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Abstract: Urban areas concentrate more than 50% of the world’s population and are highly impacted
by human activities, mainly due to high population density, directly affecting the micro-climate. In
this sense, green infrastructures (GIs) have been pointed out to be helpful in mitigating these effects
in large urban areas, where most of the studies were conducted. Therefore, this study evaluates
the impacts on meteorological variables in a medium-sized city through the Weather Research and
Forecasting model by implementing urban classes of Local Climate Zones (LCZ). Five urban parks
and an urban lake were identified and expanded in the inner model grid to analyze the effects
of GIs on meteorological variables in the urban environment. Results show that the 10 m wind
speed can present an improvement for all statistical indices due to the better vertical representation
of urban structures in the central urban area by the LCZ urban classes. In addition, green areas
contributed locally to reducing the urban heat island (UHI) effects, resulting in cooling rates around
these infrastructures. Compared to the lake, the use of the urban LCZ classes has proven to be an
effective way to improve the representation of meteorological variables by a mesoscale weather model.
Regarding Gls, this practice performs environmental services capable of mitigating the effects of UHI,
sustaining the importance of these systems in urban projects, even for medium-sized cities. Finally,
these findings provide support for public decision-makers in creating Master Plans for medium-sized
cities regarding the implementation of Gls.

Keywords: urban parks; urban planning; sustainable cities; thermal mitigation strategies

1. Introduction

Population growth enhanced from industrial revolutions is the main cause of the
urban expansion in progress, increasing the consumption of natural resources. Conse-
quently, it has been causing large-scale effects worldwide, such as climate change and
its consequences [1-4]. Natural areas covered by croplands, vegetation, and/or pasture-
lands have been converted to build surfaces through the urbanization process that reduce
the albedo [5,6]. This radiation absorbed during the day is dissipated by sensitive heat,
enhancing the urban heat island (UHI) [7-10].

The need for air-conditioning systems in indoor places grows when temperatures
rise over central urban centers as a result of urbanization and climate change, directly
causing higher energy consumption and influencing the outdoor environment [11]. One
solution that can lead to thermal comfort in indoor—outdoor environments is green infras-
tructures (Gls), which contribute to mitigating the effect of UHI, besides reducing energy
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consumption for cooling buildings in the summertime [12-16]. GIs are defined as urban
areas covered by vegetation of any size, in private and public spaces, regardless of size and
function, and may include small water bodies such as ponds, lakes, or streams [17,18]. The
vegetation in urban areas modifies the surface energy budget, increasing the latent heat flux
and reducing outdoor temperature [19,20]. For example, in rooftop gardens on multi-store
car parks, the inclusion of Gls in Singapore reduced the near-surface air temperature by
about 1 to 2 °C during the nighttime in the western part of the city [21].

Nevertheless, there are also limitations to the GIs [22-24]. For example, in Porto’s
urban area, the influence of a set of resilience measures on the wind flow and air pollutant
dispersion was evaluated [22]. Overall, they observed that the implementation of GIs
improved air quality, mainly due to enhanced ventilation and dispersion capacity. Further-
more, according to the GI characteristic, urban geometry can influence air quality, with
high vegetation canopies in urban canyons resulting in lower air quality since taller trees
cause canyon flow change [25]. In fact, low vegetation is more appropriate in canyon areas
as it improves local air quality [26].

GI has been shown to have many benefits for urban areas, including mitigating the
impacts of urbanization on the environment and improving quality of life for residents.
However, as mentioned, there are also limitations to consider when implementing GI [27].
Moreover, regarding choosing the adequate GI for the region, another relevant aspect is the
maintenance and cost associated with it. For example, the cost of implementing a living
wall ranged from EUR 2000 to 3000 in 2020, and the charge of maintaining urban parks,
including planting, pruning, pest and disease management, and removal, can also vary
greatly depending on the species chosen, reaching no more than USD seven per tree species
per year [28,29]. It is therefore important for cities to carefully consider the benefits and
limitations of GI in light of their specific urban characteristics and climate [30,31].

Not only are the urbanization effects restricted to large metropolitan regions, but they
are also reported in smaller cities [32-34]. According to the World Urbanization Prospects,
55% of the world population resides in urban areas, where 5.4% live in cities between
500,000 and 1 million inhabitants [33]. In addition, recent projections for 2050 show that
68% of the world’s population will reside in urban areas, increasing the population density
in metropolitan centers [35]. The higher growth rates are observed in town centers with less
than 500,000 inhabitants [35,36]. Few studies have evaluated the urbanization effects and
green strategies on meteorological variables through numerical models in medium-sized
cities in Latin American countries such as Brazil [6,37-39].

Therefore, numerical modeling can be used to reduce the costs of evaluating the imple-
mentation of GIs, even considering their limitations [20]. In a study conducted in Tehran,
Iran, the impact of GI implementation on the UHI effect was examined using a combination
of the WRF model and the Single Layer Urban Canopy Model. The results demonstrated
that introducing green spaces led to a 25% reduction in the daytime Turbulence Kinetic
Energy budget and a decrease of 0.2 K in the potential temperature [40]. Additionally,
Li et al. [41] used WREF in conjunction with the Princeton Urban Canopy Model to inves-
tigate the UHI during a heat wave. They found that an increase in GI would result in a
nearly linear reduction of the surface and near-surface UHIs.

Hence, more investigations by numerical models should be performed for emerging
metropolitan areas, which are growing fast and request more sustainable urban planning.
These simulations require a better description of the local characteristics of the urban
area [42,43], in which Local Climate Zones (LCZs) have been provided to improve repre-
sentation [44,45]. Therefore, this paper focuses on the numerical analysis of the role of GI
(park and lake) areas in the urban atmosphere of a medium-sized city while using the LCZ
to improve urban representation.
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2. Methods
2.1. Study Area

The region of this study comprises the Metropolitan Area of Londrina (MAL), lo-
cated in the state of Paranda, Southern Brazil, which has a population characteristic of
medium urbanizations, between 1 and 5 million inhabitants (Figure 1). The MAL consists
of 25 cities, in 7440 km?, where approximately 50% of the population live in Londrina
(about 575,000 inhabitants) [36]. Londrina has a humid subtropical climate, Cfa classifica-
tion, with average temperatures above 22 °C in the summer and accumulated monthly
rainfall above 60 mm in the winter [46,47].
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Figure 1. Location and simulation domains of the study area. Red and yellow points are, respectively, the
location of stations from Instituto Agua e Terra (IAT) and Sistema Meteoroldgico do Parana (SIMEPAR).
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2.2. Modeling System

The simulations were carried out with the Weather Research and Forecast model
(WREF) version 4.1.5, originally developed by the National Center for Atmospheric Research
(NCAR). It is a multi-scale, non-hydrostatic tool. The Eulerian model was used, with fixed
space, and applied to atmospheric research and operational forecasting [48,49].

Three nested domains were constructed, centralized at 23.30° S and 51.10° W with 9,
3, and 1 km of the horizontal spacing grid, and a fourth internal domain at 23.31° S and
51.16° W (0.333 km of grid point spacing), covering the urban area of Londrina, were used
for the simulations (Figure 1 and Table 1).

Table 1. Configuration of simulation domains.

. Grid Points Grid Points Domain Size Vertical
Domain Spacing (km) X Y (km?) Levels
do1 9 100 80 900 x 720 33
do2 3 88 70 264 x 210 33
do3 1 76 58 76 x 58 33
do4 0.333 106 79 34.3 x 26.3 33

The physical and surface parameterization used in this study, shown in Table 2,
were validated in previous studies in Brazil for the region [19,42,50-54]. Therefore, they
were used in this study area. The output of the Global Data Assimilation System/Final
(GDAS/FNL, [55]) was used as atmospheric initial and boundary conditions. This dataset
has a horizontal spacing grid of 0.25° and 26 vertical levels, a temporal resolution of 6 h,
and top of the atmosphere of approximately 10 hPa.

Table 2. Physical parameterizations considered in the WRF model.

Physics Options Scheme Reference
éﬁ;ﬁ&giﬁ I&zjlizgg?l New Goddard scheme [56]
Surface Layer Revised MM5 [57]
Land Surface Noah [58]
Boundary Layer YSU [59]
Microphysics Pardue Lin [60]
Urban Surface BEP [61]

Numerical simulations were executed from 2017, September 6th 00 UTC to September
16th 00 UTC (240 simulated hours), since it was a period of relatively calm winds, clear-sky
days, and no rainfall. The first 24 h of simulation were discarded from the analysis to avoid
the spin-up effect [62,63]. The model performance analysis was conducted evaluating
the values obtained from the model with those measured at the IAT and SIMEPAR moni-
toring stations (Figure 1) by using Pearson’s Correlation Coefficient (r), Mean Bias (MB),
Root-Mean-Square Error (RMSE), and Pielke skill score (Spiexe) [62,64,65]. The IAT station
(latitude: 23.319° S; longitude: 51.155° W) is located in the central area of Londrina, set and
funded by Instituto Agua e Terra (Figure S1), while SIMEPAR (latitude: 23.355° S; longi-
tude: 51.161° W) is in the south of surrounding areas of Londrina, supported by Sistema
Meteorolégico do Parana and Instituto de Desenvolvimento Rural do Parana (Figure S1).
These are the meteorological stations with observations available in the simulation period
in the study region used for validation.

LCZ data were developed regarding urban characteristics, enabling the input data
improvement for using Building Environment Parameterization (BEP; [61]), trying to better
represent the turbulent moment fluxes in urban areas [50,66]. An accurate data set and a
proper urban land use parameterization are critical for the mesoscale model to represent
UHI effects [67].
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This study used the LCZ classification [68]. Level “0” provides comprehensive and
consistent information on urban surface coverage using multi-spectral satellite images of
Landsat 8 [69]. The representation of urban areas is due to the categorized classification, in
which each LCZ class is associated with a range of spectral values for the main descriptors
of the urban surface [70].

By using a supervised classification method, the classifier requires training samples
that will be used to establish the spectral signatures of each class stipulated in the LCZ
scheme. The LCZ classification for MAL followed the World Urban Database and Access
Portal Tools (WUDAPT) guide (available at http:/ /www.wudapt.org, accessed on 9 Oc-
tober 2020), from collecting training samples to supervised classification. Urban canopy
parameters (fraction of the urban landscape that does not have natural vegetation; heat
capacity, thermal conductivity, surface albedo, and surface emissivity of the roof, building
wall and ground; roughness length for momentum over the ground, and roof; height and
width of buildings; width and direction from the north of streets) were obtained from
documents available with the LCZ preparation process on the WUDAPT website [68,71].

To assess whether LCZ reliably represents the terrestrial surface for middle-size urban
areas, it is necessary to validate the mapping. The validation process seeks to statistically
verify whether the entire surface is well represented by the land cover map [43]. In this
study, accuracy was quantified only for the urban classes in Londrina, as it corresponds to
the innermost domain area. The determination of the validation sample size was based on
Congalton and Green [72], who suggest collecting 50 samples for each land cover class in
mappings performed for areas smaller than 0.4 million hectares and a classification scheme
with less than 12 classes. As in minority classes, classes with total pixels less than 50 (Open
midrise and Lightweight low-rise), it is not possible to collect 50 samples; therefore, we
adopted 50% of the total amount of pixels as validation samples. This process was adopted
as an adjustment based on the relative importance of these classes and to prevent changes
in the accuracy due to map classes with low representation in the study area (Open midrise
and Lightweight low-rise classes together represent less than 1% of the study area) [72].

The BEP scheme allows the WRF model to represent the direct interaction of the
buildings with the atmosphere (wind speed, potential temperature, and turbulent kinetic
energy) through geometric, thermal, and aerodynamic properties of different urban land
uses [61,73-75]. Each class of urban canopy is characterized by the homogenous grouping
of urban structures considering the same width, separated at the same distance (canyon
wide), and with different building heights (see characteristics of LCZ urban classes in
Table S1) [61].

The urban classes of LCZ and BEP scheme were activated only for smaller domains
(d03 and d04) due to model resolution, enabling the possibility to evaluate the effects of
urbanization in greater detail and demand less computational time.

2.3. Experimental Configuration

Simulations were achieved using the schemes and configurations mentioned. Firstly, a
preliminary analysis evaluated the use of LCZ by comparison of performance indexes (do-
main d03) in the simulations using the default land use obtained by Moderate-Resolution
Imaging Spectroradiometer (MODIS) and implementing urban LCZ classes, namely DE-
FAULT and Simulation A (SA) simulations, respectively.

Subsequently, in the innermost domain, simulations were performed to obtain the
meteorological impacts of Gls, considering the LCZ classes for urban areas. In this sense,
an artificial lake built in 1959 in the city to solve the drainage problems hampered by a
natural stone dam was considered. However, the MODIS land cover classification was
not originally able to identify this lake in the city. Thus, we call Simulation B the same as
SA, identifying the lake surface (class 17) to better represent the land use conditions of the
study area.
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In SC, the five urban parks that do not exist in the MAL were carefully thought of and
located in SC to allow the evaluation of the green areas (parks) in the urban meteorological
variables (see Table S2 for GI size and grid points). The locations of parks used in the
simulations follow the Master Plan of Londrina (an urban planning with guidelines and
rules for ordering the city territory, with definitions of occupation zones for residential,
industrial and commercial purposes, etc.), which declares that urban parks can be imple-
mented in regions with low population density and irregular occupation [76]. Furthermore,
to define the location and size of the parks, we took into consideration the natural water
bodies, remaining vegetation, and valleys existing in the urban area. A brief summary of
the simulations is presented in Table 3.

Table 3. Summary of simulation features.

Simulation Land Use

Evaluation of the implementing urban LCZ classes

DEFAULT MODIS (16 natural classes and an urban class)
MODIS + LCZ (16 natural classes by MODIS and

SA 10 urban classes by LCZ product)
Evaluation of the GIs

SB Same as SA but identifying the lake surface

SC Same as SB with the inclusion of five urban parks

The categorization of GIs was based on the classification scheme proposed by the
International Geosphere-Biosphere Program (IGBP), which is used in the MODIS land
cover legend. Therefore, the lake was classified as a water body, represented by the number
17 in the IGBP scheme. The urban parks were categorized as evergreen broadleaf forest
(class number 2 in IGBP) due to the phytophysiognomy of the native cover of the MAL.

3. Results and Discussion

The results presented in this section are for the innermost domains (d03 and d04) of
the model, comparing the simulated results for DEFAULT and SA to infer LCZ application
in the representation of surface data and comparing SA, SB, and SC simulations to study
the effects of GIs. The data analyzed were, namely, temperature and specific humidity at
2 m (T2 and Q2), 10 m wind speed (WS10), and surface energy fluxes at local time (UTC-3).

3.1. Local Climate Zones

Figure 2a shows the LCZ urban classification for domain d04 and Figure 2b includes
the identification of urban GlIs (parks and lake). The validation results indicate that the
LCZ urban classification has an overall accuracy of 67% (see Table S3 in the Supplementary
Materials), which is considered consistent according to studies already carried out using
LCZ [77]. The classification of LCZ could not determine urban areas with high and medium
density (classes 31, 32, and 35, of Figure 2) due to the inhomogeneity of the characteristics
of these classes for Londrina. In contrast, that classification showed high performance on
the representation of classes 36, 37, and 39 (accuracy >80%). Both meteorological stations,
IAT and SIMEPAR, are located in compact midrise areas (class 32 in Figure 2).
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Figure 2. Local Climate Zone urban classification for MAL (d04), (a) WUDAPT level “0”, (b) GIs
(2—urban parks, and 17—lake) identification, and (c) zoom-in for the five locations of urban parks
and the lake.

Parks 1 and 3 are in a mixed area of urban and rural land use. The surroundings
have close low-rise buildings (class 33) in the northwest part and scattered buildings with
undergrowth and trees (class 39) in the southeast region, representing rural settlements.
Park 2 is in a transition area between the compact low-rise (33) and heavy industry (40) land
use classes. Parks 4 and 5 have the most diverse boundary areas, ranging between classes
with low numbers of dwellings (sparsely low-rise, 39) and compact high-rise (31), which are
characterized by the high density of tall buildings and low or no presence of vegetation.

To evaluate the influence of LCZ, Table 54 shows the index performance by supple-
mentary results in simulations (d03) using the default land use (DEFAULT simulation)
and implemented urban LCZ classes (SA simulation) for stations with data available. The
SA simulation showed significant improvement in the representation of meteorological
variables, especially in the reproduction of wind speed values for the IAT station over
the DEFAULT simulation. Despite the clearly large difference between the simulated and
observed data, this is due to the fact that wind is a difficult variable to capture in mesoscale
models as a function of its strong interactivity with the varied components that comprise
the urban system [78,79].

This better representation at this station is associated with the improvement in urban
morphology at this point by using LCZ (e.g., considering the height of the building) in the
SA simulation. Similar results were obtained by enhanced model representation for T2
and WS10, since LCZs lead to the representation of urban structures [80-82]. However, to
effectively improve Q2 values, it is recommended to include parameterizations to represent
the urban vegetation [83,84].

Figure 3 shows the comparison between observed and simulated values in SB (consid-
ered here as a reference to compare with the observations) for IAT and SIMEPAR stations
(T2, Q2, and WS10) from September 6 to 16, 2017. Table 4 shows the statistical performance
of the model.

The model presented adequate temporal representation of T2, r = 0.95 in both the IAT
and SIMEPAR stations, indicating a strong correlation between predicted and observed values.
For Q2, r = 0.49 in IAT and r = 0.43 in SIMEPAR (weak correlation) were obtained. MB values
indicated the most significant deviations in the SIMEPAR station for T2 (1.84 °C) and WS10
(—0.75 m.s~1). The Spielke provides an effective representation for T2 in both stations.
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Figure 3. Temporal evaluation of T2, Q2, and WS10 simulated (red) and observed (black) for IAT
and SIMEPAR.

Table 4. Statistical performance for meteorological variables estimated in SB (d04).

Variable Station Meany,g Meang;, Oobs Ogim r MB RMSE Spielke
2 (°C) IAT 26.99 27.15 4.75 3.66 0.95 0.16 1.69 1.00
SIMEPAR 25.19 27.04 5.30 3.86 0.95 1.84 2.75 1.02
Q2 IAT 6.49 6.93 0.70 1.31 0.49 0.44 1.22 3.19
(gkg™!)  SIMEPAR 6.94 6.93 0.65 1.30 043 —0.02 1.18 3.75
WS10 IAT 0.65 1.18 0.40 0.55 0.35 0.53 0.77 2.75
(m.s™1) SIMEPAR 2.15 1.41 1.01 0.75 0.42 —0.75 1.22 4.10

3.2. Urban Lake

The effects of the artificial Londrina urban lake were assessed by analyzing the T2
and Q2 simulated values around the lake (Figure 4), i.e., comparing simulations SA with
SB by the differential percentage (corresponding to ((SB-SA)/SB) x 100), where positive
values indicate that the simulated values in SB were higher in the presence of the lake, and
negative values indicate that the simulated values in SB were lower in the presence of the
lake. Weather contributions were evaluated for the highly impervious urban classes with
few or no trees (classes 31, 32, and 33).

Comparing the differences between SB and SA (without the lake), there was a minimal
contribution to the temporal percentage difference evolution of Q2 in the three points
analyzed around the lake, prevailing the reduction in specific humidity. However, nighttime
T2 at the three points indicates the effect of increasing temperatures by up to 5%, while a
slight decrease was observed during the day.
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Figure 4. Superficial area of the lake (class 17), urban areas (classes 31 to 39, Figure 2), and difference
in the percentage of T2 and Q2 between SB and SA at three points around the lake (graphics).

These results are corroborated by Jacobs et al. [85] and explained by the thermal inertia
and high heat capacity of water [86]. During the night, the cooling effect weakens and
becomes a warming effect due to the air temperature becoming lower than the water tem-
perature. At that point, the water body begins to warm the surrounding area [87]. Moreover,
the lake breeze frequency declines as the dimensions of water bodies decrease [88]. In
contrast, the circulation on a smaller scale (lake breeze) can be reduced by the surface [89].
These effects of urban lakes are pointed to be smaller in autumn and winter [90].

Overall, our results indicate a smooth effect of the urban lake on Q2 and T2 (with
opposite contributions during day and night). Therefore, this type of GI (small urban lake)
does not significantly influence the weather conditions around of lake and brings benefits
to mitigate the UHI, corroborated by measurements performed in loco in the same region
where no clear relationship was identified between the decrease in UHI intensity and the
fraction of water bodies [91].

Therefore, these findings suggest that the implementation of urban lakes for the exclusive
purpose of mitigating the effects of urbanization on air humidity and temperature is not
appropriate. However, it is important to note that the lake area and its surroundings benefit
the inhabitants, since they are the main outdoor activities, recreation, and leisure [92-96].

3.3. Urban Parks

To evaluate the effects of urban parks on the meteorological variables, we analyzed the
simulation results of SC to SA at and around urban parks and at the surface and vertical
levels. The results are presented for urban parks 1 (UP1) and 4 (UP4) in the main text,
and others are in the Supplementary Material. Figure 5 and Figure S2 show the simulated
values in the urban parks.
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Figure 5. Temporal evaluation of temperature and specific humidity simulated at UP1 and UP4. The
red line is the data by SA, while the blue line represents the data by SC.

In Figure 5, it was not possible to observe significant differences between the maximum
values of T2 and Q2, comparing SA and SB. However, the minimum values were lower
for T2 and higher for Q2. The average of T2 decreases by 0.14 °C in UP1 and 0.13 °C in
UP4, while the mean of Q2 increases by 1.24 % (UP1) and 1.04 % (UP4). The T2 daily
average minimum values were reduced by 3.00 % in UP1 and 1.74 % in UP4. However, the
same reduction in T2 did not occur in the daily average maximum values, as the entire
surface is heated homogeneously by solar radiation, corroborating the data obtained by
Papangelis et al. [97]. The cooling rates are due to the park characteristics, since they lead
to evapotranspiration and have small heat storage compared to urban structures, resulting
in lower air temperature [21,98].

Given the importance of urban canyon physical, thermal, and radiative properties
of the surfaces in the effect of UHI intensity [99,100], an analysis of the surface energy
budget must be carried out, particularly the sensible and latent heat fluxes. The increase
in water vapor through evapotranspiration directly influences the surface energy fluxes
(Figures 6 and S3). The latent heat flux increased by 370 % in UP1 due to the increased
(2, as most of the available energy on the surface dissipated to the water vapor phase
change. The change of urban classes by Gls lead to a 2.80 % reduction in the sensible heat
flux in UP4, since more green areas are available in this simulation [83]. However, the
same reduction did not occur in UP1, since the same area consists of underbrush in the SB
simulation, which can already be considered a green area. In this case, the increase observed
in the sensible heat flux with high vegetation can be associated with the stored ground heat
flux, which dissipates more heat to the air [101]. Situations like this can contribute to the
increase in UHI intensity even with the presence of green areas, mainly as a function of the
LCZ near the parks, which can retain most of the solar radiation in the canyon formed by
vegetation, and the intensity of UHI increases with other factors, such as season length for
tropical areas [6,102].
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Figure 6. Diurnal difference (SC-SA) of simulated surface energy fluxes (Wm2) at (a) UP1 and
(b) UP4.

A sudden drop in sensible heat fluxes and ground heat was recorded at the end of the
day on September 12, 2017, which can be explained by a change in the temperature profile
between 19:00 and 21:00, as shown in Figure S4. In the SA simulation, where the lake is
changed for the LCZ, the implementation of the urban area increases the energy storage
capacity due to the thermal properties of building materials [100]. Those materials re-emit that
energy by the longwave radiation during nighttime, which can enhance UHI intensity [97].

The temporal evolution of cooling/warming rates in UP1 and UP4 was similar to
heating rates after sunrise (6:30) and cooling rates in the nighttime, after sunset (18:15).
Greater intensities were found between 7:00 p.m. and 6:00 a.m. (Figures 7 and S5).

Urban parks play an important role in cooling the air, especially at nighttime. Although
the temporal evolution and the vegetation characteristics are similar in both parks, UP1 has
an area twice as large as UP4, 8.00 km? and 4.00 km?, respectively (Table S2). These aspects
are directly related to more intense cooling rates in UP1 than UP4, especially between
midnight and 7:00 a.m.
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Figure 7. Diurnal cooling/warming rates (°C.h~!) calculated from SA and SB simulations at UP1 and
UP4. Note: heating/cooling rate is the difference between SB and SA of the simulated T2 (SC-SA).

Figure 8 presents the spatialized 3 h average cooling/warming rates between 7:00 p.m.
and 6:00 a.m. Rated cooling along the grid was 0.5 °C.h~! inside the park upper to
5.0 °C.h~!, and the highest average contribution in the period was from 3:00 to 5:00 a.m.
The simulation results in Figure 8 show up to 2 km positive contribution in T2. The
vegetation increase is the most effective strategy in mitigating extreme urban temperatures
since it encompasses a more extensive area than other mitigation projects, such as the rise
of surface albedo or architectural shading [13].
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Figure 8. Mean spatial differences (SC-SA) of T2 temperatures (°C.h ') during nighttime (September
13th to 14th). A more detailed map is shown in Figure S6. Note: Urban delimitation of Londrina (red
outline) and parks (black outline).

It is essential to emphasize that, in addition to the visual benefit that these environ-
mental structures provide to the local community, they cause effects that mitigate UHI
and improve outdoor thermal comfort. Urban parks directly influence air temperature
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reduction, surface solar radiation, and increased humidity, developing a local microclimate
and improved thermal sensation [12,103-106].

Vegetation has a higher friction factor of the wind vector components than urban struc-
tures, hindering vertical and horizontal dispersion of air pollutants. This impact can be seen
in Figure 9, when comparing the vertical and zonal wind components and specific humidity
in the simulations without and with the park identification SA and SC, respectively.

’§3.0
i~
= 2.0
.0
T 1.0
0.5
=3.0 ©
g7 R
'ézof/// // e
- e ""-\x“"’z'%* =
&0
10 g‘: n b
e 0'5 o= N SRR n\\gj;
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Longitude (°) Longitude (°)

4.6 52 5.8 6.4 7.0
Specific humidity of the air (g.kg™)

Figure 9. Specific air humidity (g.kg™!), vertical and zonal component of the wind (m.s~!) for
UP 1 at 23.35° S. Note: (a,b) results without and with UP1 for 15:00 on 9 July 2017, respectively;
(c,d) results without and with UP1 for 12:00 on 9 August 2017, respectively. The red line represents
the longitudinal dimension of UP1.

The drag effect in wind speed results in a lower intensity of the convective processes
near the UP1 area, including a decrease in the vertical mixing process and lower boundary
layer depth. Reduced wind speed and decreased vertical mixing during the day can lead
to stagnation of air near the surface [107]. The higher friction factor of the wind by the
vegetation can lead to greater retention of pollutants in the air masses. Thus, the foliage
can assist in removing part of the pollutants [26,108,109].

To summarize, the comparison of the model results showed that the existing urban lake
in MAL has little impact on mesoscale meteorology (SA versus SB). In contrast, urban parks
(SA vs. SC) can be an effective natural solution for mitigating the effects of urbanization on
meteorological variables such as the UHI, even in a medium-sized city.

In this sense, cities must be prepared for such an expansion process, considering
GIs’ inclusion in the development of Master Plans to minimize the climate impacts of
urbanization [30,110,111], besides the other benefits recognized [31,112-114]. Furthermore,
it is worth noting that implementing these infrastructures in small- and medium-sized
urbanization affects a smaller number of people due to the relocation of the population and
demands less financial investment in execution as they are preventive actions [115,116].
Therefore, our results demonstrated the benefits of green parks even in the urban atmo-
sphere of a medium-sized city and the importance of studies to evaluate the use of GIs,
considering the local urban characteristics and climate.
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4. Conclusions and Remarks

Numerical simulations were performed using the WRF model for MAL, Brazil, con-
sidering the improvement in urban land representation, to study the effects on the urban
atmosphere due to added GIs on the urban landscape.

Using the urban LCZ classes has proven to be an effective way to represent the
urban impact on meteorological variables, particularly in the wind speed, even being a
complex variable to simulate. It is because the LCZ representation can accurately depict the
various urban structures and their impact on local weather patterns. As a result, adopting
LCZ classes has greatly improved the modeling of meteorological phenomena in urban
environments by the WRE.

Recognizing the limitations of analysis by using numerical simulations, the results
of SB indicate cooling effects and higher specific humidity along the d04 grid, showing
higher intensities (up to —5 °C.h~! for T2) within GI (park) during calm conditions in the
nighttime. Blue GI (lake) did not present relevant effects on the analyzed variables.

Our results demonstrate that the Gls (parks) play an essential role since, in addition to
causing soil shading, they absorb solar energy, preventing UHI The GI directly influences
heat flux in the soil, reducing the maximum intensity of sensitive heat (2.80%) and increas-
ing the maximum latent heat flux (368%). Urban parks were distributed homogeneously
throughout urban areas, favoring their benefits along the city, and allocated in areas with
less population density and with remaining vegetation. Furthermore, it is important to
emphasize that these results are for relatively small green parks placed outside downtown
(higher urbanization) and a medium-sized city, which tends to grow, like many others in
the world.

These results provide information on GIs” meteorological contributions, highlighting
the benefits of increasing urban vegetation to mitigate atmospheric urbanization effects
even in smaller urban areas. Thus, our findings are useful, supporting public decision-
makers in developing Master Plans in medium-sized cities. Finally, we believe that the
intelligent reconciliation of human beings with nature is the way to increase the resilience
of urban areas and mitigate the impacts of urbanization. Thus, the implementation of urban
vegetation, after previous studies, must be expanded in scope and intensity, particularly in
developing cities.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su15021429/s1, Figure S1: (a) SIMEPAR and (b) IAT monitoring
station; Figure 52: Temporal evaluation of temperature and specific humidity simulated at urban
parks 2, 3, and 5; Figure S3: Diurnal difference (SC-SA) of simulated surface energy fluxes (W.m~2) at
(a) UP 2, (b) UP3, and (c) UP5; Figure S4: Diurnal cooling/warming rates (°C.h™1) calculated from
the SA and SC simulations compared to rates calculated from hourly air temperature observations
at UP2, UP3, and UP5; Figure S5: Mean spatial differences (SC-SA) of T2 temperatures (°Cch™h
during nighttime (September 13th to 14th); Table S1: Characteristics of LCZ urban classes; Table S2:
Dimensions of urban GIs (lake and parks); Table S3: Accuracy Matrix for MAL WUDAPT Level “0”,
with known (vertical axis) vs. predicted (horizontal axis) test-class frequencies; Table S4: Statistical
performance of simulations for meteorological variables at domain d03.
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