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Abstract: Accurate 4D trajectory prediction plays an important role in the sustainable management
of future air traffic. Aiming at the problems of inadequate feature utilization, unbalanced overall
prediction (OP) result, and weak real-time response in 4D trajectory prediction by machine learning,
a fractal dimension feature-prediction (FDFP) model is proposed, starting from the airborne quick
access recorder (QAR) trajectory data. Firstly, the trajectory features are classified and transformed
according to the aircraft operation characteristics. Then, the long short-term memory (LSTM) network
is used to construct the prediction model by fractional dimensions; based on the fractal dimension
feature (FDF), the different combinations of influencing factors are selected as the feature matrix, and
the optimal prediction model of each dimension is obtained. Finally, 671 city pair trajectory data are
used to conduct simulation experiments to verify the accuracy and effectiveness of the model. The
experimental results show that the FDFP model performs well, with the mean absolute error (MAE)
of longitude and latitude both less than 0.0015°, and the MAE of altitude less than 3 m. Compared
with the OP model, the MAE of the FDFP model in these three dimensions decreased by 92%, 81%
and 79%, respectively. Compared with experiments without feature transformation, the MAE of the
FDFP model is reduced by 75%, 82%, and 69%, respectively. Each prediction of the model takes about
30 ms, which satisfies the real-time prediction conditions and can provide a reference for air traffic
operation assessment.

Keywords: air transportation; 4D trajectory; fractal dimension feature; trajectory prediction; long
short-term memory

1. Introduction

Trajectory-based operation (TBO) is the future development trend of the air traffic
management (ATM) system [1], which is expected to result in a more efficient use of
system capacity by maximizing airspace and airport throughput, improving operational
predictability through more accurate gate-to-gate strategic planning, enhancing flight
efficiency through integrated operations, and promoting sustainable development of the
aviation industry. With the development of NextGen [2] in the United States and single
sky ATM Research (SESAR) [3] in Europe, the TBO model has been promoted, which also
triggers the thinking of the TBO model in developing countries. The accurate trajectory
prediction technology is the core of the TBO. As an important research direction of artificial
intelligence, the basic principle of machine learning is to start from existing sample data,
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learn and reason the rules contained in these data, and then use the rules to identify,
estimate and predict unknown data [4].

At present, there have been studies applying machine learning methods to solve the
problem of trajectory prediction, including regression models [5-7], clustering algorithms [8-11],
and widely used neural network models [12-16]. In the neural network model, the long
short-term memory (LSTM) network [17-20] with time series information mining ability
is widely used. Among them, Shi et al. [18] proposed three constraints of the climb,
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cruise and descent/approach phases based on the dynamic characteristics of the aircraft
by using the LSTM model and a sliding window to track each stage of the trajectory
for prediction. Zhang et al. [19] used the LSTM model to predict the deviation of the
actual trajectory and the target trajectory along the latitude and longitude, and at the same
time, the trained LSTM network could make the long-term prediction of the trajectory
in the following several time points. In order to further improve the prediction accuracy,
many neural network combination models [21-26] have been derived from and based
on a single model. Among them, Yue et al. [21] proposed a combined model with the
LSTM as the main part and an autoregressive-integrated moving average model (ARIMA)
as the auxiliary part based on a large number of flight data and applied it for trajectory
prediction. Ma et al. [22] proposed a new hybrid architecture for 4D trajectory prediction
based on deep learning, which combined the convolutional neural network (CNN) and
LSTM network, and the prediction error was reduced by 21.62% on average compared with
the LSTM model and 52.45% compared with the back-propagation (BP) neural network
model. Cui et al. [26] established an adaptive prediction model for uncertain trajectory
using a recurrent and multi-layer neural network structure, which can effectively solve
the problem of trajectory prediction in different actual environments. By transforming the
structure of the neural network model, the above research find the internal relationship
between different features of aircraft in a large number of historical data samples, and
have good prediction performance, but also ignore the transformation and recreation of the
original features of the trajectory. In addition, most of the existing studies have applied the
overall prediction (OP) method, that is, using a model to predict multiple dimensions at
the same time, which is prone to problems such as complex model structure and too long
training time. Due to the different characteristics of various dimensions, it is inevitable
that there will be uneven errors in actual prediction. Even if the prediction accuracy of
each dimension is high enough, there may still be large errors after synthesizing the 4D
trajectory. Therefore, it is necessary to make full use of the original features of the trajectory
and absolutely learn the change characteristics of different dimensions to get the optimal
predicted value.

On the other hand, considering the real-time performance of trajectory prediction,
Han et al. [27] proposed a short-term real-time trajectory point prediction method based
on the gated recurrent unit (GRU) neural network. Shi et al. [28] proposed a short-term
4D trajectory prediction algorithm based on the online-updated LSTM to realize the real-
time update of model parameters and make the model robust. Wang et al. [29] proposed
an improved Kalman filter algorithm to improve the prediction accuracy by adjusting
the current position data in real time. Zhang et al. [30] developed an online 4D trajectory
prediction method, which is composed of the preparation process, computation process and
updating process. However, due to the high latency storage modes of historical trajectory
data, it is difficult to achieve real-time prediction in a strict sense. Therefore, a strong
real-time data type can be considered for the study of track prediction.

Aiming at the above problems, this paper proposes a fractal dimension feature-
prediction (FDFP) model. Firstly, considering the aircraft performance and external factors,
16 relevant features are selected from the airborne quick access recorder (QAR) data, and the
two important features of heading and wind direction are transformed. Then, considering
the high density and strong timeliness of QAR data, the same time interval is used for
resampling, and the way of trajectory prediction is changed to the real-time prediction
of the fixed time three-dimensional position, which can effectively avoid the prediction
error of the time dimension. Finally, according to the changing characteristics of different
dimensions, the appropriate feature combination is used to establish the model to obtain a
higher prediction accuracy in each dimension, and the LSTM model is used to verify the
effectiveness of the above improvement measures. The major contributions of this paper
are as follows.

(1) A new FDFP model is proposed to improve the prediction accuracy of different
attribute features in multidimensional prediction.
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(2) The original features are preprocessed with appropriate mathematical methods, and
some of the original features are transformed according to the changing characteristics
of the predicted values, so as to make full use of the original data to improve the
prediction accuracy.

(3) The QAR data with rich trajectory characteristics and strong real-time performance is used
for trajectory prediction to fully learn the changing characteristics of aircraft position.

2. Trajectory Data Analysis and Processing
2.1. QAR Trajectory Data

QAR refers to the onboard flight data recording equipment with a protective device.
Compared with automatic dependent surveillance-broadcast (ADS-B) data and radar data,
QAR data record most parameters of the flight control quality monitoring of aircraft
in real-time, which better reflects the operation status of an aircraft. In addition, QAR
data are directly stored and recorded by the airborne equipment with a higher accuracy
and stronger real-time performance, which provides the necessary data support for the
implementation of TBO. Therefore, QAR data are used in this paper for an accurate 4D
trajectory prediction experiment.

Most of the trajectory data returned by QAR are continuous and the sampling period
is once a second. Considering the original data as a series of discrete trajectory points, let T
be the historical trajectory data set, which contains N historical trajectory, denoted as

T ={T1,T2,..,Tk,.., TN} )

where T} denotes the kth trajectory in T.

Each flight time on the same course is not fixed, and the number of trajectory points
recorded for each trajectory varies. Assuming that each trajectory contains n trajectory
points, there are

Tk = {mkl,mk2, ..., mki, ...,mkn} (2)

where, my; is the ith trajectory point in Tj.

Through screening, the information contained in each trajectory point is 16 features
in Table 1, namely, the feature set of the ith trajectory point in the kth trajectory, which is
expressed as:

mki = {fkil, fki2, ..., fkij, .., fkil6} (©)]

Table 1. QAR data related features.

Categories Features

Time

I Date

Longitude/®
Latitude/°
Altitude/feet
I Velocity /knot
Mach/M
Vertical acceleration/g
Wind speed/knot

Lateral acceleration/g
Horizontal acceleration/g

III

Pitch angle/°
Pitch rate /(°/s)
v Flight phase
v Heading/°

Wind direction/°
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Data features are divided into five categories according to subsequent data prepro-
cessing requirements (Table 1).

2.2. Data Cleaning

Due to the system error and other reasons, the real QAR trajectory data have some
problems such as missing and abnormal trajectory points [31,32]. The abnormal trajectory
points are eliminated according to the distance limit between two adjacent points, and
the missing trajectory points are filled by linear interpolation. As shown in Figure 1, the
cleaned trajectory is smoother and more continuous in terms of longitude and latitude,
which effectively guarantees the production of subsequent data sets.

30 30,
o 281 2 28]
] el
2, 2
£ 26 £ 26
241 24
104 106 108 110 112 104 106 108 110 112
longitude/° longitude/®

(a)

(b)
Figure 1. Trajectory data cleaning, (a) before cleaning, (b) after cleaning.

2.3. Data Resampling

The traditional 4D trajectory prediction is to predict the next moment, longitude,
latitude and altitude of the aircraft at the same time, and the prediction results have errors
in four dimensions. Considering the perspective of time and assuming that the prediction
of three-dimensional position coordinates is accurate enough, the overall deviation of
trajectory points will also be caused by the error in time. Therefore, in order to avoid the
error of time dimension, this paper converts the traditional 4D trajectory prediction to
predict the 3D position of the aircraft at the next fixed moment. The features of class I
are transformed into the timestamp. Assuming that the information recording time of a
trajectory is between [T,T + N], the trajectory data are resampled with S as the sampling
interval to obtain new trajectory data, as shown in Figure 2.

) 14 features ) 14 features
TimeStamp — TimeStamp —
T T
T+1 T+S
) o Resample 7428
—_— >
T+3 T+3S
T+N-1 e THK-1)S
T+N B T+kS

k is any positive integer, kS < N

Figure 2. Trajectory data resampling.
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2.4. Data Normalization
The features of classes II, Il and IV are processed as follows:
(A). Min-max normalization

Min-max normalization, also known as deviation normalization [33], is a linear trans-
formation of the original data that maps values between [0,1]. The conversion formula is
as follows: .

W — X min @

max — min
where max is the maximum value of the sample data, min is the minimum value of
the sample data, and max-min is the range. For class II features, the above deviation
standardization processing is adopted to retain the existing relationship in the original data,

and effectively eliminate the influence of dimension and data value range.
(B). Decimal scale normalization

The feature value is mapped between [-1,1] by moving the number of decimal places
of the eigenvalue, depending on the maximum value of the absolute value of the eigen-
value [33]. The conversion formula is as follows:

X" = ®)

For class III features, the decimal scale normalization retains the positive and negative
signs on the basis of eliminating the dimension and retains the characteristics of the original
data to the greatest extent.

(C). Feature encoding

For class IV features, the initial classification has been given for the original QAR
data, which is processed by encoding (Table 2). Since the performance of the aircraft
presents different characteristics in different flight phases, the numeralization of the flight
phases preserves the progressive levels and differences between different phases while
encoding them.

Table 2. Flight phase feature coding.

Flight Phase Encoding

INIT. CLIMB 0
CLIMB
CRUISE
DESCENT
APPROACH
FINAL

QL= WO N -

2.5. Feature Transformation

The heading and wind direction in class V features have obvious orientation, which
has an important influence on the position change of the aircraft at the next moment.
The action mode is closely related to the current operating state of the aircraft. However,
the original numerical representation cannot fully express the influence on the aircraft
operation, so it is necessary to transform heading and wind direction.

(A). Heading

Based on original data, the value range of heading is [0,360]. If the value is transformed
into [0,1] by the deviation standardization method, it is difficult to reflect the influence
of heading on the change of longitude and latitude coordinates. Therefore, the feature
transformation of heading is carried out, and the calculation formula is as follows:
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{HEAD_LON — sin(HEAD) ©)

HEAD_LAT = cos(HEAD)

where, HEAD is the heading; HEAD_LON is the sinusoidal heading; HEAD_LAT is the
cosine heading.

As for the longitude, when the heading is 90°, the direction of aircraft operation is
perpendicular to the longitude and consistent with the direction of longitude increase
(Figure 3a). As the heading increases to one hundred eighty degrees or decreases to zero
degrees, the trend of longitude increase gradually decreases. When the heading is 270°,
the direction of aircraft operation is perpendicular to the longitude and consistent with the
direction of the decreasing longitude (Figure 3b). As the heading increases or decreases to
360° or 180°, the trend of decreasing longitude is more obvious. If positive and negative
signs are used to represent the increasing and decreasing trends, and numerical values are
used to represent the changing trend, the sine function can exactly represent the changing
characteristics of longitude with heading (Figure 3c). Similarly, the cosine function can be
used to represent the variation characteristics of latitude with heading (Figure 3d—f).

P 1.0
o 26° -
% < 05
3
0.0
25° ;_P 25° 4@;_ g
% I 2-0.5
&
240 240 _1.0 | A
—* é— 0 900 1800 2700 3600
106° 107° 106° 107° 108° HEAD
(a) (b) ()
o 1.0
26° o =
26 < 05
B
é 0.0
250 — 250 &
2-0.5
=
240 240 _10 | |
0 90° 180° 270°  360°
106° 107° 106° 107° 108° HEAD
(d) (e) (f)

Figure 3. Schematic diagram of heading change: (a) heading value [0,180]; (b) heading value [180,360];
(c) sinusoidal heading for longitude; (d) heading value [90,270]; (e) heading value [270,360] and [0,90];
and (f) cosine of heading for latitude.

(B). Wind direction

Based on original data, the value range of the wind direction is [0,360], which is
difficult to fully show the influence of the wind direction on the operation of the aircraft.
Therefore, the feature transformation of the wind direction is carried out, and the calculation
formula is as follows:
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26~

WD' = cos(|HEAD — WD|) @)

where, WD is the wind direction, WD’ is the transformed wind direction.

First, the absolute value of the difference between wind direction and heading is
taken. When the absolute value exceeds 90°, the aircraft operates under the headwind
condition, and the larger the angle, the more significant the effect of hindering aircraft
operation (Figure 4a). When the absolute value is less than 90 °, the aircraft operates
under downwind conditions, and the smaller the angle, the more significant the effect of
promoting aircraft operation (Figure 4b). If positive and negative signs are used to represent
downwind and headwind conditions, and numerical values are used to show the influence
of trend, the cosine function can be used to accurately represent the changing characteristics
of aircraft under the interaction between wind direction and heading (Figure 4c).

25¢

242

106°

26° N
HEAD . | HEAD E
The|Angle is S
less|than 90° 3
250 > 5
WD %
/T he Angle is g
wp | greater|than 90° =10 .
% 24°. 0 90° 180°
[HEAD-WD|
1072 108° 106° 107> 108°
(a) (b) (c)

Figure 4. Schematic diagram of wind direction change: (a) headwind; (b) downwind; (c¢) wind

direction transform.

3. 4D Trajectory FDFP Model Based on the LSTM Network
3.1. LSTM Neural Network Theory

The LSTM neural network is one of the most representative time series data modeling
methods in machine learning, consisting of an input layer, hidden layer and output layer.
The hidden layer includes input gate, forget gate and output gate [34]. The structure is
shown in Figure 5. The forget gate is the core of LSTM, through which information needs
to be forgotten in order to realize the coexistence of short- and long-time information.

@

A

¢

Xt

Figure 5. Single LSTM cell structure.
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The internal calculation method of LSTM is shown in the following formulas [34]:

fo= o (W s, x) +by) ®)
iy = o (W - [hy_1, %] + bj) ©)
Cry = tanh(We - [h;_1, x¢] + bc) (10)
Ct= fr-Cioq +1ip-Cry (11)

Ot = o(Wo - [hi—1, %] + bo) (12)
hy = Oy-tanh(Cy) (13)

where: f; is the probability that the information of the forgotten gate passes through; o
and tanh are Sigmoid functions and fanh functions; W is the weight matrix; h is the output
of memory; x is the input of memory; b represents the bias matrix; i; is the output of the
input gate; C; represents the state of memory; C’; is the candidate state; and O is for the
output gate.

3.2. Selection of Influencing Factors

The flight phase, longitude, latitude, altitude, velocity, Mach number, wind speed
and transformed wind direction at the presequence time are closely related to the position
information at the prediction time, and the above features are called common features.
Combined with the different characteristics of longitude, latitude and altitude, the feature
matrix of the corresponding model is composed of the common feature group and their
own unique features. The unique features of each dimension are shown in Table 3. Among
them, the longitude model and latitude model select the sinusoidal heading and cosine
heading respectively according to the action principle of heading in Section 2.5. The
altitude model selects the pitch angle and pitch rate according to the altitude characteristics.
The three models correspond to horizontal acceleration, lateral acceleration and vertical
acceleration respectively according to the directionality of longitude, latitude and altitude.
The above three models constitute the FDFP model. In the OP model of the comparison
experiment, all the above features are considered as the feature matrix of the model for
trajectory prediction.

Table 3. Model influencing factor selection.

FDFP Model
Feature OP Model
Longitude Model = Latitude Model  Altitude Model

Sinusoidal heading ° O O °
Cosine heading @) ° @) .
Pitch angle O O . .
Pitch rate @) O ° .
Honzon.tal . o o .
acceleration
Lateral acceleration @) ° 0
Vertical acceleration O O °

Note: O indicates not used, and e indicates used.

3.3. Model Training and Prediction

The 4D Trajectory FDFP model is based on the LSTM network. Firstly, data from
trajectory point sequence are preprocessed and the training set and test set are divided.
Then, according to three kinds of prediction targets, different feature matrices and labels
are considered as sample data sets, which are input into the constructed longitude model,
latitude model and altitude model for training and prediction. Finally, the model is
optimized by calculating the loss between the predicted value and the actual value, and the
final model is obtained. The specific process is shown in Figure 6. However, the OP model
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takes all the trajectory features as the feature matrix, and uses an LSTM network to predict
longitude, latitude and altitude at the same time. In the process of aircraft operation, the
trained model obtains QAR data in real time for trajectory prediction.

Longitude Latitude Altitude
Model Model Model

[ I Cr T T ﬁl

| Output i~ """ T B

| layer o ) Y,(LAT) Y, (ALT) | [ ] |

I P Predicted |

i Rl B Bl el mli i D A I i results |

[ N N R |

' Hidd o ¥ |

idden

| LSTM(LON) LSTM(LAT) LSTM(ALT) |} || Adam | | Loss I

| layer | | | optimization calculation |

| (. A I

L — i — JRR SO (R [ DU A S — 4 |

PR PR [ [P S S, JREE S D I P S

| [ Real :

: X(LON) X(LAT) X(ALT) [ results |

Input 7'y [ A

| layer T T . . :

| [ Model training and |

I The trajectory data set is divided into training set ] adjustment |

: and test set I |
T I —_—— e — — —_ —_—

Pre-processed trajectory point sequence

Figure 6. FDFP model training flow chart.

3.4. Evaluation Indicators

Considering the error evaluation of regression problems and the sensitive detection of
outliers, this paper uses the mean absolute error (MAE) and root mean square error (RMSE)
to evaluate the effectiveness of prediction results. The calculation formulas are as follows:

n
MAE = %Z |Ypi — Yi| (14)
i=1

RMSE = | /rllg(Ypi —Yi)2 (15)

where: Ypi is the ith predicted value, Y; is the ith true value, and 7 is the number of
sample data.

In trajectory prediction, horizontal error and vertical error can be used to evaluate
the accuracy of position prediction. The horizontal error is calculated by the Euclidean
distance of two trajectory points, and the vertical error is the altitude difference between
two trajectory points. In China’s actual air traffic control, the approach control should
not be less than 6 km in the standard of radar horizontal interval, and the altitude layer
should be separated by 300 m below 8400 m. Therefore, the horizontal error in the range of
3 km and the vertical error in the range of 150 m are selected. In this paper, the proportion
of trajectory points in different error ranges will be used to evaluate the accuracy of the
prediction model. The specific indicators and symbols are shown in Table 4.
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Table 4. Predictive indicators and symbols.
Indicator Symbol Annotation
h_e3 The percentage of trajectory points with horizontal error within 3 km
h_el The percentage of trajectory points with horizontal error within 1 km
h_e5h The percentage of trajectory points with horizontal error within 0.5 km
v_e150 The percentage of trajectory points with vertical error within 150 m
v_e60 The percentage of trajectory points with vertical error within 60 m
v_e30 The percentage of trajectory points with vertical error within 30 m

4. Experiment and Discussion
4.1. Data Set

The data used in this experiment are the real operation data of fixed urban routes from
Chengdu Shuangliu Airport to Guangzhou Baiyun Airport from December 2021 to March
2022, totaling 671 trajectories. The data of 550 trajectories are taken as the training set for
model training and verification, and the remaining 121 trajectories are used as the test
set for prediction effect testing. Considering the input requirements of the LSTM model,
a single trajectory sequence is used as the unit for data segmentation, and the historical
trajectory data with a fixed step length is used to predict the position information of the
next trajectory point.

4.2. Experimental Environment and Model Parameters

The experimental environment is Windows 10, a 64-bit operating system and NAVIDIA
T600 graphics card. The LSTM model used is implemented on the Keras deep-learning
platform based on Tensorflow. The optimal model structure and parameter setting are
obtained through continuous experiments by the trial-and-error method. (Table 5). There
are some constraints on the parameter setting. For example, in order to fully learn the
few cases in the data set such as INIT. CLIMB and FINAL phase, the batch size will be set
smaller and the training time will be considered, which will naturally set the epoch smaller.

Table 5. Model parameters.

FDFP Model
OP Model
Longitude Model Latitude Model Altitude Model
Sample number 1,857,765
Sampling step 8
Sampling interval 2s
Predictive step size 1
Epoch 30 30 40 30
Batch size 20 20 30 20
Number of hidden layers 2 2 2 3
Number of hidden neurons 60, 30 60, 30 80, 40 60, 30, 20

4.3. Comparative Analysis of Experimental Results

The trained model is used to predict 121 untrained trajectories in the test set one by
one. The prediction results are plotted, and the relevant evaluation indexes are calculated.

4.3.1. Single Trajectory Prediction

Taking a certain trajectory as an example, the OP model and the FDFP model proposed
in this paper are respectively used for trajectory prediction, and the errors of each dimension
are shown in Figure 7.
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Figure 7. Errors in each dimension of single trajectory prediction.

Since aircraft are greatly affected by air traffic control during climbing and descending,
and trajectory fluctuations are frequent, the prediction result of the two models is more
preferable in the cruise phase. The errors of the OP model in the three dimensions have
obvious fluctuations, especially in the climbing and descending, and the fluctuation range
is large. Considering the same order of magnitude, the prediction error of longitude is
significantly larger than that of latitude. The imbalance of multi-dimensional prediction
accuracy is also a common problem in the OP model. In comparison, the FDFP model has
better performance, with smaller prediction errors and less fluctuation, and performs more
accurate prediction when the aircraft is climbing and descending.

The comparison between the real trajectory and the predicted trajectory is shown
in Figures 8 and 9. In Figure 8, both models can accurately predict the overall operation
trend of the aircraft. From the partially enlarged drawing of the cruise phase, the overall
predicted trajectory is significantly different from the real trajectory, while the fractal
dimension feature (FDF)-predicted trajectory can better match the real trajectory. This is
because the OP model has learned the trend of trajectory change, but it is not sensitive
to specific values. During the climbing and descending phases of the aircraft, the overall
predicted trajectory is not smooth, and there is a large deviation from the real trajectory.
The closer to the end of the trajectory, the more significant the deviation degree. However,
the FDF predicted trajectory has excellent performance, and the trajectory curve is smooth
and stable, which could be well consistent with the real trajectory. There is only a small
deviation at the head of the trajectory, and the deviation degree is much smaller than that
of the overall predicted trajectory. The reason is that the running time is short at this phase,
and there are fewer samples for model learning and training.
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Figure 8. Longitude and latitude variation diagram of single trajectory.
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Figure 9. Altitude variation chart for single trajectory.

As can be seen from Figure 9, the two models are accurate in predicting the trend of
altitude change. According to the local enlarged images A, B and C, which compare the
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prediction results of the three phases with the actual trajectory, the prediction results of the
FDFP model are more stable and accurate than those of the OP model.

The evaluation indexes of each prediction result are shown in Tables 6 and 7 and
Figure 10. It can be seen that the evaluation indexes of the FDFP model are better than the
OP model, and the MAE of three dimensions are reduced by 92%, 84% and 74% on average,
showing a good performance in horizontal error. It takes about 30 ms to predict the position
of a trajectory point by using the FDFP model, which is far less than the sampling interval
of 2 s, which meets the conditions of real-time prediction.

Table 6. Comparison of MAE and RMSE for single trajectory prediction.

Longitude Latitude Altitude
or FDFP or FDFP or FDFP
MAE 0.008990 0.000665 0.004877 0.000771 6.492714 1.674586
RMSE 0.016673 0.001000 0.007211 0.001414 9.746997 2.099804

Table 7. Comparison of horizontal error and vertical error for single trajectory prediction.

h_e3 h_el h_e5h v_el50 v_e60 v_e30
FDFP 100.00 99.27 96.00 100.00 100.00 100.00
(@) 94.06 62.13 31.29 100.00 100.00 100.00
[C_op
[ FDFP
112
2| 0.00899
107 - 0.00488
= 6.49271 18
=103+ 0.00067 0.00077 14
1.67459
10* 0
107!
0.01667 112
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2.0998014
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Figure 10. Comparison of MAE and RMSE for single trajectory prediction.

4.3.2. Multiple Trajectory Prediction

The prediction results of 121 trajectories in the test set are compared with the actual
results, as shown in Tables 8 and 9 and Figure 11. In the FDFP model, the MAE of predicted
longitude and latitude are both less than 0.0015°, the MAE of altitude is less than 2 m, and
the horizontal error within the range of 3 km, 1 km and 500 m accounts for 100%, 97.77%
and 91.71%, respectively. Compared with the OP results, the MAE of the three dimensions
is reduced by 92%, 81% and 79%, respectively, and the prediction accuracy is significantly
improved. Compared with the prediction accuracy of the longitude and latitude of the
same dimensional features, in the OP model, the longitude MAE reaches 2.6 times that of
the latitude MAE, while the FDFP is less than 1.1 times. It can be seen that the FDFP model
is more stable and more accurate in predicting the spatial position of trajectory points.
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Table 8. Comparison of MAE and RMSE for multi-trajectory prediction.

Longitude Latitude Altitude
or FDFP or FDFP OoP FDFP
MAE 0.016729 0.001205 0.006401 0.001180 8.528994 1.744969
RMSE 0.024083 0.001732 0.01044 0.002 15.35092 2.23721

Table 9. Comparison of horizontal error and vertical error for multi-trajectory prediction.

h_e3 h_el h_e5h v_el50 v_e60 v_e30
FDFP 100.00 97.77 91.71 100.00 100.00 100.00
oP 81.09 2852 31.29 100.00 100.00 99.98
OP
FDFP
001673 8.52899 .
102} 0.00640 i
84|
S - 0.00121 0.00118 14
1.74497
10* 0
0.02408 15.35092 116
7 102l 0.01044 112
> 18
0.00173 0.00200 2.2372114
107 0
Longitude Latitude Altitude

Figure 11. Comparison of MAE and RMSE for multi-trajectory prediction.

The MAE values of 121 trajectory prediction results are shown in Figure 12, where
the dashed lines are the average MAE values of each dimension. Compared with each
trajectory, the prediction accuracy of the three dimensions is stable and converges to a
certain range, which shows the good robustness of the FDFP model.
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Figure 12. MAE value for multi-trajectory prediction.
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4.3.3. Assessment of the Impact of Feature Transformation on Trajectory Prediction

In order to verify the influence of heading and wind direction feature transformation
on trajectory prediction in Section 2.5, the sample data sets of raw features and transformed
features are respectively adopted, and the FDFP model is used to predict the trajectory
of the test set. The results are shown in Tables 10 and 11, and Figure 13. Compared
with the prediction results of raw features, the MAE of transformed features in the three
dimensions is reduced by 75%, 82% and 69% respectively; the horizontal error is also
greatly reduced. The results show that the feature transformation of heading and wind
direction can effectively improve the accuracy of trajectory prediction.

Table 10. Comparison of MAE and RMSE for feature transformation.

Longitude Latitude Altitude
Raw Features Transformed Raw Features Transformed Raw Features Transformed
Features Features Features
MAE 0.004792 0.001205 0.006677 0.001180 5.691560 1.744969
RMSE 0.024207 0.001732 0.010770 0.002000 7.810808 2.237210

Table 11. Comparison of horizontal error and vertical error for feature transformation.

h_e3 h_el h_e5h v_el50 v_e60 v_e30
Transformed features 100.00 97.77 91.71 100.00 100.00 100.00
Raw features 99.43 71.34 36.22 100.00 100.00 100.00

Raw Feature
Transformed Feature
0.00668 5.69156 16
iy 9-006 6.00479
%ﬂ 0.004 - 14
0.002 - 0.00121 0.00118 M‘ 12
0.000 0
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202l 0.01077 le
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Figure 13. Comparison of MAE and RMSE for feature transformation.

4.3.4. Trajectory Prediction under Special Conditions

Under the influence of bad weather, flow management, airport capacity limitation
and so on, special conditions such as circling could appear in aircraft operation. In order
to investigate the prediction result of the model in this paper under special conditions,
a trajectory with circling phase is selected from the test set and its prediction results are
analyzed. The changes in longitude and latitude in the circling phase are shown in Figure 14.
Before circling, the predicted trajectory of the OP and FDFP models are in good agreement
with the real trajectory. As the circling continues, the predicted trajectory of the OP model
starts to deviate from the real trajectory, and there is a significant deviation in the circling
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phase during the big turn, while the predicted trajectory of the FDFP model always overlaps
with the real trajectory. At the end of the circling, the three trajectories converge again.

23.6

[\
w
~

Latitude/(°)

232

mms  Real Trajectory
—— FDFP
— OP

109.8 110.0 110.2 110.4
Longitude/(°)

Figure 14. Trajectory prediction in circling phase.

The prediction results for this trajectory in the circling phase are shown in Table 12.
The MAE of the OP model is bigger, showing that the OP model cannot make an accurate
prediction of the special phase, and that the FDFP model is better than the OP model in
three dimensions, demonstrating that the FDFP model for the special phase can also have
accurate prediction results.

Table 12. MAE of the two forecasting models in the circling phase.

Longitude Latitude Altitude
or 0.031119 0.012462 5.061558
FDFP 0.000757 0.000555 0.983245

4.3.5. Trajectory Prediction at Multi-Sampling Interval

In order to improve the long-term performance of the real-time prediction, trajectory
data test sets with sampling intervals of 2 s, 6 s and 10 s are used for comparative experi-
ments. The evaluation indicators are shown in Table 13. The prediction errors for longitude,
latitude and altitude will increase with the widening in sampling interval. Taking the 10 s
sampling interval with the largest error as an example, the MAE of longitude and latitude
are less than 0.008°, and the MAE of altitude is less than 9 m. Meanwhile, the prediction
errors of the three dimensions are more balanced, which reflects the good robustness of
the model.

Table 13. Comparison of MAE and RMSE at different sampling intervals.

Sampling MAE RMSE
Interval Longitude Latitude Altitude Longitude Latitude Altitude
2s 0.001205 0.001180 1.744970 0.001732 0.002000 2.237210
65 0.003446 0.004277 4.719530 0.004123 0.005099 7.957980

10s 0.007070 0.007908 8.987495 0.008367 0.009327 16.863321
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4.3.6. Robustness Verification of FDFP Model

In order to verify the robustness of the FDFP model, the LSTM network is replaced
by gradient boosting (XGBoost) to conduct the comparison experiment between the FDFP
model and OP model. The results displayed in Table 14 show that the prediction effect of
the FDFP model is better than that of the OP model in all dimensions, which reflects the
robustness of the FDFP model.

Table 14. Comparison of prediction results of two forecasting models based on XGBoost.

Longitude Latitude Altitude
or FDFP or FDFP or FDFP
MAE 0.003455 0.001287 0.002703 0.002186 3.475237 3.378851
RMSE 0.004569 0.002032 0.003685 0.009809 5.240572 4.730954

4.4. Discussion

In this paper, the FDFP model based on QAR data is proposed to improve the accuracy
of trajectory prediction. In order to verify the validity and robustness of the FDFP model,
single trajectory prediction, multi-trajectory prediction, trajectory prediction under special
conditions, under multi-sampling interval and under different basic models are respectively
used to compare the FDFP model with the OP model, which is widely used in previous
studies. The results show that FDFP model can achieve better prediction performance
through each evaluation indicators.

First, in terms of longitude and latitude prediction, the predicted trajectory of FDFP
model is almost consistent with the real trajectory (Figures 7 and 8), and also has a good
performance under special conditions (Figure 14), indicating that the FDFP model based on
LSTM can learn the rule of trajectory change. However, it is inevitable that the prediction
error at both ends of the trajectory is large. The introduction of the PDFP model can
alleviate this problem to a certain extent. Second, in the aspect of altitude prediction
(Figures 7 and 9), FDFP model stabilizes the prediction effect and narrows down the error
range compared with the OP model. In the end, the paper also conducts comparative
experiments on the proposed feature transformation (Tables 10 and 11 and Figure 13),
which further improves the prediction accuracy.

5. Conclusions

In this paper, the FDFP model is constructed using the QAR historical trajectory data
based upon the combination of different influencing factors. The QAR data can be acquired
in real time for trajectory prediction, which shows an excellent prediction result in the
experiment. At the same time, the feature transformation of heading and wind direction
also significantly improves the prediction accuracy of the model. Based on the LSTM
network and XGBoost, this paper verifies the effectiveness of the FDFP model, which
makes full use of QAR data features to improve both the accuracy and real-time response
of trajectory prediction. It promotes the implementation of the TBO and the sustainable
development of air traffic management.

However, this study also has some limitations. First of all, although there are still
technical barriers to the availability of QAR data, its rich trajectory characteristics can bring
different effects to the problem of trajectory prediction compared with ADS-B and radar
data. Therefore, it is very necessary to conduct prospective research on QAR data. Secondly,
the FDFP model will increase the number of models and occupy more memory. However,
in order to improve the prediction accuracy, this sacrifice is considered worthwhile. Future
research can consider model compression to save memory. Finally, the historical data used
in the experiment only has a fixed urban route, and its application scope is limited. More
data can be collected to solve the problem of data limitation in subsequent studies.

In the future, the abundant trajectory features brought by QAR data should be paid
full attention to, and the availability of QAR data should be improved from a technical



Sustainability 2023, 15, 1272 18 of 19

standpoint. In order to improve the accuracy of trajectory prediction, it is necessary to
conduct targeted data preprocessing and flexibly transform the original trajectory features.
At the same time, the selection of models can be more diversified, not limited to the LSTM
network and XGBoost, and suitable models can be selected according to the characteristics
of different prediction dimensions, prediction accuracy and other requirements.

Author Contributions: Conceptualization, Y.Z. and K.L.; Methodology, Y.Z. and K.L.; Software,
K.L.; Validation, K.L.; Writing-original draft preparation, K.L.; writing-review and editing, Y.Z.;
Visualization, K.L. All authors have read and agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China (62173332); Tianjin Science and Technology
Planning Project (21JCYBJC00700); Open Fund for Key Laboratory of Civil Aviation Flight Wide-area
Surveillance and Safety Control Technology (202106).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hao, S.; Cheng, S.; Zhang, Y. A multi-aircraft conflict detection and resolution method for 4-dimensional trajectory-based
operation. Chin. |. Aeronaut. 2018, 31, 1579-1593. [CrossRef]

2. Joint Planning and Development Office. Concept of Operations for the Next Generation Air Transportation System; Joint Planning and
Development Office: Washington, DC, USA, 2007.

3.  Undertaking, S.J. The European ATM Master Plan, Edition 2, October 2012. Available online: https://www.atmmasterplan.eu/
download /25 (accessed on 30 October 2012).

4. Bastanlar, Y.; C)zuysal, M. Introduction to machine learning. Mirnomics MicroRNA Biol. Comput. Anal. 2014, 1107, 105-128.

5. De, L.A,; Paassen, M.; Mulder, M. A machine learning approach to trajectory prediction. In Proceeding of the AIAA Guidance,
Navigation, and Control (GNC) Conference, Boston, MA, USA,, 23 August 2013.

6.  Tastambekov, K.; Puechmorel, S.; Delahaye, D.; Rabut, C. Aircraft trajectory forecasting using local functional regression in
Sobolev space. Transp. Res. Part C Emerg. Technol. 2014, 39, 1-22. [CrossRef]

7. Kanneganti, S.T.; Chilson, P.B.; Huck, R. Visualization and Prediction of Aircraft trajectory using ADS-B. In Proceeding of the
NAECON 2018-IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 23-26 July 2018.

8. Wang, T.; Huang, B. Fuzzy Cluster Analysis of 4D Trajectory Based on ADS-B. |. Traffic Inf. Saf. 2013, 31, 38—42.

9.  Georgiou, H,; Pelekis, N.; Sideridis, S. Semantic-aware aircraft trajectory prediction using flight plans. Int. . Data Sci. Anal. 2020,
9, 215-228. [CrossRef]

10. Wang, Z.; Liang, M.; Delahaye, D. Short-term 4d trajectory prediction using machine learning methods. In Proceeding of the SID,
Fuzhou, China, 18-20 February 2017.

11. Barratt, S.T.; Kochenderfer, M.].; Boyd, S.P. Learning probabilistic trajectory models of aircraft in terminal airspace from position
data. IEEE Trans. Intell. Transp. Syst. 2018, 20, 3536-3545. [CrossRef]

12.  Wu, X;; Yang, H.; Chen, H. Long-term 4D trajectory prediction using generative adversarial networks. Transp. Res. Part C Emerg.
Technol. 2022, 136, 103554. [CrossRef]

13. Pang, Y.; Yao, H.; Hu, J. A recurrent neural network approach for aircraft trajectory prediction with weather features from
sherlock. In Proceeding of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17-21 June 2019.

14. Alligier, R.; Gianazza, D.; Durand, N. Machine learning and mass estimation methods for ground-based aircraft climb prediction.
IEEE Trans. Intell. Transp. Syst. 2015, 16, 3138-3149. [CrossRef]

15. Li, X,; Pi, J.; Huang, F. Self-generated deep neural network based 4D trajectory prediction. J. Comput. Appl. 2021, 41, 1492.

16. Pang, Y,; Liu, Y. Conditional generative adversarial networks (CGAN) for aircraft trajectory prediction considering weather
effects. In Proceeding of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6-10 January 2020.

17.  Yang, K.; Bi, M.; Liu, Y. LSTM-based deep learning model for civil aircraft position and attitude prediction approach. In
Proceeding of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27-30 July 2019.

18.  Shi, Z.; Xu, M,; Pan, Q. 4D Flight Trajectory Prediction with Constrained LSTM Network. IEEE Trans. Intell. Transp. Syst. 2020, 99,
1-14.

19. Zhang, Z.; Yang, R.; Fang, Y. LSTM network based on on antlion optimization and its application in flight trajectory prediction.
In Proceeding of the 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control
Conference (IMCEC), Xi'an, China, 25-27 May 2018.

20. Zeng, W.; Quan, Z.; Zhao, Z. A deep learning approach for aircraft trajectory prediction in terminal airspace. IEEE Access 2020, 8,
151250-151266. [CrossRef]

21.  Yue,]. Research on Short-term Trajectory Prediction Method and Visualization System Development Based on LSTM-ARIMA.

Master’s Thesis, Civil Aviation University of China, Tianjin, China, 2020.


http://doi.org/10.1016/j.cja.2018.04.017
https://www.atmmasterplan.eu/download/25
https://www.atmmasterplan.eu/download/25
http://doi.org/10.1016/j.trc.2013.11.013
http://doi.org/10.1007/s41060-019-00182-4
http://doi.org/10.1109/TITS.2018.2877572
http://doi.org/10.1016/j.trc.2022.103554
http://doi.org/10.1109/TITS.2015.2437452
http://doi.org/10.1109/ACCESS.2020.3016289

Sustainability 2023, 15, 1272 19 of 19

22.
23.

24.
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.

Ma, L.; Tian, S. A Hybrid CNN-LSTM Model for Aircraft 4D Trajectory Prediction. IEEE Access 2020, 8, 134668-134680. [CrossRef]
Pang, Y.; Xu, N.; Liu, Y. Aircraft Trajectory Prediction using LSTM Neural Network with Embedded Convolutional Layer. In
Proceedings of the Annual Conference of the PHM Society, Scottsdale, AZ, USA, 23 September 2019.

Zhang, P; Yang, T. Feature Extraction and Prediction of QAR Data based on CNN-LSTM. Appl. Res. Comput. 2019, 36, 2958-2961.
Liu, L.; Cui, L.; Han, Y. Aircraft trajectory prediction based on convLSTM. Comput. Eng. Des. 2022, 43, 1127-1133.

Cui, Y; Xiong, W.; He, Y. Adaptive forecast model for uncertain track. Acta Aeronaut. Et Astronaut. Sin. 2019, 40, 322557.

Han, P.; Wang, W.; Shi, Q. Real-time Short-term Trajectory Prediction Based on GRU Neural Network. In Proceeding of the 2019
IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 8-12 September 2019.

Shi, Q.; Wang, W. Short-term 4D Trajectory Prediction Algorithm Based on Online Updated LSTM Network. |. Signal Process.
2021, 37, 66-74.

Wang, T.; Huang, B. A Four-dimensional Flight Trajectory Prediction Model based on Improved Kalman Filter. J. Comput. Appl.
2014, 34, 1812-1815.

Zhang, |J.; Liu, J.; Hu, R. Online four dimensional trajectory prediction method based on aircraft intent updating. Aerosp. Sci.
Technol. 2018, 77, 774-787. [CrossRef]

Cao, C; Yu, H,; Liu, Y. Automatic Tracking Method of Basketball Flight Trajectory Based on Data Fusion and Sparse Representation
Model. Complexity 2021, 2021, 9568753. [CrossRef]

Chen, X.; Wu, S.; Shi, C. Sensing data supported traffic flow prediction via denoising schemes and ANN: A comparison. IEEE
Sens. J. 2020, 20, 14317-14328. [CrossRef]

Liu, M.J.; Wang, X.E; Huang, Y.L. Data preprocessing in data mining. Comput. Sci. 2000, 27, 4.

Zhou, S.; Guo, S.; Du, B. A Hybrid Framework for Multivariate Time Series Forecasting of Daily Urban Water Demand Using
Attention-Based Convolutional Neural Network and Long Short-Term Memory Network. Sustainability 2022, 14, 1108. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://doi.org/10.1109/ACCESS.2020.3010963
http://doi.org/10.1016/j.ast.2018.03.037
http://doi.org/10.1155/2021/9568753
http://doi.org/10.1109/JSEN.2020.3007809
http://doi.org/10.3390/su141711086

	Introduction 
	Trajectory Data Analysis and Processing 
	QAR Trajectory Data 
	Data Cleaning 
	Data Resampling 
	Data Normalization 
	Feature Transformation 

	4D Trajectory FDFP Model Based on the LSTM Network 
	LSTM Neural Network Theory 
	Selection of Influencing Factors 
	Model Training and Prediction 
	Evaluation Indicators 

	Experiment and Discussion 
	Data Set 
	Experimental Environment and Model Parameters 
	Comparative Analysis of Experimental Results 
	Single Trajectory Prediction 
	Multiple Trajectory Prediction 
	Assessment of the Impact of Feature Transformation on Trajectory Prediction 
	Trajectory Prediction under Special Conditions 
	Trajectory Prediction at Multi-Sampling Interval 
	Robustness Verification of FDFP Model 

	Discussion 

	Conclusions 
	References

