A Textual Data-Oriented Method for Doctor Selection in Online Health Communities
Abstract
:1. Introduction
2. Preliminaries
2.1. Probabilistic Linguistic Term Sets
2.2. MULTIMOORA Method
3. Methodology
3.1. Data Collection and Processing
3.2. MPMADM Process
3.2.1. Quantifying Influence of Doctors
3.2.2. Determining Attributes
3.2.3. Evaluating Patient Satisfactions for Doctors
- Optimal rule: If doctor ranks first in both rankings of doctor influence and patient satisfactions (i.e., ), then doctor is the optimal alternative;
- Suboptimal rule: For rational patients, doctor with the best ranking in doctor influence (i.e., ) should be regarded as suboptimal alternative, while emotional patients are prone to choose doctor with the best ranking in patient satisfactions (i.e., )
- Step 1:
- Dig doctor basic information and online patient reviews from OHCs;
- Step 2:
- Quantify the mined doctor basic information by the methods introduced in Section 3.2.1 and preprocess all online reviews;
- Step 3:
- Fuse doctor basic information and characterize the relative influence of doctors through Formula (5);
- Step 4:
- Identify the key attributes with the aid of TF-IDF technique;
- Step 5:
- Step 6:
- Construct evaluation matrix in the light of SKEP technique and PLTSs;
- Step 7:
- Obtain the positive and negative ideal solutions for each attribute;
- Step 8:
- Acquire probabilistic linguistic prospect value functions on gain and loss through Formula (9);
- Step 9:
- Normalize all probabilistic linguistic prospect values according to Formula (10);
- Step 10:
- Calculate three kinds of comprehensive values (i.e., , and ) by PLPVRS model, PLPVRP model and PLPVFMF model, respectively;
- Step 11:
- Rank and in descending order while in ascending order;
- Step 12:
- Compute the patient satisfactions for all doctors with the aid of Formula (14);
- Step 13:
- Rank doctors according to their patient satisfactions. Especially, dominance theory is used to rank doctors when they have the same patient satisfaction;
- Step 14:
- Make selection criteria to help patients pick out optimal and suboptimal doctors.
4. An Illustration of Proposed Method
4.1. Case Description
4.2. MPMADM Process
4.3. Comparison Analysis and Discussions
- (1)
- Whether attribute weight methods are more effective than existing approaches?
- (2)
- Whether PL-PT-MULTIMOORA method is more appropriate than existing approaches?
4.4. Managerial Implications and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alemu, E.N.; Huang, J. HealthAid: Extracting domain targeted high precision procedural knowledge from online communities. Inf. Process. Manag. 2020, 57, 102299. [Google Scholar] [CrossRef]
- Jie, M.G.; Gao, G.; Agarwal, R. The creation of social value: Can an online health community reduce rural–urban health disparities? MIS Q. 2016, 40, 247–263. [Google Scholar]
- Meng, F.B.; Zhang, X.F.; Liu, L.B.; Ren, C.C. Converting readers to patients? From free to paid knowledge-sharing in online health communities. Inf. Process. Manag. 2021, 58, 102490. [Google Scholar] [CrossRef]
- Zhao, H.; Fu, S.; Chen, X. Promoting users’ intention to share online health articles on social media: The role of confirmation bias. Inf. Process. Manag. 2020, 57, 102354. [Google Scholar] [CrossRef]
- Yan, Z.J.; Wang, T.M.; Chen, Y.; Zhang, H. Knowledge sharing in online health communities: A social exchange theory perspective. Inf. Manag. 2016, 53, 643–653. [Google Scholar] [CrossRef]
- Huang, W.S.; Cao, B.L.; Yang, G.; Luo, N.Z.; Chao, N.P. Turn to the Internet First? Using Online Medical Behavioral Data to Forecast COVID-19 Epidemic Trend. Inf. Process. Manag. 2021, 58, 102486. [Google Scholar] [CrossRef]
- Qiao, W.X.; Yan, Z.J.; Wang, X.H. Join or not: The impact of physicians’ group joining behavior on their online demand and reputation in online health communities. Inf. Process. Manag. 2021, 58, 10263. [Google Scholar] [CrossRef]
- Hu, J.H.; Zhang, X.H.; Yang, Y.; Liu, Y.M.; Chen, X.H. New doctors ranking system based on VIKOR method. Int. Trans. Oper. Res. 2020, 27, 1236–1261. [Google Scholar] [CrossRef]
- James, T.L.; Calderon, E.D.V.; Cook, D.F. Exploring patient perceptions of healthcare service quality through analysis of unstructured feedback. Expert Syst. Appl. 2017, 71, 479–492. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.X.; Xu, Z.S. A decision-making model under probabilistic linguistic circumstances with unknown criteria weights for online customer reviews. Int. J. Fuzzy Syst. 2020, 22, 777–789. [Google Scholar] [CrossRef]
- Shah, A.M.; Yan, X.B.; Tariq, S.; Ali, M. What patients like or dislike in physicians: Analyzing drivers of patient satisfaction and dissatisfaction using a digital topic modeling approach. Inf. Process. Manag. 2021, 58, 102516. [Google Scholar] [CrossRef]
- Yang, H.L.; Guo, X.T.; Wu, T.S. Exploring the influence of the online physician service delivery process on patient satisfaction. Decis. Support Syst. 2015, 78, 113–121. [Google Scholar] [CrossRef]
- Du, Y.F.; Liu, D.; Morente-Molinera, J.A.; Herrera-Viedma, E. A data-driven method for user satisfaction evaluation of smart and connected products. Expert Syst. Appl. 2022, 210, 118392. [Google Scholar] [CrossRef]
- Chen, S.Q.; Guo, X.T.; Wu, T.S.; Ju, X.F. Exploring the online doctor-patient interaction on patient satisfaction based on text mining and empirical analysis. Inf. Process. Manag. 2020, 57, 102253. [Google Scholar] [CrossRef]
- Hao, H.J.; Zhang, K.P. The voice of Chinese health consumers: A text mining approach to web-based physician reviews. J. Med. Internet Res. 2016, 18, e4430. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.J.; Wu, H. Exploring the impact of word-of-mouth about Physicians’ service quality on patient choice based on online health communities. BMC Med. Inform. Decis. Mak. 2016, 16, 151. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Lu, N.J. Service provision, pricing, and patient satisfaction in online health communities. Int. J. Med. Inform. 2018, 110, 77–89. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Çifçi, G.; Güleryüz, S. Strategic analysis of healthcare service quality using fuzzy AHP methodology. Expert Syst. Appl. 2011, 38, 9407–9424. [Google Scholar] [CrossRef]
- Du, Y.F.; Liu, D. An integrated method for multi-granular probabilistic linguistic multiple attribute decision-making with prospect theory. Comput. Ind. Eng. 2021, 159, 107500. [Google Scholar] [CrossRef]
- Hu, Y.H.; Chen, Y.L.; Chou, H.L. Opinion mining from online hotel reviews-a text summarization approach. Inf. Process. Manag. 2017, 53, 436–449. [Google Scholar] [CrossRef]
- Yang, W.J.; Zhang, J.T.; Yan, H. Impacts of online consumer reviews on a dual-channel supply chain. Omega 2021, 101, 102266. [Google Scholar] [CrossRef]
- Tian, G.; Lu, L.; McIntosh, C. What factors affect consumers’ dining sentiments and their ratings: Evidence from restaurant online review data. Food Qual. Prefer. 2021, 88, 104060. [Google Scholar] [CrossRef]
- Chen, Z.S.; Liu, X.L.; Chin, K.S.; Pedrycz, W.; Tsui, K.L.; Skibniewski, M.J. Online-review analysis based large-scale group decision-making for determining passenger demands and evaluating passenger satisfaction: Case study of high-speed rail system in China. Inf. Fusion 2021, 69, 22–39. [Google Scholar] [CrossRef]
- Park, J.; Lee, B.K. An opinion-driven decision-support framework for benchmarking hotel service. Omega 2021, 103, 102415. [Google Scholar] [CrossRef]
- Zhang, C.X.; Xu, Z.S.; Gou, X.J.; Chen, S.X. An online reviews-driven method for the prioritization of improvements in hotel services. Tour. Manag. 2021, 87, 104382. [Google Scholar] [CrossRef]
- Chen, Z.S.; Yang, L.L.; Rodríguez, R.M.; Xiong, S.H.; Chin, K.S.; Martínez, L. Power-average-operator-based hybrid multiattribute online product recommendation model for consumer decision-making. Int. J. Intell. Syst. 2021, 36, 2572–2617. [Google Scholar] [CrossRef]
- Du, Y.F.; Liu, D.; Duan, H.X. A textual data-driven method to identify and prioritise user preferences based on regret/rejoicing perception for smart and connected products. Int. J. Prod. Res. 2022, 60, 4176–4196. [Google Scholar] [CrossRef]
- Brauers, W.K.M.; Zavadskas, E.K. Project management by MULTIMOORA as an instrument for transition economies. Technol. Econ. Dev. Econ. 2010, 16, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Brauers, W.K.M.; Zavadskas, E.K. Robustness of MULTIMOORA: A method for multi-objective optimization. Informatica 2012, 23, 1–25. [Google Scholar] [CrossRef]
- Chakraborty, S. Applications of the MOORA method for decision making in manufacturing environment. Int. J. Adv. Manuf. Technol. 2011, 54, 1155–1166. [Google Scholar] [CrossRef]
- Wu, X.L.; Liao, H.C.; Xu, Z.S.; Hafezalkotob, A.; Herrera, F. Probabilistic linguistic MULTIMOORA: A multicriteria decision making method based on the probabilistic linguistic expectation function and the improved Borda rule. IEEE Trans. Fuzzy Syst. 2018, 26, 3688–3702. [Google Scholar] [CrossRef]
- Pang, Q.; Wang, H.; Xu, Z.S. Probabilistic linguistic term sets in multi-attribute group decision making. Inf. Sci. 2016, 369, 128–143. [Google Scholar] [CrossRef]
- Darko, A.P.; Liang, D.C. A heterogeneous opinion-driven decision-support model for tourists’ selection with different travel needs in online reviews. J. Oper. Res. Soc. 2022. [Google Scholar] [CrossRef]
- Liang, D.C.; Dai, Z.Y.; Wang, M.W. Assessing customer satisfaction of o2o takeaway based on online reviews by integrating fuzzy comprehensive evaluation with ahp and probabilistic linguistic term sets. Appl. Soft Comput. 2021, 98, 106847. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 1979, 47, 263–291. [Google Scholar] [CrossRef] [Green Version]
- Tversky, A.; Kahneman, D. Advances in prospect theory: Cumulative representation of uncertainty. J. Risk Uncertain. 1992, 5, 297–323. [Google Scholar] [CrossRef]
- Liu, P.D.; Li, Y. An extended MULTIMOORA method for probabilistic linguistic multi-criteria group decision-making based on prospect theory. Comput. Ind. Eng. 2019, 136, 528–545. [Google Scholar] [CrossRef]
- Ying, C.S.; Li, Y.L.; Chin, K.S.; Yang, H.T.; Xu, J. A new product development concept selection approach based on cumulative prospect theory and hybrid-information MADM. Comput. Ind. Eng. 2018, 122, 251–261. [Google Scholar] [CrossRef]
- Dong, Y.C.; Luo, N.; Liang, H.M. Consensus building in multiperson decision making with heterogeneous preference representation structures: A perspective based on prospect theory. Appl. Soft Comput. 2015, 35, 898–910. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.C.; Wu, X.L. DNMA: A double normalization-based multiple aggregation method for multi-expert multi-criteria decision making. Omega 2020, 94, 102058. [Google Scholar] [CrossRef]
- Liang, D.C.; Dai, Z.Y.; Wang, M.W.; Li, J.J. Web celebrity shop assessment and improvement based on online review with probabilistic linguistic term sets by using sentiment analysis and fuzzy cognitive map. Fuzzy Optim. Decis. Mak. 2020, 19, 561–586. [Google Scholar] [CrossRef]
- Wu, X.L.; Liao, H.C. Modeling personalized cognition of customers in online shopping. Omega 2021, 104, 102471. [Google Scholar] [CrossRef]
- Du, Y.F.; Liu, D. A novel approach to relative importance ratings of customer requirements in QFD based on probabilistic linguistic preferences. Fuzzy Optim. Decis. Mak. 2021, 20, 365–395. [Google Scholar] [CrossRef]
- Brauers, W.K.M.; Zavadskas, E.K. The moora method and its application to privatization in a transition economy. Control Cybern. 2006, 35, 445–469. [Google Scholar]
- Li, C. Primacy effect or recency effect? A long-term memory test of Super Bowl commercials. J. Consum. Behav. 2010, 9, 32–44. [Google Scholar] [CrossRef]
- Abdellaoui, M. Parameter-free elicitation of utility and probability weighting functions. Manag. Sci. 2000, 46, 1497–1512. [Google Scholar] [CrossRef]
- Xu, X.H.; Yang, X.; Chen, X.H.; Liu, B.S. Large group two-stage risk emergency decision-making method based on Big Data analysis of social media. J. Intell. Fuzzy Syst. 2019, 36, 2645–2659. [Google Scholar] [CrossRef]
- Yang, J.M.; Shi, B.S. Joining method in group appraising. Syst. Eng.-Theory Pract. 1992, 12, 49–51. [Google Scholar]
- Hellwig, Z. Zastosowanie Metody Taksonomicznej do Typologicznego Podziału Krajów ze Względu na Poziom ich Rozwoju i Strukturę Wykwalifikowanych kadr [Procedure of Evaluating High Level Manpower Data and Typology of Countries by Means of the Taxonomic Method], Przegląd Statystyczny, tom 15, z. 4; Przegląd Statystyczny: Warsaw, Poland, 1968; pp. 307–327. [Google Scholar]
- Hellwig, Z. Procedure of evaluating high-level manpower data and typology of countries by means of the taxonomic method. In Towards a System of Human Resources Indicators for Less Developed Countries; Ossolineum: Wrocław, Poland, 1972; pp. 115–134. [Google Scholar]
- Hellwig, Z. Wielowymiarowa analiza porównawcza i jej zastosowanie w badaniach wielocechowych obiektów gospodarczych [Multivariate Comparative Analysis and Applications in Research of Multifeature Economic Objects]. In Metody i Modele Ekonomicznomatematyczne w Doskonaleniu Zarządzania Gospodarką Socjalistyczną; Welfe, W., Ed.; PWE: Warszawa, Poland, 1981; pp. 46–68. [Google Scholar]
- Walesiak, M. Visualization of linear ordering results for metric data with the application of multidimensional scaling. Ekonometria 2016, 9–21. [Google Scholar]
Doctors | Titles | Times Honored Annual Good Doctor | Values of Recommendation | Satisfaction for Online Service | Number of Online Consultation |
---|---|---|---|---|---|
Director Physician | 4 | 5 | 36,067 | ||
Director Physician | 2 | 4.6 | 8007 | ||
Attending Doctor | 2 | 4.2 | 6032 | ||
Director Physician | 1 | 4.2 | 5681 | ||
Associate Director Physician | 1 | 3.8 | 3811 | ||
Director Physician | 0 | 4 | 3261 | ||
Associate Director Physician | 4 | 4.5 | 6461 | ||
Director Physician | 3 | 3.4 | 14,042 | ||
Director Physician | 1 | 3.3 | 10,459 | ||
Associate Director Physician | 1 | 4 | 3801 |
1st | 52 | 33 | 119 | 83 | 115 | 362 | 199 | 70 | 31 | 54 | 51 | 53 | 64 | 127 | ||
2ed | 62 | 53 | 78 | 109 | 130 | 157 | 144 | 33 | 29 | 26 | 37 | 22 | 29 | 54 | ||
3rd | 45 | 56 | 56 | 60 | 54 | 70 | 77 | 11 | 3 | 5 | 6 | 11 | 9 | 15 | ||
4th | 20 | 30 | 25 | 23 | 30 | 34 | 26 | 2 | 2 | 1 | 2 | 1 | 2 | 4 | ||
5th | 10 | 18 | 4 | 14 | 19 | 7 | 9 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||
6th | 2 | 6 | 0 | 3 | 13 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
7th | 0 | 2 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
1st | 53 | 37 | 62 | 43 | 56 | 283 | 119 | 42 | 13 | 34 | 72 | 47 | 142 | 99 | ||
2ed | 37 | 41 | 19 | 62 | 48 | 67 | 80 | 32 | 14 | 25 | 44 | 49 | 44 | 54 | ||
3rd | 13 | 11 | 4 | 17 | 17 | 14 | 14 | 12 | 12 | 13 | 16 | 19 | 31 | 14 | ||
4th | 4 | 2 | 1 | 1 | 2 | 0 | 3 | 6 | 7 | 7 | 10 | 11 | 6 | 5 | ||
5th | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 1 | 3 | 2 | 4 | 7 | ||
6th | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 2 | 2 | 1 | 0 | 3 | ||
7th | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | ||
1st | 106 | 37 | 75 | 119 | 86 | 94 | 179 | 27 | 12 | 34 | 51 | 40 | 132 | 92 | ||
2ed | 73 | 31 | 14 | 59 | 48 | 40 | 89 | 20 | 19 | 24 | 33 | 27 | 46 | 51 | ||
3rd | 16 | 23 | 12 | 11 | 21 | 10 | 23 | 6 | 6 | 4 | 16 | 13 | 18 | 16 | ||
4th | 4 | 5 | 4 | 6 | 5 | 1 | 1 | 8 | 3 | 6 | 1 | 5 | 4 | 4 | ||
5th | 1 | 1 | 0 | 1 | 5 | 0 | 1 | 1 | 1 | 2 | 2 | 6 | 0 | 1 | ||
6th | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | ||
7th | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
1st | 90 | 22 | 42 | 65 | 65 | 87 | 118 | 16 | 20 | 36 | 43 | 44 | 112 | 48 | ||
2ed | 46 | 14 | 20 | 39 | 33 | 37 | 64 | 11 | 23 | 11 | 23 | 25 | 52 | 43 | ||
3rd | 14 | 12 | 8 | 12 | 16 | 7 | 24 | 16 | 11 | 18 | 11 | 9 | 16 | 13 | ||
4th | 2 | 1 | 1 | 0 | 4 | 3 | 3 | 4 | 11 | 6 | 5 | 2 | 8 | 5 | ||
5th | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 4 | 3 | 1 | 6 | 0 | 2 | ||
6th | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | ||
7th | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | ||
1st | 78 | 32 | 53 | 84 | 43 | 37 | 124 | 32 | 15 | 27 | 49 | 52 | 59 | 64 | ||
2ed | 43 | 24 | 13 | 43 | 25 | 30 | 63 | 17 | 16 | 7 | 26 | 24 | 16 | 42 | ||
3rd | 7 | 6 | 10 | 14 | 7 | 6 | 24 | 6 | 5 | 4 | 7 | 8 | 10 | 14 | ||
4th | 1 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 3 | 1 | ||
5th | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | ||
6th | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
7th | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Alternatives | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Very Dissatisfied | Dissatisfied | General | Satisfied | Very Satisfied | ⋯ | Very Dissatisfied | Dissatisfied | General | Satisfied | Very Satisfied | |
0.094 | 0.026 | 0.110 | 0.267 | 0.503 | ⋯ | 0.037 | 0.048 | 0.075 | 0.149 | 0.691 | |
0.028 | 0.028 | 0.037 | 0.374 | 0.533 | ⋯ | 0.023 | 0.028 | 0.023 | 0.148 | 0.778 | |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋯ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
0 | 0.071 | 0.036 | 0.375 | 0.518 | ⋯ | 0.017 | 0.041 | 0.041 | 0.132 | 0.769 |
Normalized Probabilisitc Linguistic Prospect Value Matrix on Gain | |||||||
---|---|---|---|---|---|---|---|
0.082214 | 0.172325 | 0.250376 | 0.121265 | 0.396248 | 0.387601 | 0.149449 | |
0.268784 | 0.494657 | 0.503995 | 0.36711 | 0.202007 | 0.409903 | 0.442598 | |
0.386115 | 0.525269 | 0.277287 | 0.346523 | 0.266301 | 0.27505 | 0.348814 | |
0.339517 | 0.278604 | 0.246425 | 0.17864 | 0.290961 | 0.307453 | 0.293522 | |
0.286596 | 0.261087 | 0.163196 | 0.35643 | 0.258403 | 0.163084 | 0.333655 | |
0.361572 | 0.198189 | 0.184051 | 0.380995 | 0.095785 | 0.297551 | 0.185944 | |
0.445548 | 0.169281 | 0.442732 | 0.355125 | 0.425966 | 0.33065 | 0.326822 | |
0.259456 | 0.173287 | 0.379017 | 0.377021 | 0.307629 | 0.325894 | 0.368626 | |
0.280285 | 0.110106 | 0.23608 | 0.227771 | 0.48893 | 0.339316 | 0.101504 | |
0.315242 | 0.44027 | 0.299635 | 0.325878 | 0.235636 | 0.25644 | 0.418383 | |
Normalized Probabilisitc Linguistic Prospect Value Matrix on Loss | |||||||
−0.500357 | −0.383388 | −0.393324 | −0.608849 | −0.174315 | −0.225048 | −0.471744 | |
−0.35205 | −0.083392 | −0.054437 | −0.143083 | −0.384971 | −0.237742 | −0.119176 | |
−0.161245 | −0.108648 | −0.289383 | −0.183933 | −0.308344 | −0.288987 | −0.172727 | |
−0.262888 | −0.273556 | −0.388906 | −0.547793 | −0.282291 | −0.246153 | −0.319252 | |
−0.361448 | −0.28933 | −0.419787 | −0.153579 | −0.319921 | −0.632579 | −0.206948 | |
−0.180084 | −0.379998 | −0.421442 | −0.153981 | −0.562147 | −0.261162 | −0.446177 | |
−0.19967 | −0.386542 | −0.151339 | −0.15314 | −0.140195 | −0.247503 | −0.282548 | |
−0.314739 | −0.370514 | −0.203264 | −0.170199 | −0.266323 | −0.251848 | −0.196453 | |
−0.280867 | −0.478187 | −0.353754 | −0.374858 | −0.120487 | −0.235867 | −0.497214 | |
−0.386916 | −0.126307 | −0.253271 | −0.186245 | −0.350982 | −0.316302 | −0.154751 |
−0.212 | 0.292 | 0.194 | −0.053 | −0.109 | −0.122 | 0.224 | 0.131 | −0.087 | 0.124 | |
10 | 1 | 3 | 6 | 8 | 9 | 2 | 4 | 7 | 5 | |
0.079 | 0.034 | 0.025 | 0.042 | 0.069 | 0.084 | 0.044 | 0.041 | 0.092 | 0.034 | |
8 | 3 | 1 | 5 | 7 | 9 | 6 | 4 | 10 | 2 | |
0.378 | 2.92 | 1.774 | 0.731 | 0.643 | 0.554 | 1.904 | 1.349 | 0.585 | 1.387 | |
10 | 1 | 3 | 6 | 7 | 9 | 2 | 5 | 8 | 4 | |
10 | 1 | 2 | 6 | 7 | 9 | 3 | 5 | 8 | 4 |
Methods | Ranking |
---|---|
TF-IDF [47] | |
Frequency-based formula in this paper | |
Borda count [48] | |
Position score-oriented formula in this paper | |
Integrated formula in this paper |
TOPSIS [32] | 1 | −1.016 | 0 | −0.322 | −0.762 | −1.613 | −1 | −0.29 | −0.478 | −0.851 | −0.57 |
Ranking | 9 | 1 | 3 | 6 | 10 | 8 | 2 | 4 | 7 | 5 | |
VIKOR [8] | 1 | 0.664 | 0.323 | 0.358 | 0.544 | 0.592 | 0.593 | 0.367 | 0.399 | 0.571 | 0.417 |
1 | 0.19 | 0.086 | 0.093 | 0.124 | 0.217 | 0.178 | 0.109 | 0.08 | 0.201 | 0.102 | |
0.9 | 0.023 | 0.099 | 0.486 | 0.894 | 0.755 | 0.17 | 0.111 | 0.805 | 0.219 | ||
Ranking | 10 | 1 | 2 | 6 | 9 | 7 | 4 | 3 | 8 | 5 | |
PL-MULTIMOORA [10] | 1 | 0.311 | 0.327 | 0.322 | 0.317 | 0.308 | 0.313 | 0.319 | 0.316 | 0.311 | 0.318 |
Ranking | 9 | 1 | 2 | 5 | 10 | 7 | 3 | 6 | 8 | 4 | |
1 | 0.011 | 0.012 | 0.015 | 0.012 | 0.035 | 0.013 | 0.012 | 0.013 | 0.012 | 0.016 | |
Ranking | 1 | 3 | 8 | 4 | 10 | 7 | 5 | 6 | 2 | 9 | |
1 | 0.31 | 0.326 | 0.321 | 0.317 | 0.307 | 0.313 | 0.319 | 0.316 | 0.311 | 0.318 | |
Ranking | 9 | 1 | 2 | 5 | 10 | 7 | 3 | 6 | 8 | 4 | |
Final | |||||||||||
ranking | 9 | 1 | 2 | 5 | 10 | 7 | 3 | 6 | 8 | 4 | |
PL-PT-MULTIMOORA [37] | 1 | −0.015 | 0.012 | 0.007 | −0.005 | −0.038 | −0.016 | 0.03 | −0.021 | −0.139 | −0.052 |
Ranking | 5 | 2 | 3 | 4 | 8 | 6 | 1 | 7 | 10 | 9 | |
1 | 0.038 | 0.03 | 0.031 | 0.032 | 0.068 | 0.038 | 0.102 | 0.105 | 0.097 | 0.098 | |
Ranking | 5 | 1 | 2 | 3 | 6 | 4 | 9 | 10 | 7 | 8 | |
1 | 0.351 | 0.378 | 0.374 | 0.362 | 0.322 | 0.35 | 0.275 | 0.234 | 0 | 0.173 | |
Ranking | 4 | 1 | 2 | 3 | 6 | 5 | 7 | 8 | 10 | 9 | |
Final | |||||||||||
ranking | 4 | 1 | 2 | 3 | 7 | 5 | 6 | 8 | 10 | 9 | |
PL-PT-MULTIMOORA (proposed in this paper) | 1 | −0.212 | 0.292 | 0.194 | −0.053 | −0.109 | −0.122 | 0.224 | 0.131 | −0.087 | 0.124 |
Ranking | 10 | 1 | 3 | 6 | 8 | 9 | 2 | 4 | 7 | 5 | |
1 | 0.079 | 0.034 | 0.025 | 0.042 | 0.069 | 0.084 | 0.044 | 0.041 | 0.092 | 0.034 | |
Ranking | 8 | 3 | 1 | 5 | 7 | 9 | 6 | 4 | 10 | 2 | |
1 | 0.378 | 2.92 | 1.774 | 0.731 | 0.643 | 0.554 | 1.904 | 1.349 | 0.585 | 1.387 | |
Ranking | 10 | 1 | 3 | 6 | 7 | 9 | 2 | 5 | 8 | 4 | |
Final | |||||||||||
ranking | 10 | 1 | 2 | 6 | 7 | 9 | 3 | 5 | 8 | 4 |
Fuse Several Subordinate Methods | Compute Utility Values Based on Normalized Data | Consider Psychological Cognition | Reuse Attribute Weights | |
---|---|---|---|---|
TOPSIS [32] | No | No | No | No |
VIKOR [8] | No | No | No | No |
PL-MULTIMOORA [10] | Yes | No 1 | No | No |
PL-PT-MULTIMOORA [37] | Yes | Yes | Yes | Yes |
PL-PT-MULTIMOORA (Proposed in this paper) | Yes | Yes | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Chen, Z.-S.; Yang, J.; Morente-Molinera, J.A.; Zhang, L.; Herrera-Viedma, E. A Textual Data-Oriented Method for Doctor Selection in Online Health Communities. Sustainability 2023, 15, 1241. https://doi.org/10.3390/su15021241
Du Y, Chen Z-S, Yang J, Morente-Molinera JA, Zhang L, Herrera-Viedma E. A Textual Data-Oriented Method for Doctor Selection in Online Health Communities. Sustainability. 2023; 15(2):1241. https://doi.org/10.3390/su15021241
Chicago/Turabian StyleDu, Yinfeng, Zhen-Song Chen, Jie Yang, Juan Antonio Morente-Molinera, Lu Zhang, and Enrique Herrera-Viedma. 2023. "A Textual Data-Oriented Method for Doctor Selection in Online Health Communities" Sustainability 15, no. 2: 1241. https://doi.org/10.3390/su15021241
APA StyleDu, Y., Chen, Z. -S., Yang, J., Morente-Molinera, J. A., Zhang, L., & Herrera-Viedma, E. (2023). A Textual Data-Oriented Method for Doctor Selection in Online Health Communities. Sustainability, 15(2), 1241. https://doi.org/10.3390/su15021241