Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives
Abstract
:1. Introduction
2. Heavy Metals (HMs) as Contaminants
3. Phytoremediation in Aquatic Environments
4. Evaluation of Resistance Mechanisms
5. Removal of HM by Microorganisms
6. Artificial Biofilter Floating Islands
7. Advantages and Disadvantages of Bioremediation
8. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Song, S.; Wang, R.; Liu, Z.; Meng, J.; Sweetman, A.J.; Jenkins, A.; Ferrier, R.C.; Li, H.; Luo, W.; et al. Impacts of soil and water pollution on food safety and health risks in China. Environ. Int. 2015, 77, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.J.K.; Ahmaruzzaman, M. A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J. Water Process Eng. 2016, 10, 39–47. [Google Scholar] [CrossRef]
- Xu, J.; Jin, G.; Tang, H.; Mo, Y.; Wang, Y.-G.; Li, L. Response of water quality to land use and sewage outfalls in different seasons. Sci. Total Environ. 2019, 696, 134014. [Google Scholar] [CrossRef]
- Sajid, M.; Nazal, M.K.; Ihsanullah; Baig, N.; Osman, A.M. Removal of heavy metals and organic pollutants from water using dendritic polymers-based adsorbents: A critical review. Sep. Purif. Technol. 2018, 191, 400–423. [Google Scholar] [CrossRef]
- Couto, E.; Assemany, P.P.; Carneiro, G.C.A.; Soares, D.C.F. The potential of algae and aquatic macrophytes in the pharmaceutical and personal care products (PPCPs) environmental removal: A review. Chemosphere 2022, 302, 134808. [Google Scholar] [CrossRef]
- Yan, H.; Yan, Z.; Wang, L.; Hao, Z.; Huang, J. Toward understanding submersed macrophyte Vallisneria natans-microbe partnerships to improve remediation potential for PAH-contaminated sediment. J. Hazard. Mater. 2022, 425, 127767. [Google Scholar] [CrossRef] [PubMed]
- Hua, Z.; Li, X.; Zhang, J.; Gu, L. Removal potential of multiple perfluoroalkyl acids (PFAAs) by submerged macrophytes in aquatic environments: Tolerance of Vallisneria natans and PFAA removal in submerged macrophyte-microbiota systems. J. Hazard. Mater. 2021, 424, 127695. [Google Scholar] [CrossRef]
- Ogo, H.A.; Tang, N.; Li, X.; Gao, X.; Xing, W. Combined toxicity of microplastic and lead on submerged macrophytes. Chemosphere 2022, 295, 133956. [Google Scholar]
- Alencar, B.T.B.; Ribeiro, V.H.V.; Cabral, C.M.; Santos, N.M.C.; Ferreira, E.A.; Francino, D.M.T.; Santos, J.B.; Silva, D.V.; Souza, M.F. Use of macrophytes to reduce the contamination of water resources by pesticides. Ecol. Indic. 2020, 109, 105785. [Google Scholar] [CrossRef]
- Tshithukhe, G.; Motitsoe, S.N.; Hill, M.P. Heavy Metals Assimilation by Native and Non-Native Aquatic Macrophyte Species: A Case Study of a River in the Eastern Cape Province of South Africa. Plants 2021, 10, 2676. [Google Scholar] [CrossRef]
- Geng, N.; Xia, Y.; Lu, D.; Bai, Y.; Zhao, Y.; Wang, H.; Ren, L.; Xu, C.; Hua, E.; Sun, G.; et al. The bacterial community structure in epiphytic biofilm on submerged macrophyte Potamogetom crispus L. and its contribution to heavy metal accumulation in an urban industrial area in Hangzhou. J. Hazard. Mater. 2022, 430, 128455. [Google Scholar] [CrossRef] [PubMed]
- Hadad, H.R.; Mufarrege, M.D.L.M.; Luca, G.A.D.; Denaro, A.C.; Nocetti, E.; Maine, M.A. Potential metal phytoremediation in peri-urban wetlands using rooted macrophytes. Ecol. Eng. 2022, 182, 106734. [Google Scholar] [CrossRef]
- Haghnazar, H.; Hudson-Edwards, K.A.; Kumar, V.; Pourakbar, M.; Mahdavianpour, M.; Aghayani, E. Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere 2021, 285, 131446. [Google Scholar] [CrossRef]
- Heisi, H.D.; Awosusi, A.A.; Nkuna, R.; Matambo, T.S. Phytoextraction of anthropogenic heavy metal contamination of the Blesbokspruit wetland: Potential of wetland macrophytes. J. Contam. Hydrol. 2022, 104101. [Google Scholar] [CrossRef]
- Rai, P.K. Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environ. Technol. Innov. 2019, 15, 100393. [Google Scholar] [CrossRef]
- Sattar, S.; Hussain, R.; Shah, S.M.; Bibi, S.; Ahmad, S.R.; Shahzad, A.; Zamir, A.; Rauf, Z.; Noshad, A.; Ahmad, L. Composition, impacts, and removal of liquid petroleum waste through bioremediation as an alternative clean-up technology: A review. Heliyon 2022, 8, e11101. [Google Scholar] [CrossRef] [PubMed]
- Timalsina, H.; Gyawali, T.; Ghimire, S.; Paudel, S.R. Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere 2022, 306, 135581. [Google Scholar] [CrossRef] [PubMed]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef]
- Massoud, R.; Hadiani, M.R.; Hamzehlou, P.; Khosravi-Darani, K. Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electron. J. Biotechnol. 2019, 37, 56–60. [Google Scholar] [CrossRef]
- Ansari, A.A.; Naeem, M.; Gill, S.S.; Alzuaibr, F.M. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egypt. J. Aquat. Res. 2020, 46, 371–376. [Google Scholar] [CrossRef]
- Sudiarto, S.I.A.; Renggaman, A.; Choi, H.L. Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics. J. Environ. Manag. 2019, 231, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yavaş, I.; Ünay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef] [Green Version]
- Samal, K.; Kar, S.; Trivedi, S. Ecological floating bed (EFB) for decontamination of polluted water bodies: Design, mechanism and performance. J. Environ. Manag. 2019, 251, 109550. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Y.; Sun, L.; Zheng, Y.; Zhao, J. Research and application status of ecological floating bed in eutrophic landscape water restoration. Sci. Total Environ. 2020, 704, 135434. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, S.B.; Ahmad, A.; Said, N.S.M.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Purwanti, I.F.; Hasan, H.A. Macrophytes as wastewater treatment agents: Nutrient uptake and potential of produced biomass utilization toward circular economy initiatives. Sci. Total Environ. 2021, 790, 148219. [Google Scholar] [CrossRef]
- Hejna, M.; Gottardo, D.; Baldi, A.; Dell’Orto, V.; Cheli, F.; Zaninelli, M.; Rossi, L. Review: Nutritional ecology of heavy metals. Animal 2018, 12, 2156–2170. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Long, C.; Hu, G.; Hong, S.; Su, Z.; Zhang, Q.; Zheng, P.; Wang, T.; Yu, S.; Ji, G. Two-week repair alleviates hexavalent chromium-induced hepatotoxicity, hepatic metabolic and gut microbial changes: A dynamic inhalation exposure model in male mice. Sci. Total Environ. 2023, 857, 159429. [Google Scholar] [CrossRef]
- Trzonkowska, L.; Leśniewska, B.; Godlewska-Żyłkiewicz, B. Development of Solid Phase Extraction Method Based on Ion Imprinted Polymer for Determination of Cr(III) Ions by ETAAS in Waters. Water 2022, 14, 529. [Google Scholar] [CrossRef]
- Brasil Conselho Nacional do Meio Ambiente—CONAMA. Resolution No. 430, 13 May 2011; It Provides for the Conditions and Patterns of Effluent Discharge, Complements and Amends Resolution No. 357 of 17 March 2005, of the National Council of the Environment—CONAMA; 2011; Published in the Diário Oficial da União—DOU No. 92. 2011; p. 89. Available online: http://www.ibama.gov.br/sophia/cnia/legislacao/CONAMA/RE0430-130511.PDF (accessed on 5 March 2021).
- USEPA. United States Environmental Protection Agency. Aquatic Life Ambient Water Quality Criteria. 2006. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (accessed on 5 March 2021).
- Jin, G.; Zhang, Z.; Li, R.; Li, R.; Chen, C.; Tang, H.; Li, L.; Barry, D.A. Transport of zinc ions in the hyporheic zone: Experiments and simulations. Adv. Water Res. 2020, 146, 103775. [Google Scholar] [CrossRef]
- Kohzadi, S.; Shahmoradi, B.; Ghaderi, E.; Loqmani, H.; Maleki, A. Concentration, Source, and Potential Human Health Risk of Heavy Metals in the Commonly Consumed Medicinal Plants. Biol. Trace Element Res. 2019, 187, 41–50. [Google Scholar] [CrossRef]
- Zhang, T.; Ruan, J.; Zhang, B.; Lu, S.; Gao, C.; Huang, L.; Bai, X.; Xie, L.; Gui, M.; Qiu, R.-L. Heavy metals in human urine, foods and drinking water from an e-waste dismantling area: Identification of exposure sources and metal-induced health risk. Ecotoxicol. Environ. Saf. 2019, 169, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Renieri, E.A.; Safenkova, I.V.; Alegakis, A.Κ.; Slutskaya, E.S.; Kokaraki, V.; Kentouri, M.; Dzantiev, B.B.; Tsatsakis, A.M. Cadmium, lead and mercury in muscle tissue of gilthead seabream and seabass: Risk evaluation for consumers. Food Chem. Toxicol. 2019, 124, 439–449. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Thakur, S.; Singh, L.; Wahid, Z.A.; Siddiqui, M.F.; Atnaw, S.M.; Din, M.F.M. Plant-driven removal of heavy metals from soil: Uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ. Monit. Assess. 2016, 188, 206. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Jilani, G.; Fahim, R.; Bai, L.; Wang, C.; Tian, L.; Jiang, H. Functional and structural roles of wiry and sturdy rooted emerged macrophytes root functional traits in the abatement of nutrients and metals. J. Environ. Manag. 2019, 249, 109330. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Xiong, J.; Li, L.; Zhao, B.; Sohail, I.; He, Z. A constructed wetland system with aquatic macrophytes for cleaning contaminated runoff/storm water from urban area in Florida. J. Environ. Manag. 2021, 280, 111794. [Google Scholar] [CrossRef]
- Zhao, Z.; Qin, Z.; Xia, L.; Zhang, D.; Hussain, J. Dissipation characteristics of pyrene and ecological contribution of submerged macrophytes and their biofilms-leaves in constructed wetland. Bioresour. Technol. 2018, 267, 158–166. [Google Scholar] [CrossRef]
- Lucke, T.; Walker, C.; Beecham, S. Experimental designs of field-based constructed floating wetland studies: A review. Sci. Total Environ. 2019, 660, 199–208. [Google Scholar] [CrossRef]
- Bonanno, G.; Vymazal, J.; Cirelli, G.L. Translocation, accumulation and bioindication of trace elements in wetland plants. Sci. Total Environ. 2018, 631–632, 252–261. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Sesin, V.; Kisiala, A.; Emery, R.J.N. Phytohormonal roles in plant responses to heavy metal stress: Implications for using macrophytes in phytoremediation of aquatic ecosystems. Environ. Toxicol. Chem. 2021, 40, 7–22. [Google Scholar] [CrossRef]
- Nascimento, C.W.A.D.; Biondi, C.M.; Silva, F.B.V.D.; Lima, L.H.V. Using plants to remediate or manage metal-polluted soils: An overview on the current state of phytotechnologies. Acta Sci. Agron. 2021, 43, e58283. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Olowe, O.M.; Asemoloye, M.D. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere 2022, 288, 132555. [Google Scholar] [CrossRef] [PubMed]
- Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J.S.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O.K. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar] [CrossRef]
- Khan, A.U.; Khan, A.N.; Waris, A.; Ilyas, M.; Zamel, D. Phytoremediation of pollutants from wastewater: A concise review. Open Life Sci. 2022, 17, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018, 147, 175–191. [Google Scholar] [CrossRef]
- Kapoor, D.; Singh, S.; Kumar, V.; Romero, R.; Prasad, R.; Singh, J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 2019, 19, 100182. [Google Scholar] [CrossRef]
- Clemente, R.; Arco-Lázaro, E.; Pardo, T.; Martín, I.; Sánchez-Guerrero, A.; Sevilla, F.; Bernal, M.P. Combination of soil organic and inorganic amendments help plants overcome trace element induced oxidative stress and allows phytostabilization. Chemosphere 2019, 223, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, D.D.; Ercan, N.; Ercan, F.S. Heavy Metal-induced Oxidative Stress and DNA Damage as Shown by RAPD-PCR in Leaves of Elodea Canadensis. Appl. Chem. Eng. 2020, 3, 14–22. [Google Scholar] [CrossRef]
- Yasin, N.A.; Khan, W.U.; Ahmad, S.R.; Ali, A.; Ahmed, S.; Ahmad, A. Effect of Bacillus fortis 162 on Growth, Oxidative Stress Tolerance and Phytoremediation Potential of Catharanthus roseus under Chromium Stress. Int. J. Agric. Biol. 2018, 20, 1513–1522. [Google Scholar]
- Islam, F.; Yasmeen, T.; Ali, Q.; Ali, S.; Arif, M.S.; Hussain, S.; Rizvi, H. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol. Environ. Saf. 2014, 104, 285–293. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Rehman, M.Z.U.; Rinklebe, J.; Tsang, D.C.W.; Bashir, A.; Maqbool, A.; Tack, F.M.G.; Ok, Y.S. Cadmium phytoremediation potential of Brassica crop species: A review. Sci. Total Environ. 2018, 631–632, 1175–1191. [Google Scholar] [CrossRef]
- Bhagyawant, S.S.; Narvekar, D.T.; Gupta, N.; Bhadkaria, A.; Koul, K.K.; Srivastava, N. Variations in the antioxidant and free radical scavenging under induced heavy metal stress expressed as proline content in chickpea. Physiol. Mol. Biol. Plants 2019, 25, 683–696. [Google Scholar] [CrossRef] [PubMed]
- El-Khatib, A.A.; Youssef, N.A.; Barakat, N.A.; Samir, N.A. Responses of Eucalyptus globulus and Ficus nitida to different potential of heavy metal air pollution. Int. J. Phytoremediation 2020, 22, 986–999. [Google Scholar] [CrossRef] [PubMed]
- Kisa, D.; Elmastaş, M.; Öztürk, L.; Kayir, Ö. Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl. Biol. Chem. 2016, 59, 813–820. [Google Scholar] [CrossRef]
- Manquián-Cerda, K.; Escudey, M.; Zúñiga, G.; Arancibia-Miranda, N.; Molina, M.; Cruces, E. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro. Ecotoxicol. Environ. Saf. 2016, 133, 316–326. [Google Scholar] [CrossRef]
- Taie, H.A.A.; Seif El-Yazal, M.A.; Ahmed, S.M.A.; Rady, M.M. Polyamines modulate growth, antioxidant activity, and genomic DNA in heavy metal–stressed wheat plant. Environ. Sci. Pollut. Res. 2019, 26, 22338–22350. [Google Scholar] [CrossRef] [PubMed]
- Ghori, N.-H.; Ghori, T.; Hayat, M.; Imadi, S.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Souza, V.L.; Silva, D.D.C.; Santana, K.B.; Mielke, M.S.; Almeida, A.-A.F.D.; Mangabeira, P.A.O.; Rocha, E.A. Efeitos do cádmio na anatomia e na fotossíntese de duas macrófitas aquáticas. Acta Bot. Bras. 2009, 23, 343–354. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Su, R.; Chen, Y.; Zeng, P.; Du, L.; Cai, B.; Zhang, A.; Zhu, H. Integration of manganese accumulation, subcellular distribution, chemical forms, and physiological responses to understand manganese tolerance in Macleaya cordata. Environ. Sci. Pollut. Res. 2022, 29, 39017–39026. [Google Scholar] [CrossRef]
- Su, R.; Ou, Q.; Wang, H.; Luo, Y.; Dai, X.; Wang, Y.; Chen, Y.; Shi, L. Comparison of Phytoremediation Potential of Nerium indicum with Inorganic Modifier Calcium Carbonate and Organic Modifier Mushroom Residue to Lead–Zinc Tailings. Int. J. Environ. Res. Public Health 2022, 19, 10353. [Google Scholar] [CrossRef]
- Xin, J.; Ma, S.; Li, Y.; Zhao, C.; Tian, R. Pontederia cordata, an ornamental aquatic macrophyte with great potential in phytoremediation of heavy-metal-contaminated wetlands. Ecotoxicol. Environ. Saf. 2020, 203, 111024. [Google Scholar] [CrossRef]
- Costa, M.B.; Tavares, F.V.; Martinez, C.B.; Colares, I.G.; Martins, C.D.M.G. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation. Ecotoxicol. Environ. Saf. 2018, 155, 117–124. [Google Scholar] [CrossRef]
- Li, C.; Wang, M.; Luo, X.; Liang, L.; Han, X.; Lin, X. Accumulation and effects of uranium on aquatic macrophyte Nymphaea tetragona Georgi: Potential application to phytoremediation and environmental monitoring. J. Environ. Radioact. 2019, 198, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Kumar, D.; Soni, V. Copper and mercury induced oxidative stresses and antioxidant responses of Spirodela polyrhiza (L.). Schleid. Biochem. Biophys. Rep. 2020, 23, 100781. [Google Scholar] [CrossRef] [PubMed]
- Ayangbenro, A.S.; Babalola, O.O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef]
- Cai, X.; Zheng, X.; Zhang, D.; Iqbal, W.; Liu, C.; Yang, B.; Zhao, X.; Lu, X.; Mao, Y. Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant. Ecotoxicol. Environ. Saf. 2019, 181, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wei, W.; Pi, S.; Ma, F.; Li, A.; Wu, D.; Xing, J. Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp.J1. Bioresour. Technol. 2015, 196, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [Google Scholar] [CrossRef]
- Gupta, A.; Joia, J.; Sood, A.; Sood, R.; Sidhu, Y.; Kaur, G. Microbes as Potential Tool for Remediation of Heavy Metals: A Review. J. Microb. Biochem. Technol. 2016, 8, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, H.; Ratering, S.; Felix-Henningsen, P.; Schnell, S. Stability of in situ immobilization of trace metals with different amendments revealed by microbial 13C-labelled wheat root decomposition and efflux-mediated metal resistance of soil bacteria. Sci. Total Environ. 2019, 659, 1082–1089. [Google Scholar] [CrossRef]
- Yin, K.; Wang, Q.; Lv, M.; Chen, L. Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 2019, 360, 1553–1563. [Google Scholar] [CrossRef]
- Calvo, J.; Jung, H.; Meloni, G. Copper metallothioneins. IUBMB Life 2017, 69, 236–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.-H.; Zeng, G.-M.; Niu, Q.-Y.; Liu, Y.; Zhou, L.; Jiang, L.-H.; Tan, X.-F.; Xu, P.; Zhang, C.; Cheng, M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresour. Technol. 2017, 224, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Kolaj-Robin, O.; Russell, D.; Hayes, K.A.; Pembroke, J.T.; Soulimane, T. Cation Diffusion Facilitator family: Structure and function. FEBS Lett. 2015, 589, 1283–1295. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.J.; Ali, S.; Shabir, G.; Siddique, M.; Rizwan, M.; Seleiman, M.F.; Afzal, M. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. Chemosphere 2020, 243, 125353. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Kronzucker, H.J.; Shi, W. Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters. Environ. Pollut. 2021, 287, 117587. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Cui, H.; Huang, M.; He, Y. Artificial floating islands for water quality improvement. Environ. Rev. 2017, 25, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Yeh, N.; Yeh, P.; Chang, Y.-H. Artificial floating islands for environmental improvement. Renew. Sustain. Energy Rev. 2015, 47, 616–622. [Google Scholar] [CrossRef]
- Benvenuti, T.; Hamerski, F.; Giacobbo, A.; Bernardes, A.M.; Zoppas-Ferreira, J.; Rodrigues, M.A.S. Constructed floating wetland for the treatment of domestic sewage: A real-scale study. J. Environ. Chem. Eng. 2018, 6, 5706–5711. [Google Scholar] [CrossRef]
- Lu, B.; Xu, Z.; Li, J.; Chai, X. Removal of water nutrients by different aquatic plant species: An alternative way to remediate polluted rural rivers. Ecol. Eng. 2018, 110, 18–26. [Google Scholar] [CrossRef]
- Pavlineri, N.; Skoulikidis, N.T.; Tsihrintzis, V.A. Constructed Floating Wetlands: A review of research, design, operation and management aspects, and data meta-analysis. Chem. Eng. J. 2017, 308, 1120–1132. [Google Scholar] [CrossRef]
- Shen, C.; Zhao, Y.Q.; Liu, R.B.; Morgan, D.; Wei, T. Enhancing wastewater remediation by drinking water treatment residual-augmented floating treatment wetlands. Sci. Total Environ. 2019, 673, 230–236. [Google Scholar] [CrossRef]
- Zhao, F.; Xi, S.; Yang, X.; Yang, W.; Li, J.; Gu, B.; He, Z. Purifying eutrophic river waters with integrated floating island systems. Ecol. Eng. 2012, 40, 53–60. [Google Scholar] [CrossRef]
- Bi, R.; Zhou, C.; Jia, Y.; Wang, S.; Li, P.; Reichwaldt, E.S.; Liu, W. Giving waterbodies the treatment they need: A critical review of the application of constructed floating wetlands. J. Environ. Manag. 2019, 238, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Dean, S.; Akhtar, M.S.; Ditta, A.; Valipour, M.; Aslam, S. Microcosm Study on the Potential of Aquatic Macrophytes for Phytoremediation of Phosphorus-Induced Eutrophication. Sustainability 2022, 14, 16415. [Google Scholar] [CrossRef]
- Xu, L.; Chen, S.; Zhuang, P.; Xie, D.; Yu, X.; Liu, D.; Li, Z.; Qin, X.; Wang, F.; Xing, F. Purification Efficiency of Three Combinations of Native Aquatic Macrophytes in Artificial Wastewater in Autumn. Int. J. Environ. Res. Public Health 2021, 18, 6162. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, Z.; Ketola, T. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area. Ecol. Eng. 2011, 37, 1460–1466. [Google Scholar] [CrossRef]
- De Stefani, G.; Tocchetto, D.; Salvato, M.; Borin, M. Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiologia 2011, 674, 157–167. [Google Scholar] [CrossRef]
- Tanner, C.C.; Headley, T.R. Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol. Eng. 2011, 37, 474–486. [Google Scholar] [CrossRef]
- Zhang, C.-B.; Liu, W.-L.; Pan, X.-C.; Guan, M.; Liu, S.-Y.; Ge, Y.; Chang, J. Comparison of effects of plant and biofilm bacterial community parameters on removal performances of pollutants in floating island systems. Ecol. Eng. 2014, 73, 58–63. [Google Scholar] [CrossRef]
- Ladislas, S.; Gérente, C.; Chazarenc, F.; Brisson, J.; Andrès, Y. Performances of Two Macrophytes Species in Floating Treatment Wetlands for Cadmium, Nickel, and Zinc Removal from Urban Stormwater Runoff. Water Air Soil Pollut. 2013, 224, 1408. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Sample, D.J. Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds. J. Environ. Manag. 2014, 137, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, B.; He, B.; Li, X.; Wang, L.-A. Effect of the pyrolysis duration and the addition of zeolite powder on the leaching toxicity of copper and cadmium in biochar produced from four different aquatic plants. Ecotoxicol. Environ. Saf. 2019, 183, 109517. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yao, W.; Li, R.; Ali, A.; Du, J.; Guo, D.; Xiao, R.; Guo, Z.; Zhang, Z.; Awasthi, M.K. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb, and Cd in biochar produced from phytoremediation residue. Bioresour. Technol. 2018, 249, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, L.H.; Peng, L.; Luo, S.; Zeng, Q.R. Phytoremediation of heavy metals under an oil crop rotation and treatment of biochar from contaminated biomass for safe use. Chemosphere 2020, 247, 125856. [Google Scholar] [CrossRef] [PubMed]
- Andreazza, R.; Okeke, B.C.; Pieniz, S.; Bortolon, L.; Lambais, M.R.; Camargo, F.A.O. Effects of Stimulation of Copper Bioleaching on Microbial Community in Vineyard Soil and Copper Mining Waste. Biol. Trace Elem. Res. 2012, 146, 124–133. [Google Scholar] [CrossRef]
- Santos, V.M.; Andrade, L.C.; Tiecher, T.; Andreazza, R.; Camargo, F.A.O. Phytoremediation of metals by colonizing plants developed in point bars in the channeled bed of the Dilúvio Stream, Southern Brazil. Int. J. Phytoremediation 2021, 24, 59–65. [Google Scholar] [CrossRef]
- Silva, A.S.; Jacques, R.J.S.; Andreazza, R.; Bento, F.M.; Roesch, L.F.W.; Camargo, F.A.O. Properties of catechol 1,2-dioxygenase in the cell free extract and immobilized extract of Mycobacterium fortuitum. Braz. J. Microbiol. 2013, 44, 291–297. [Google Scholar] [CrossRef]
- Meyer, D.D.; Beker, S.A.; Bücker, F.; Peralba, M.C.R.; Frazzon, A.P.G.; Osti, J.F.; Andreazza, R.; Camargo, F.A.O.; Bento, F.M. Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil. Int. Biodeterior. Biodegrad. 2014, 95, 356–363. [Google Scholar] [CrossRef]
- Colla, T.S.; Andreazza, R.; Bücker, F.; Souza, M.M.; Tramontini, L.; Prado, G.R.; Frazzon, A.P.G.; Camargo, F.A.O.; Bento, F.M. Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy. Environ. Sci. Pollut. Res. 2013, 21, 2592–2602. [Google Scholar] [CrossRef]
- Tufail, M.A.; Iltaf, J.; Zaheer, T.; Tariq, L.; Amir, M.B.; Fatima, R.; Asbat, A.; Kabeer, T.; Fahad, M.; Naeem, H.; et al. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. Sci. Total Environ. 2022, 850, 157961. [Google Scholar] [CrossRef]
- Dash, D.M.; Osborne, W.J. A systematic review on the implementation of advanced and evolutionary biotechnological tools for efficient bioremediation of organophosphorus pesticides. Chemosphere 2023, 313, 137506. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2021, 291, 132979. [Google Scholar] [CrossRef] [PubMed]
- Andreazza, R.; Okeke, B.C.; Pieniz, S.; Camargo, F.A.O. Characterization of Copper-Resistant Rhizosphere Bacteria from Avena sativa and Plantago lanceolata for Copper Bioreduction and Biosorption. Biol. Trace Elem. Res. 2011, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
Element | Reference Value (mg L−1) | Toxicological Effects |
---|---|---|
As | 0.01 | Changes in skin pigmentation; lesions on the palms of the hands and feet; effects on the renal, gastrointestinal and cardiovascular system, as well as increased blood pressure; carcinogenic. Pregnant women with exposure to As have an increased risk of abortion or premature birth. |
Cd | 0.003 | Renal dysfunction with impaired resorption of proteins, glucose, and amino acids; pulmonary alterations; carcinogenic. |
Cr | 0.05 | Respiratory, intestinal, gastrointestinal, and cardiovascular problems; skin irritation; carcinogenic. |
Cu | 2.0 | Gastrointestinal bleeding; hepatocellular toxicity; acute renal failure; anemia; breathing problems. |
Pb | 0.01 | Brain damage to the fetus; affects the kidneys and circulatory and nervous systems. |
Hg | 0.006 | Toxic effects on the nervous, digestive, and immune systems and lungs, kidneys, skin, and eyes. |
Species | Metal | Concentration | Toxicological Effects | Reference |
---|---|---|---|---|
Macleaya cordata | Mn2+ | 0–12 mmol L−1 | Cells distort and deform, black precipitates appeared in the intercellular space, mitochondria, and starch granules decrease. Chloroplasts shrink, and hungry particles increase. | [61] |
Nerium indicum | Pb Zn Cu Cd | 3311.5–4297.08 mg kg−1 1398.33–1704.92 mg kg−1 143.33–163.5 mg kg−1 28.92–43.83 mg kg−1 | Significant decrease in the acid-extractable state, a significant increase in the residue state, and a small decrease in the Fe-Mn binding state, and a small increase in the organic binding state. | [62] |
Pontederia cordata | Cd2+ | 0–66 mM | Decrease in chlorophyll contents due to increased lipid peroxidation and inhibition of biosynthesis of chlorophyll precursors; inhibition of Cd translocation from roots to aerial part; SOD and POD activities without variation about control at concentrations 0.04 mM to 0.22 mM in 15 days of exposure;A concentration of 0.44 mM caused a reduction in SOD and POD. | [63] |
Potamogeton pectinatus L. | Cu | 0–1000 μM | Accumulation mainly in the roots; dose-dependence pattern identified; decreased levels of chlorophylls and carotenoids; Inhibition of photosynthesis; leaf damage; reduction in pigments. | [64] |
Nymphaea tetragona | U | 0–55 mg L−1 | Increased activity POD, CAT, SOD; increased MDA levels aggravate cell membrane damage; inhibition of soluble protein, chlorophyll a, chlorophyll b, and carotenoid sums. | [65] |
Spirodela polyrhiza L. | Cu2+ Hg2+ | 0.0–40 μM 0.0–0.4 μM | Increased SOD activity in 10 μM Cu+2; 0.2 μM Hg+2; CAT, at 20 μM Cu+2; 0.2 μM Hg+2 and GPOD, at 10 μM Cu+2; 0.2 μM Hg+2 with the fall of all activities until 40 μM Cu+2 and 0.4 μM Hg+2. | [66] |
Study Area | Scale | Floating Material | Plant Species | Planting Method | Evaluated Parameters | Ref. |
---|---|---|---|---|---|---|
Botanical Garden (Pakistan) | Microcosm | Container/plastic tub of 50 L capacity | Salvinia natans; Pistia stratiotes | Adult plants | P-accumulated in plant biomass; pH; temperature. | [87] |
River (South Africa) | In situ | Free-floating macrophytes | Pontederia (=Eichhornia) crassipes; Stuckenia pectinatus; Typha capensis; Cyperus sexangularis; Phragmites australis | Adult plants | pH; chemical oxygen demand (COD), Zn; Fe; Cd; As; Cr; Pb; Hg; Cu. | [1] |
Botanical Garden (China) | In situ | Container, ecological floating bed | Vallisneria natans; Ludwigia adscendens; Ipomoea aquatica; Monochoria vaginalis; Saururus chinensis; Acorus calamus; Typha orientalis; Schoenoplectus juncoides | Adult plants | Total nitrogen (TN), total phosphorus (TP), COD. | [88] |
Rural area (China) | In situ | PVC tubes (40 mm) and ropes | Oenanthe javanica; Gypsophila sp.; Rohdea Japônica; Dracaena sanderiana; Gardenia jasminoides Var. grandiflora; Gardenia jasminoides Var. prostratae Salix Babylonica. | Seedlings | Temperature, pH, OD, SS, COD, N total; P total; chlorophyll a. | [89] |
Aquaculture effluent channel (Italy) | In situ | Licence Tech-IA® (EVA) | Phragmites australis; Carexelata; Juncus effusus; Typha Latifolia; Chrysopogon zizanioides; Sparganiumerectume Dactylisglomerata | Adult plants | pH, temperature, conductivity, DO, BOD, COD, N total, KTN, N ammoniacal, nitrate, P total, SS. | [90] |
Synthetic rainwater experiment (New Zealand) | Mesocosm | a license BioHaven® | Carexvirgata; Cyperus Ustulatus; Juncusedgariae; Schoenoplectus Tabernaemontani. | Seedlings | Cu, Zn, turbidity, temperature, DO, pH, macronutrients, and micronutrients. | [91] |
Nutrient Solution Experiment (China) | Microcosm | a license BioHaven® | Cannageneralis; Scirpusvalidus; Alternanthera Philoxeroides; Cyperus Alternifolius; Thalia Geniculata. | Adult plants | BOD; COD; N total; P total; ammoniacal N and nitrate. | [92] |
Urban stormwater runoff | Mesocosm | Extruded Polystyrene Circular Buoy | Juncus Effusus Carex Riparia. | Pozzolan as substrate with seedlings | Cd, Ni, Zn, biomass production. | [93] |
Urban retention ponds (USA) | Mesocosm | Coconut fiber bristles RoLankaTM Inc. | Pontederia cordata L., Schoenoplectus tabernaemontani | Seedlings | P total, P particulate, orthophosphate, N total, organic N, ammoniacal N, nitrate, chlorophyll a. | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demarco, C.F.; Quadro, M.S.; Selau Carlos, F.; Pieniz, S.; Morselli, L.B.G.A.; Andreazza, R. Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives. Sustainability 2023, 15, 1411. https://doi.org/10.3390/su15021411
Demarco CF, Quadro MS, Selau Carlos F, Pieniz S, Morselli LBGA, Andreazza R. Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives. Sustainability. 2023; 15(2):1411. https://doi.org/10.3390/su15021411
Chicago/Turabian StyleDemarco, Carolina Faccio, Maurízio Silveira Quadro, Filipe Selau Carlos, Simone Pieniz, Luiza Beatriz Gamboa Araújo Morselli, and Robson Andreazza. 2023. "Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives" Sustainability 15, no. 2: 1411. https://doi.org/10.3390/su15021411
APA StyleDemarco, C. F., Quadro, M. S., Selau Carlos, F., Pieniz, S., Morselli, L. B. G. A., & Andreazza, R. (2023). Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives. Sustainability, 15(2), 1411. https://doi.org/10.3390/su15021411