of Technology Use
3.3. DT Profiles during Technology-Intensive Education
3.4. The Influence of DT Profiles on Students’ Level of Interpersonal and Evaluative Skills
3.5. Predicting Advanced Technology Use Based on Gender, Age, Group, Interpersonal Skills, Evaluative Skills and DT Profiles
4. Discussion
4.1. DT and Interpersonal and Evaluative Skills in Prospective Teachers
4.2. DT Profiles in Pre-Service Design and Technology Teachers
4.3. DT Profiles in Relation to Prospective Design and Technology Teachers’ Interpersonal and Evaluative Skills
4.4. Predictors in Decision-Making for Use of Technology to Enhance Higher Order Thinking during Design and Technology Courses
4.5. Limitations of the Study and Future Research
5. Conclusions and Implications of the Current Findings
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, Y.; Ahmad, I. From an Entrepreneurial University to a Sustainable Entrepreneurial University: Conceptualization and Evidence in the Contexts of European University Reforms. High. Educ. Policy 2021. [Google Scholar] [CrossRef]
- Hoolohan, C.; Browne, A.L. Design thinking for practice-based intervention: Co-producing the change points toolkit to unlock (un)sustainable practices. Des. Stud. 2020, 67, 102–132. [Google Scholar] [CrossRef]
- Galván, J.A.; Casman, E.; Fisher, E. What skills predict an intern’s ability to innovate new products? A quantitative study of innovation capability of Mexican college interns. Int. J. Interact. Des. Manuf. 2022, 16, 1301–1320. [Google Scholar] [CrossRef]
- Hero, L.-M.; Lindfors, E.; Taatila, V. Individual innovation competence: A systematic review and future research agenda. Int. J. High. Educ. 2017, 6, 103–121. [Google Scholar] [CrossRef]
- Huang, X.; Guo, P.; Wang, X.; Wang, D. Modeling and Analysis of Interorganizational Knowledge Transfer Considering Reputation Mechanisms. Sustainability 2021, 13, 14020. [Google Scholar] [CrossRef]
- Duke, J.; Igwe, V.; Tapang, A.; Usang, O. The innovation interface between knowledge management and firm performance. Knowl. Manag. Res. Pract. 2022. epub ahead of print. [Google Scholar] [CrossRef]
- Castaneda, D.I.; Toulson, P. Is it possible to share tacit knowledge using information and communication technology tools? Glob. Knowl. Mem. Commun. 2021, 70, 673–683. [Google Scholar] [CrossRef]
- Kownator, D. Bridging the Innovation Gap: How Can the European Union “Do More and Better with Less”? EuropaNova. Available online: https://uploads-ssl.webflow.com/594919aeb0d3db0e7a726347/61ae0cafc7dfbcbadb10efc4_Bridging%20the%20innovation%20gap.pdf (accessed on 14 October 2022).
- Organisation for Economic Co-Operation and Development (OECD). OECD Science, Technology and Innovation Outlook 2021: Times of Crisis and Opportunity; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Chasanidou, D.; Gasparini, A.A.; Lee, E. Design Thinking Methods and Tools for Innovation. In Design, User Experience, and Usability: Design Discourse. Lecture Notes in Computer Science; Marcus, A., Ed.; Springer: Cham, Switzerland, 2015; pp. 12–23. [Google Scholar] [CrossRef]
- Razzouk, R.; Shute, V. What Is Design Thinking and Why Is It Important? Rev. Educ. Res. 2012, 82, 330–348. [Google Scholar] [CrossRef]
- Dunne, D. Implementing design thinking in organizations: An exploratory study. J. Organ. Design. 2018, 7, 1–16. [Google Scholar] [CrossRef]
- Grots, A.; Creuznacher, I. Design Thinking: Process or Culture? In Design Thinking for Innovation; Brenner, W., Uebernickel, F., Eds.; Springer: Cham, Switzerland, 2016; pp. 183–191. [Google Scholar] [CrossRef]
- Avsec, S.; Ferk Savec, V. Pre-Service Teachers’ Perceptions of, and Experiences with, Technology-Enhanced Transformative Learning towards Education for Sustainable Development. Sustainability 2021, 13, 10443. [Google Scholar] [CrossRef]
- Avsec, S.; Jagiełło-Kowalczyk, M. Investigating possibilities of developing self-directed learning in architecture students using design thinking. Sustainability 2021, 13, 4369. [Google Scholar] [CrossRef]
- Haskamp, T.; Paul, A.; Stöckli, E.; De Paula, D.; Uebernickel, F. Implementing Design Thinking for Non-Designers: Learning Profiles from a Q-Methodology Study. 2020. ISPIM Connects Global 2020: Celebrating the World of Innovation. Available online: https://www.alexandria.unisg.ch/261501/1/ISPIM2020-Final.pdf (accessed on 25 October 2022).
- Kupp, M.; Anderson, J.; Reckhenrich, J. Why design thinking in business needs a rethink. MIT Sloan Manag. Rev. 2017, 59, 42–44. [Google Scholar]
- Kimbell, L. Rethinking Design Thinking: Part I. Des. Cult. 2011, 3, 285–306. [Google Scholar] [CrossRef]
- Elsbach, K.D.; Stigliani, I. Design Thinking and Organizational Culture: A Review and Framework for Future Research. J. Manag. 2018, 44, 2274–2306. [Google Scholar] [CrossRef] [Green Version]
- Butler, A.G.; Roberto, M.A. When cognition interferes with innovation: Overcoming cognitive obstacles to design thinking. Res. Technol. Manag. 2018, 61, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.Y.; Feng, Y.; Zhao, X.; Chong, W. Use of Knowledge Transfer Theory to Improve Learning Outcomes of Cognitive and Non-cognitive Skills of University Students: Evidence from Taiwan. Front. Psychol. 2021, 12, 583722. [Google Scholar] [CrossRef]
- Thoring, K.; Müller, R.M. Creating knowledge in design thinking. The relationship of process steps and knowledge types. In Proceedings of the IASDR2011, the 4th World Conference on Design Research, Delft, The Netherlands, 31 October–4 November 2011; pp. 1–9. [Google Scholar]
- Panke, S. Design Thinking in Education: Perspectives, Opportunities and Challenges. Open Educ. Stud. 2019, 1, 281–306. [Google Scholar] [CrossRef] [Green Version]
- Dorland, A.M. Didn’t we solve this one? The function of practice routines in design thinking. Commun. Des. 2017, 5, 115–130. [Google Scholar] [CrossRef]
- Avsec, S.; Ferk Savec, V. Mapping the Relationships between Self-Directed Learning and Design Thinking in Pre-Service Science and Technology Teachers. Sustainability 2022, 14, 8626. [Google Scholar] [CrossRef]
- Ericson, J.D. Mapping the Relationship between Critical Thinking and Design Thinking. J. Knowl. Econ. 2022, 13, 406–429. [Google Scholar] [CrossRef]
- Hay, L.; Cash, P.; McKilligan, S. The future of design cognition analysis. Des. Sci. 2020, 6, E20. [Google Scholar] [CrossRef]
- Kavousi, S.; Miller, P.A.; Alexander, P.A. Modeling metacognition in design thinking and design making. Int. J. Technol. Des. Educ. 2020, 30, 709–735. [Google Scholar] [CrossRef]
- Corrales-Estrada, M. Design thinkers’ profiles and design thinking solutions. Acad. Rev. Latinoam. Adm. 2020, 33, 9–24. [Google Scholar] [CrossRef]
- Koh, J.H.L.; Chai, C.S.; Wong, B.; Hong, H.-Y. Design Thinking for Education: Conceptions and Applications in Teaching and Learning; Springer: Singapore, 2015. [Google Scholar]
- Luka, I. Design Thinking in Pedagogy. J. Educ. Cult. Soc. 2020, 5, 63–74. [Google Scholar] [CrossRef]
- Avsec, S.; Jagiełło-Kowalczyk, M.; Zabicka, A. Enhancing Transformative Learning and Innovation Skills Using Remote Learning for Sustainable Architecture Design. Sustainability 2022, 14, 3928. [Google Scholar] [CrossRef]
- Liedtka, J.M. Innovative ways companies are using design thinking. Strat. Leadersh. 2014, 42, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Sharples, M.; de Roock, R.; Ferguson, R.; Gaved, M.; Herodotou, C.; Koh, E.; Kukulska-Hulme, A.; Looi, C.-K.; McAndrew, P.; Rienties, B. Pedagogy 2016: Open University Innovation Report 5; The Open University: Milton Keynes, UK, 2016. [Google Scholar] [CrossRef]
- Leifer, L.J.; Steinert, M. Dancing with Ambiguity: Causality Behavior, Design Thinking, and Triple-Loop-Learning. In Management of the Fuzzy Front End of Innovation; Gassmann, O., Schweitzer, F., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Bresciani, S. Visual design thinking: A collaborative dimensions framework to profile visualisations. Des. Stud. 2019, 63, 92e124. [Google Scholar] [CrossRef]
- Cross, N. Designerly Ways of Knowing; Springer: London, UK, 2006. [Google Scholar]
- Scheer, A.; Plattner, H. Transforming Constructivist Learning into Action: Design Thinking in education. Des. Tech. Educ. Int. J. 2011, 17, 8–19. [Google Scholar]
- Melzner, N.; Greisel, M.; Dresel, M.; Kollar, I. Regulating self-organized collaborative learning: The importance of homogeneous problem perception, immediacy and intensity of strategy use. Int. J. Comput. Support. Collab. Learn. 2020, 15, 149–177. [Google Scholar] [CrossRef]
- De Backer, L.; Van Keer, H.; De Smedt, F.; Merchie, E.; Valcke, M. Identifying regulation profiles during computer-supported collaborative learning and examining their relation with students’ performance, motivation, and self-efficacy for learning. Comput. Educ. 2022, 179, 104421. [Google Scholar] [CrossRef]
- Warner, L.H. Developing Interpersonal Skills of Evaluators: A Service-Learning Approach. Am. J. Eval. 2020, 41, 432–451. [Google Scholar] [CrossRef]
- Ding, J. Exploring Effective Teacher-Student Interpersonal Interaction Strategies in English as a Foreign Language Listening and Speaking Class. Front Psychol. 2021, 12, 765496. [Google Scholar] [CrossRef]
- Cash, P.; Vallès Gamundi, X.; Echstrøm, I.; Daalhuizen, J. Method use in behavioural design: What, how, and why? Int. J. Des. 2022, 16, 1–21. [Google Scholar] [CrossRef]
- Järvelä, S.; Järvenoja, H.; Malmberg, J. Capturing the dynamic and cyclical nature of regulation: Methodological Progress in understanding socially shared regulation in learning. Int. J. Comput. Support. Collab. Learn. 2019, 14, 425–441. [Google Scholar] [CrossRef] [Green Version]
- Wendel, S. Designing for Behavior Change: Applying Psychology and Behavioral Economics, 2nd ed.; O’Reilly: Sebastopol, ON, Canada, 2020. [Google Scholar]
- Ball, L.J.; Christensen, B.T. Advancing an understanding of design cognition and design metacognition: Progress and prospects. Des. Stud. 2019, 65, 35–59. [Google Scholar] [CrossRef]
- Bylund, C.L.; Peterson, E.B.; Cameron, K.A. A practitioner’s guide to interpersonal communication theory: An overview and exploration of selected theories. Patient Educ. Couns. 2012, 87, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Iiskala, T.; Volet, S.; Lehtinen, E.; Vauras, M. Socially shared metacognitive regulation in asynchronous CSCL in science: Functions, evolution, and participation. Frontline Learn. Res. 2015, 3, 78–111. [Google Scholar] [CrossRef]
- De Backer, L.; Van Keer, H.; Valcke, M. Variations in socially shared metacognitive regulation and their relation with university students’ performance. Metacogn. Learn. 2020, 15, 233–259. [Google Scholar] [CrossRef]
- Schnaubert, L.; Bodemer, D. Providing different types of group awareness information to guide collaborative learning. Int. J. Comput. Support. Collab. Learn. 2019, 14, 7–51. [Google Scholar] [CrossRef]
- Yilmaz, F.G.K.; Yilmaz, R. Impact of pedagogical agent-mediated metacognitive support towards increasing task and group awareness in CSCL. Comput. Educ. 2019, 134, 1–14. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Su, Y.; Peng, Y.; Hu, H. Exploring the role of EFL learners’ online self-regulation profiles in their social regulation of learning in wiki-supported collaborative reading activities. J. Comput. Educ. 2020, 7, 575–595. [Google Scholar] [CrossRef]
- Zheng, J.; Xing, W.; Zhu, G.X.; Chen, G.; Zhao, H.; Xie, C. Profiling self-regulation behaviors in STEM learning of engineering design. Comput. Educ. 2020, 143, 103669. [Google Scholar] [CrossRef]
- Bergman, L.R.; Wangby, M. The person-oriented approach: A short theoretical and practical guide. Estonian J. Educ. 2014, 2, 29–49. [Google Scholar] [CrossRef] [Green Version]
- Creswell, J.W.; Creswell, J.D. Research design: Qualitative, quantitative, and mixed methods approaches, 5th ed.; Sage: Los Angeles, CA, USA, 2018. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.-J.; Zhao, K.; Fils-Aime, F. Response rates of online surveys in published research: A meta-analysis. Comput. Hum. Behav. Rep. 2022, 7, 100206. [Google Scholar] [CrossRef]
- Qiu, W.; Joe, H. clusterGeneration: Random Cluster Generation. R Package Version 1.3.7. Available online: https://cran.r-project.org/web/packages/clusterGeneration/clusterGeneration.pdf (accessed on 14 October 2022).
- Avsec, S.; Sajdera, J. Factors influencing pre-service preschool teachers’ engineering thinking: Model development and test. Int. J. Technol. Des. Educ. 2019, 29, 1105–1132. [Google Scholar] [CrossRef]
- University of Ljubljana. Study Programmes. Available online: https://www.pef.uni-lj.si/323.html (accessed on 13 September 2022).
- Dosi, C.; Rosati, F.; Vignoli, M. Measuring design thinking mindset. In Design 2018, Proceedings of the 15th International Design Conference, Dubrovnik, Croatia, 21–24 May 2018; Marjanovíc, D., Štorga, M., Škec, S., Bojčetić, N., Pavković, N., Eds.; The Design Society: Dubrovnik, Croatia, 2018; pp. 1991–2002. Available online: https://www.designsociety.org/publication/40597/MEASURING+DESIGN+THINKING+MINDSET (accessed on 13 September 2022).
- Chomeya, R. Quality of Psychology Test between Likert Scale 5 and 6 Points. J. Soc. Sci. 2010, 6, 399–403. [Google Scholar] [CrossRef]
- Hair, J.; Black, B.; Babin, B.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 7th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2009. [Google Scholar]
- Pituch, K.A.; Stevens, J.P. Applied Multivariate Statistics for the Social Sciences; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics: North American Edition, 5th ed.; Sage: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Hair, J.F.; Sarstedt, M.; Pieper, T.M.; Ringle, C.M. The Use of Partial Least Squares Structural Equation Modeling in Strategic Management Research: A Review of Past Practices and Recommendations for Future Applications. Long Range Plan. 2012, 45, 320–340. [Google Scholar] [CrossRef]
- Meier, K.; Parker, P.; Freeth, D. Mechanisms that support the assessment of interpersonal skills. J. Pract. Teach. Learn. 2014, 12, 6–24. [Google Scholar] [CrossRef]
- Williamson, S.N. Development of a self-rating scale of self-directed learning. Nurse Res. 2007, 14, 66–83. [Google Scholar] [CrossRef] [Green Version]
- Plutchik, R. The circumplex as a general model of the structure of emotions and personality. In Circumplex Models of Personality and Emotions; Plutchik, R., Conte, H.R., Eds.; American Psychological Association: Washington, DC, USA, 1997; pp. 17–45. [Google Scholar] [CrossRef]
- Komperda, R.; Pentecost, T.C.; Barbera, J. Moving beyond Alpha: A Primer on Alternative Sources of Single-Administration Reliability Evidence for Quantitative Chemistry Education Research. J. Chem. Educ. 2018, 95, 1477–1491. [Google Scholar] [CrossRef]
- Hayes, A.F.; Coutts, J.J. Use Omega Rather than Cronbach’s Alpha for Estimating Reliability. But…. Commun. Methods Meas. 2020, 14, 1–24. [Google Scholar] [CrossRef]
- Fornell, C.G.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Gore, P. Cluster Analysis. In Handbook of Applied Multivariate Statistics and Mathematical Modelling; Tinsley, H., Brown, S., Eds.; Academic Press: Cambridge, MA, USA, 2000; pp. 297–321. [Google Scholar]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed.; Routledge: New York, NY, USA, 2003; pp. 32–35. [Google Scholar]
- University of Ljubljana. Code of Ethics. Available online: https://www.uni-lj.si/university/code_of_ethics/ (accessed on 17 September 2022).
- Chang, S.J.; Van Witteloostuijn, A.; Eden, L. From the editors: Common method variance in international business research. J. Int. Bus. Stud. 2010, 41, 178–184. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. J. e-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Malhotra Naresh, K.; Dash, S. Marketing Research, An Applied Orientation, 7th ed.; Pearson: New Delhi, India, 2015. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 8th ed.; Cengage: Hampshire, UK, 2019. [Google Scholar]
- Roemer, E.; Schuberth, F.; Henseler, J. HTMT2–an improved criterion for assessing discriminant validity in structural equation modeling. Ind. Manag. Data Syst. 2021, 121, 2637–2650. [Google Scholar] [CrossRef]
- Teo, T.S.H.; Srivastava, S.C.; Jiang, L. Trust and electronic government success: An empirical study. J. Manag. Inf. Syst. 2008, 25, 99–132. [Google Scholar] [CrossRef]
- Henseler, J.A. Adanco 2.0.1: User Manual, 1st ed.; Composite Modeling GmbH & Co: Kleve, Germany, 2017. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson Education: Boston, MA, USA, 2013. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, 3rd ed.; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Vermunt, J.K.; Magidson, J. Latent class models for classification. Comput. Stat. Data Anal. 2003, 41, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Agresti, A. An Introduction to Categorical Data Analysis, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Sharpe, D. Your Chi-Square test is statistically significant: Now what? Pract. Assess. Res. Eval. 2015, 20, 1–10. [Google Scholar] [CrossRef]
- Landis, S.E.; Barrett, M.; Galvin, S.L. Effects of different models of integrated collaborative care in a family medicine residency program. Fam. Syst. Health 2013, 31, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-S.; Kao, J.-Y.; Wang, Y.-Y. Influences of virtual reality on design creativity and design thinking. Think. Skills Creat. 2022, 46, 101127. [Google Scholar] [CrossRef]
- Toader, A.F.; Kessler, T. Task Variation and Mental Models Divergence Influencing the Transfer of Team Learning. Small Group Res. 2018, 49, 545–575. [Google Scholar] [CrossRef] [Green Version]
- Christensen, B.T.; Ball, L.J. Fluctuating epistemic uncertainty in a design team as a metacognitive driver for creative cognitive processes. CoDesign 2017, 14, 1–21. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, L.; Liu, G. Understanding preservice teachers’ affective responses to VR-enabled scientific experiments. Front. Psychol. 2022, 13, 1–12. [Google Scholar] [CrossRef]
- Greene, J.O. A cognitive approach to human communication: An action assembly theory. Commun. Monogr. 1984, 51, 289–306. [Google Scholar] [CrossRef]
- Schmid, M.; Brianza, E.; Petko, D. Self-reported technological pedagogical content knowledge (TPACK) of pre-service teachers in relation to digital technology use in lesson plans. Comput. Hum. Behav. 2021, 115, 106586. [Google Scholar] [CrossRef]
Factor | Number of Items | Example |
---|---|---|
DT1—Active experimentation and critical questioning | 3 | I continually try new things. |
DT2—Open to different perspectives and collaboration | 4 | I believe that teams with diverse perspectives result in superior outcomes. |
DT3—Empathy | 5 | I am comfortable putting myself into the role of user. |
DT4—Tolerance for and being comfortable with uncertainty | 3 | I prefer new contexts rather than familiar ones. |
DT5—Experiential intelligence and transformation ability | 3 | I prefer doing rather than thinking. |
DT6—Creative confidence | 4 | I am sure I can deal with problems requiring creativity. |
DT7—Optimism to have an impact | 3 | I am comfortable with thinking and acting positively. |
DT8—Desire to make difference | 3 | I desire to have an impact on people around me. |
DT9—Team members interactions and collaboration | 3 | I am comfortable with sharing my knowledge with my team-mates. |
DT10—Abductive thinking and envisioning new things | 4 | I am comfortable with drawing conclusions from incomplete information. |
DT11—Problem reframing | 3 | I think it is important to reframe the initial problem, in order to achieve a good result. |
DT12—Team learning and knowledge transfer | 3 | I prefer to work with a team rather than working alone. |
DT13—Embracing risk | 3 | I am comfortable taking risks. |
DT14—Learning-oriented | 3 | I am comfortable implementing what I learn. |
Factor | Number of Items | Example |
---|---|---|
IPS1—Individually centred | 3 | I am able to identify my role within a group. |
IPS2—Interaction-centred | 3 | I find it easy to work in collaboration with others. |
EV1—Monitoring and observing ability | 3 | I am able to monitor my learning progress. |
EV2—Critical thinking and motivation | 3 | I value criticism as the basis of bringing.improvement to my learning. |
EV3—Reflection and feedback seeking | 4 | I review and reflect on my learning activities. |
TECH—Use of technology | 3 | I find computer simulation in teaching/learning useful. |
Latent Constructs | ω | CR | AVE | DT1 | DT2 | DT3 | DT4 | DT5 | DT6 | DT7 | DT8 | DT9 | DT10 | DT11 | DT12 | DT13 | DT14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DT1 | 0.81 | 0.76 | 0.51 | 0.71 | |||||||||||||
DT2 | 0.80 | 0.81 | 0.52 | 0.20 | 0.72 | ||||||||||||
DT3 | 0.89 | 0.85 | 0.54 | 0.13 | 0.16 | 0.73 | |||||||||||
DT4 | 0.78 | 0.77 | 0.52 | 0.18 | 0.07 | 0.15 | 0.72 | ||||||||||
DT5 | 0.75 | 0.82 | 0.60 | 0.15 | 0.14 | 0.15 | 0.07 | 0.78 | |||||||||
DT6 | 0.89 | 0.83 | 0.55 | 0.35 | 0.15 | 0.23 | 0.20 | 0.13 | 0.74 | ||||||||
DT7 | 0.84 | 0.77 | 0.52 | 0.48 | 0.19 | 0.22 | 0.20 | 0.19 | 0.37 | 0.72 | |||||||
DT8 | 0.78 | 0.72 | 0.51 | 0.30 | 0.24 | 0.22 | 0.09 | 0.13 | 0.33 | 0.30 | 0.71 | ||||||
DT9 | 0.85 | 0.79 | 0.57 | 0.21 | 0.33 | 0.16 | 0.13 | 0.12 | 0.14 | 0.18 | 0.16 | 0.77 | |||||
DT10 | 0.87 | 0.84 | 0.57 | 0.36 | 0.15 | 0.15 | 0.18 | 0.12 | 0.35 | 0.31 | 0.24 | 0.17 | 0.72 | ||||
DT11 | 0.82 | 0.77 | 0.52 | 0.31 | 0.14 | 0.26 | 0.11 | 0.10 | 0.26 | 0.29 | 0.30 | 0.15 | 0.29 | 0.73 | |||
DT12 | 0.73 | 0.75 | 0.51 | 0.14 | 0.19 | 0.04 | 0.13 | 0.08 | 0.06 | 0.11 | 0.07 | 0.26 | 0.13 | 0.10 | 0.71 | ||
DT13 | 0.84 | 0.77 | 0.53 | 0.26 | 0.04 | 0.14 | 0.34 | 0.04 | 0.23 | 0.25 | 0.11 | 0.08 | 0.23 | 0.15 | 0.08 | 0.75 | |
DT14 | 0.80 | 0.75 | 0.51 | 0.31 | 0.27 | 0.18 | 0.13 | 0.24 | 0.27 | 0.36 | 0.22 | 0.32 | 0.24 | 0.19 | 0.14 | 0.10 | 0.71 |
Latent Constructs | DT1 | DT2 | DT3 | DT4 | DT5 | DT6 | DT7 | DT8 | DT9 | DT10 | DT11 | DT12 | DT13 | DT14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DT1 | ||||||||||||||
DT2 | 0.55 | |||||||||||||
DT3 | 0.44 | 0.50 | ||||||||||||
DT4 | 0.54 | 0.31 | 0.49 | |||||||||||
DT5 | 0.45 | 0.46 | 0.47 | 0.32 | ||||||||||
DT6 | 0.71 | 0.45 | 0.55 | 0.54 | 0.40 | |||||||||
DT7 | 0.83 | 0.54 | 0.56 | 0.55 | 0.52 | 0.71 | ||||||||
DT8 | 0.69 | 0.60 | 0.56 | 0.38 | 0.43 | 0.69 | 0.67 | |||||||
DT9 | 0.56 | 0.68 | 0.48 | 0.44 | 0.43 | 0.43 | 0.52 | 0.48 | ||||||
DT10 | 0.73 | 0.46 | 0.44 | 0.52 | 0.36 | 0.68 | 0.66 | 0.59 | 0.48 | |||||
DT11 | 0.69 | 0.45 | 0.60 | 0.41 | 0.37 | 0.60 | 0.65 | 0.67 | 0.47 | 0.65 | ||||
DT12 | 0.48 | 0.57 | 0.43 | 0.47 | 0.39 | 0.28 | 0.41 | 0.32 | 0.67 | 0.44 | 0.38 | |||
DT13 | 0.63 | 0.25 | 0.43 | 0.74 | 0.26 | 0.56 | 0.61 | 0.41 | 0.35 | 0.57 | 0.46 | 0.36 | ||
DT14 | 0.71 | 0.65 | 0.51 | 0.46 | 0.60 | 0.62 | 0.75 | 0.58 | 0.68 | 0.58 | 0.54 | 0.48 | 0.40 |
Latent Constructs | ω | CR | AVE | IPS1 | IPS2 | EV1 | EV2 | EV3 | TECH |
---|---|---|---|---|---|---|---|---|---|
IPS1 | 0.73 | 0.79 | 0.60 | 0.78 | |||||
IPS2 | 0.79 | 0.81 | 0.53 | 0.30 | 0.73 | ||||
EV1 | 0.74 | 0.86 | 0.52 | 0.28 | 0.16 | 0.72 | |||
EV2 | 0.81 | 0.81 | 0.64 | 0.19 | 0.13 | 0.23 | 0.80 | ||
EV3 | 0.83 | 0.86 | 0.52 | 0.21 | 0.15 | 0.27 | 0.27 | 0.72 | |
TECH | 0.77 | 0.85 | 0.51 | 0.20 | 0.21 | 0.10 | 0.06 | 0.04 | 0.71 |
Latent Constructs | IPS1 | IPS2 | EV1 | EV2 | EV3 | TECH |
---|---|---|---|---|---|---|
IPS1 | ||||||
IPS2 | 0.72 | |||||
EV1 | 0.69 | 0.50 | ||||
EV2 | 0.59 | 0.47 | 0.62 | |||
EV3 | 0.59 | 0.48 | 0.64 | 0.66 | ||
TECH | 0.60 | 0.59 | 0.38 | 0.29 | 0.20 |
Latent Construct | Technology-Enhanced Distance Education | Technology-Enhanced Face-to-Face Education | Sig. | Effect Size | ||||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | S | K | M | SD | S | K | p-Value | η2 * | |
DT1 | 4.65 | 0.88 | −0.51 | 0.08 | 4.79 | 0.79 | −0.54 | −0.26 | 0.754 | 0.000 |
DT2 | 5.34 | 0.67 | −0.96 | 0.89 | 5.45 | 0.56 | −0.98 | 0.49 | 0.865 | 0.000 |
DT3 | 4.92 | 0.81 | −0.67 | 0.11 | 5.23 | 0.62 | −0.69 | 0.47 | 0.003 | 0.038 |
DT4 | 3.77 | 0.93 | 0.04 | −0.17 | 4.56 | 0.82 | −0.70 | 0.48 | 0.000 | 0.141 |
DT5 | 5.11 | 0.69 | −0.89 | −0.67 | 5.44 | 0.66 | 0.98 | 1.82 | 0.001 | 0.060 |
DT6 | 4.55 | 0.88 | −0.21 | −0.38 | 4.89 | 0.83 | −0.92 | 0.91 | 0.141 | 0.007 |
DT7 | 4.77 | 0.94 | −0.57 | −0.34 | 5.02 | 0.77 | −0.57 | −0.16 | 0.628 | 0.001 |
DT8 | 4.89 | 0.82 | −0.86 | 0.82 | 5.05 | 0.74 | 0.98 | 1.49 | 0.580 | 0.001 |
DT9 | 5.04 | 0.75 | −0.48 | −0.24 | 5.35 | 0.80 | −0.97 | 1.78 | 0.204 | 0.005 |
DT10 | 4.48 | 0.79 | −0.64 | 0.98 | 4.60 | 0.83 | −0.62 | 1.51 | 0.738 | 0.000 |
DT11 | 4.95 | 0.87 | −0.65 | −0.12 | 4.90 | 0.74 | −0.63 | 0.71 | 0.049 | 0.015 |
DT12 | 4.47 | 0.89 | −0.33 | −0.16 | 4.68 | 0.82 | −0.84 | 0.62 | 0.893 | 0.000 |
DT13 | 3.76 | 0.97 | −0.10 | −0.23 | 4.31 | 0.98 | −0.61 | 0.19 | 0.001 | 0.062 |
DT14 | 5.20 | 0.68 | −0.68 | 0.06 | 5.37 | 0.71 | −0.97 | 0.73 | 0.863 | 0.000 |
Latent Construct | Technology-Enhanced Distance Education | Technology-Enhanced Face-to-Face Education | Sig. | Effect Size | ||||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | S | K | M | SD | S | K | p-Value | η2 * | |
IPS1 | 4.02 | 0.68 | −0.34 | −0.17 | 4.29 | 0.72 | −0.91 | 0.54 | 0.048 | 0.012 |
IPS2 | 4.20 | 0.70 | −0.98 | 1.02 | 4.48 | 0.61 | −0.99 | 1.87 | 0.042 | 0.015 |
EV1 | 4.03 | 0.66 | −0.53 | −0.62 | 4.19 | 0.70 | −0.49 | −0.58 | 0.732 | 0.001 |
EV2 | 3.93 | 0.85 | −0.82 | 1.01 | 4.17 | 0.76 | −0.99 | 1.21 | 0.302 | 0.006 |
EV3 | 3.87 | 0.72 | −0.28 | −0.45 | 3.90 | 0.78 | −0.77 | 0.23 | 0.044 | 0.014 |
TECH | 4.15 | 0.67 | −0.52 | −0.37 | 4.58 | 0.61 | −0.98 | 1.86 | 0.000 | 0.084 |
Hierarchical Clustering | k-Means Clustering | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | |
Cluster Variables | High DT | Medium DT | Low DT | High DT | Medium DT | Low DT |
DT1 | 5.31 (0.53) | 4.45 (0.64) | 3.46 (0.71) | 5.20 (0.59) | 4.35 (0.64) | 3.50 (0.77) |
DT2 | 5.70 (0.38) | 5.32 (0.51) | 4.66 (0.77) | 5.60 (0.44) | 5.35 (0.55) | 4.71 (0.76) |
DT3 | 5.47 (0.53) | 4.89 (0.66) | 4.34 (0.75) | 5.40 (0.55) | 4.82 (0.68) | 4.36 (0.76) |
DT4 | 4.73 (0.76) | 3.91 (0.83) | 3.13 (0.69) | 4.57 (0.85) | 3.87 (0.79) | 3.22 (0.79) |
DT5 | 5.60 (0.45) | 5.08 (0.68) | 4.74 (0.79) | 5.55 (0.46) | 4.95 (0.74) | 4.87 (0.83) |
DT6 | 5.31 (0.49) | 4.47 (0.68) | 3.50 (0.66) | 5.22 (0.53) | 4.24 (0.64) | 3.67 (0.82) |
DT7 | 5.48 (0.47) | 4.59 (0.73) | 3.83 (0.78) | 5.41 (0.52) | 4.40 (0.65) | 3.86 (0.81) |
DT8 | 5.41 (0.47) | 4.83 (0.57) | 3.85 (0.88) | 5.35 (0.48) | 4.75 (0.57) | 3.89 (0.88) |
DT9 | 5.60 (0.48) | 5.05 (0.72) | 4.25 (0.83) | 5.45 (0.59) | 5.12 (0.73) | 4.28 (0.83) |
DT10 | 5.04 (0.62) | 4.33 (0.49) | 3.46 (0.81) | 4.95 (0.62) | 4.25 (0.47) | 3.51 (0.81) |
DT11 | 5.34 (0.58) | 4.79 (0.64) | 3.85 (0.72) | 5.25 (0.63) | 4.75 (0.58) | 3.89 (0.74) |
DT12 | 4.99 (0.72) | 4.38 (0.77) | 3.73 (0.93) | 4.81 (0.84) | 4.50 (0.67) | 3.75 (0.85) |
DT13 | 4.80 (0.71) | 3.45 (0.88) | 3.14 (0.81) | 4.65 (0.86) | 3.45 (0.86) | 3.05 (0.90) |
DT14 | 5.68 (0.40) | 5.13 (0.62) | 4.44 (0.68) | 5.62 (0.46) | 5.06 (0.65) | 4.52 (0.70) |
Cluster Number of Case | Total | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
Teaching/learning mode | Technology-enhanced distance education | Count | 48 | 76 | 32 | 156 |
Expected Count | 66.6 | 66.6 | 22.9 | 156.0 | ||
Adjusted Residual | −4.3 | 2.2 | 3.0 * | |||
Count | 83 | 55 | 13 | 151 | ||
Technology-enhanced face-to-face education | Expected Count | 64.4 | 64.4 | 22.1 | 151.0 | |
Adjusted Residual | 4.3 * | −2.2 | −3.0 | |||
Total | Count | 131 | 131 | 45 | 307 | |
Expected Count | 131.0 | 131.0 | 45.0 | 307.0 |
Predictor | Step 1 | Step 2 | Step 3 | ||||
---|---|---|---|---|---|---|---|
β (SE) | p-Value | β (SE) | p-Value | β (SE) | p-Value | ||
Intercept | −1.25 (0.72) | 0.082 | −5.12 | 0.001 | −5.01 | 0.001 | |
Sex | −0.58 (0.41) | 0.153 | −0.41 | 0.341 | −0.41 | 0.356 | |
Age | 0.02 (0.02) | 0.382 | 0.02 | 0.461 | 0.03 | 0.430 | |
Group | Face-to-face | 0.84 (0.26) | 0.002 | 0.76 | 0.006 | 0.73 | 0.009 |
DT (ref. Medium DT) | Low DT | −0.94 (0.37) | 0.012 | −0.43 | 0.276 | −0.46 | 0.248 |
High DT | 0.93 (0.29) | 0.002 | 0.56 | 0.077 | 0.63 | 0.041 | |
IPS1 | 0.53 | 0.026 | 0.59 | 0.025 | |||
IPS2 | 0.46 | 0.053 | 0.50 | 0.039 | |||
EV1 | 0.21 | 0.420 | |||||
EV2 | −0.04 | 0.876 | |||||
EV3 | −0.31 | 0.201 | |||||
Pseudo R2 | Cox and Snell | 0.15 | 0.18 | 0.20 | |||
Nagelkerke | 0.20 | 0.26 | 0.28 | ||||
McFaden | 0.13 | 0.16 | 0.18 | ||||
Overall model evaluation | Pearson | Χ2= 78.66, p = 0.10 | Χ2= 218.14, p = 0.43 | Χ2= 293.59, p = 0.35 | |||
Deviance | Χ2= 91.79, p = 0.02, | Χ2= 257.95, p = 0.03 | Χ2= 345.57, p = 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avsec, S. Design Thinking to Envision More Sustainable Technology-Enhanced Teaching for Effective Knowledge Transfer. Sustainability 2023, 15, 1163. https://doi.org/10.3390/su15021163
Avsec S. Design Thinking to Envision More Sustainable Technology-Enhanced Teaching for Effective Knowledge Transfer. Sustainability. 2023; 15(2):1163. https://doi.org/10.3390/su15021163
Chicago/Turabian StyleAvsec, Stanislav. 2023. "Design Thinking to Envision More Sustainable Technology-Enhanced Teaching for Effective Knowledge Transfer" Sustainability 15, no. 2: 1163. https://doi.org/10.3390/su15021163
APA StyleAvsec, S. (2023). Design Thinking to Envision More Sustainable Technology-Enhanced Teaching for Effective Knowledge Transfer. Sustainability, 15(2), 1163. https://doi.org/10.3390/su15021163