Comparison of Short and Long-Term Energy Performance and Decarbonization Potentials between Cogeneration and GSHP Systems under MARKAL Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure of the Simulation Study
2.2. Building Description
2.2.1. Building Size Acquisition Method
2.2.2. Establishing the Physical Model
2.3. TRNSYS Simulation Tool
2.4. Usage and Assumptions
2.5. UK MARKAL Scenarios
3. Technical Systems (Energy Generation and Distribution Systems)
3.1. Space Heating Distribution System
3.2. GSHP System
3.3. CHP System
4. Results and Discussions
4.1. Simulation Results
4.2. Energy Performance
4.2.1. Compliance with Regulations
4.2.2. Model Validation
4.2.3. Energy Costs
4.3. Decarbonization Potentials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Energy Use (kWh) | Electricity Generation by CHP (kWh) | Carbon Intensity of Electricity (kgCO2/kWh) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CHP | GSHP | CHP (Gas) | GSHP (Electricity) | ||||||||||
70% Base | 70% RES | 80% Base | 80% High-Bio | 80% Resilience | 80% RES | 90% Base | 90% RES | No. Plan | |||||
2021 | 84,259 | 18,427 | 28,796 | 0.19 | 0.38 | 0.38 | 0.32 | 0.31 | 0.42 | 0.29 | 0.29 | 0.29 | 0.55 |
2022 | 84,259 | 18,427 | 28,796 | 0.19 | 0.35 | 0.30 | 0.29 | 0.29 | 0.40 | 0.27 | 0.25 | 0.25 | 0.55 |
2023 | 84,259 | 18,427 | 28,796 | 0.19 | 0.33 | 0.28 | 0.25 | 0.25 | 0.39 | 0.25 | 0.21 | 0.21 | 0.55 |
2024 | 84,259 | 18,427 | 28,796 | 0.19 | 0.30 | 0.27 | 0.22 | 0.24 | 0.38 | 0.22 | 0.17 | 0.17 | 0.55 |
2025 | 84,259 | 18,427 | 28,796 | 0.19 | 0.28 | 0.25 | 0.18 | 0.22 | 0.36 | 0.2 | 0.12 | 0.14 | 0.55 |
2026 | 84,259 | 18,427 | 28,796 | 0.19 | 0.25 | 0.23 | 0.16 | 0.20 | 0.32 | 0.18 | 0.11 | 0.12 | 0.55 |
2027 | 84,259 | 18,427 | 28,796 | 0.19 | 0.24 | 0.21 | 0.13 | 0.17 | 0.31 | 0.15 | 0.09 | 0.10 | 0.55 |
2028 | 84,259 | 18,427 | 28,796 | 0.19 | 0.22 | 0.20 | 0.12 | 0.15 | 0.28 | 0.14 | 0.08 | 0.08 | 0.55 |
2029 | 84,259 | 18,427 | 28,796 | 0.19 | 0.20 | 0.17 | 0.10 | 0.13 | 0.25 | 0.12 | 0.06 | 0.06 | 0.55 |
2030 | 84,259 | 18,427 | 28,796 | 0.19 | 0.17 | 0.15 | 0.07 | 0.10 | 0.24 | 0.09 | 0.04 | 0.04 | 0.55 |
2031 | 84,259 | 18,427 | 28,796 | 0.19 | 0.15 | 0.14 | 0.06 | 0.10 | 0.23 | 0.08 | 0.04 | 0.04 | 0.55 |
2032 | 84,259 | 18,427 | 28,796 | 0.19 | 0.14 | 0.14 | 0.06 | 0.10 | 0.22 | 0.08 | 0.04 | 0.04 | 0.55 |
2033 | 84,259 | 18,427 | 28,796 | 0.19 | 0.13 | 0.13 | 0.06 | 0.10 | 0.21 | 0.08 | 0.04 | 0.04 | 0.55 |
2034 | 84,259 | 18,427 | 28,796 | 0.19 | 0.11 | 0.12 | 0.06 | 0.10 | 0.20 | 0.08 | 0.04 | 0.04 | 0.55 |
2035 | 84,259 | 18,427 | 28,796 | 0.19 | 0.09 | 0.11 | 0.06 | 0.09 | 0.19 | 0.06 | 0.03 | 0.03 | 0.55 |
2036 | 84,259 | 18,427 | 28,796 | 0.19 | 0.09 | 0.10 | 0.05 | 0.09 | 0.17 | 0.06 | 0.03 | 0.03 | 0.55 |
2037 | 84,259 | 18,427 | 28,796 | 0.19 | 0.09 | 0.10 | 0.05 | 0.09 | 0.15 | 0.05 | 0.03 | 0.03 | 0.55 |
2038 | 84,259 | 18,427 | 28,796 | 0.19 | 0.09 | 0.09 | 0.05 | 0.09 | 0.14 | 0.05 | 0.03 | 0.03 | 0.55 |
2039 | 84,259 | 18,427 | 28,796 | 0.19 | 0.09 | 0.09 | 0.05 | 0.09 | 0.12 | 0.05 | 0.03 | 0.03 | 0.55 |
2040 | 84,259 | 18,427 | 28,796 | 0.19 | 0.08 | 0.09 | 0.05 | 0.08 | 0.10 | 0.04 | 0.03 | 0.03 | 0.55 |
2041 | 84,259 | 18,427 | 28,796 | 0.19 | 0.08 | 0.09 | 0.05 | 0.08 | 0.09 | 0.04 | 0.03 | 0.03 | 0.55 |
2042 | 84,259 | 18,427 | 28,796 | 0.19 | 0.08 | 0.08 | 0.05 | 0.08 | 0.07 | 0.03 | 0.03 | 0.03 | 0.55 |
2043 | 84,259 | 18,427 | 28,796 | 0.19 | 0.08 | 0.08 | 0.05 | 0.08 | 0.05 | 0.03 | 0.03 | 0.03 | 0.55 |
2044 | 84,259 | 18,427 | 28,796 | 0.19 | 0.07 | 0.08 | 0.05 | 0.07 | 0.04 | 0.03 | 0.02 | 0.02 | 0.55 |
2045 | 84,259 | 18,427 | 28,796 | 0.19 | 0.06 | 0.07 | 0.04 | 0.06 | 0.03 | 0.02 | 0.02 | 0.02 | 0.55 |
2046 | 84,259 | 18,427 | 28,796 | 0.19 | 0.06 | 0.07 | 0.04 | 0.06 | 0.03 | 0.02 | 0.02 | 0.02 | 0.55 |
2047 | 84,259 | 18,427 | 28,796 | 0.19 | 0.05 | 0.07 | 0.04 | 0.05 | 0.02 | 0.02 | 0.02 | 0.02 | 0.55 |
2048 | 84,259 | 18,427 | 28,796 | 0.19 | 0.05 | 0.06 | 0.04 | 0.05 | 0.02 | 0.02 | 0.02 | 0.02 | 0.55 |
2049 | 84,259 | 18,427 | 28,796 | 0.19 | 0.05 | 0.06 | 0.03 | 0.05 | 0.02 | 0.02 | 0.02 | 0.02 | 0.55 |
2050 | 84,259 | 18,427 | 28,796 | 0.19 | 0.05 | 0.06 | 0.03 | 0.05 | 0.02 | 0.02 | 0.02 | 0.02 | 0.55 |
Appendix B
Year | CO2 Emissions (kgCO2) | ||||||||
---|---|---|---|---|---|---|---|---|---|
GSHP (Electricity) | |||||||||
70% Base | 70% RES | 80% Base | 80% High-Bio | 80% Resilience | 80% RES | 90% Base | 90% RES | No. Plan | |
2021 | 7002 | 7002 | 5896 | 5712 | 7739 | 5344 | 5344 | 5344 | 10,134 |
2022 | 6449 | 5528 | 5344 | 5344 | 7370 | 4975 | 4607 | 4607 | 10,134 |
2023 | 6081 | 5159 | 4607 | 4607 | 7186 | 4607 | 3869 | 3869 | 10,134 |
2024 | 5528 | 4975 | 4054 | 4422 | 7002 | 4054 | 3132 | 3132 | 10,134 |
2025 | 5159 | 4607 | 3317 | 4054 | 6633 | 3685 | 2211 | 2580 | 10,134 |
2026 | 4607 | 4238 | 2948 | 3685 | 5896 | 3317 | 2027 | 2211 | 10,134 |
2027 | 4422 | 3869 | 2395 | 3132 | 5712 | 2764 | 1658 | 1843 | 10,134 |
2028 | 4054 | 3685 | 2211 | 2764 | 5159 | 2580 | 1474 | 1474 | 10,134 |
2029 | 3685 | 3132 | 1843 | 2395 | 4607 | 2211 | 1106 | 1106 | 10,134 |
2030 | 3132 | 2764 | 1290 | 1843 | 4422 | 1658 | 737 | 737 | 10,134 |
Short-term sum up | 50,119 | 44,959 | 33,905 | 37,958 | 61,726 | 35,195 | 26,165 | 26,903 | 101,340 |
2031 | 2764 | 2580 | 1106 | 1843 | 4238 | 1474 | 737 | 737 | 10,134 |
2032 | 2580 | 2580 | 1106 | 1843 | 4054 | 1474 | 737 | 737 | 10,134 |
2033 | 2395 | 2395 | 1106 | 1843 | 3869 | 1474 | 737 | 737 | 10,134 |
2034 | 2027 | 2211 | 1106 | 1843 | 3685 | 1474 | 737 | 737 | 10,134 |
2035 | 1658 | 2027 | 1106 | 1658 | 3501 | 1106 | 553 | 553 | 10,134 |
2036 | 1658 | 1843 | 921 | 1658 | 3132 | 1106 | 553 | 553 | 10,134 |
2037 | 1658 | 1843 | 921 | 1658 | 2764 | 921 | 553 | 553 | 10,134 |
2038 | 1658 | 1658 | 921 | 1658 | 2580 | 921 | 553 | 553 | 10,134 |
2039 | 1658 | 1658 | 921 | 1658 | 2211 | 921 | 553 | 553 | 10,134 |
2040 | 1474 | 1658 | 921 | 1474 | 1843 | 737 | 553 | 553 | 10,134 |
2041 | 1474 | 1658 | 921 | 1474 | 1658 | 737 | 553 | 553 | 10,134 |
2042 | 1474 | 1474 | 921 | 1474 | 1290 | 553 | 553 | 553 | 10,134 |
2043 | 1474 | 1474 | 921 | 1474 | 921 | 553 | 553 | 553 | 10,134 |
2044 | 1290 | 1474 | 921 | 1290 | 737 | 553 | 369 | 369 | 10,134 |
2045 | 1106 | 1290 | 737 | 1106 | 553 | 369 | 369 | 369 | 10,134 |
2046 | 1106 | 1290 | 737 | 1106 | 553 | 369 | 369 | 369 | 10,134 |
2047 | 921 | 1290 | 737 | 921 | 369 | 369 | 369 | 369 | 10,134 |
2048 | 921 | 1106 | 737 | 921 | 369 | 369 | 369 | 369 | 10,134 |
2049 | 921 | 1106 | 553 | 921 | 369 | 369 | 369 | 369 | 10,134 |
2050 | 921 | 1106 | 553 | 921 | 369 | 369 | 369 | 369 | 10,134 |
Long-term sum up | 31,138 | 33,721 | 17,873 | 28,744 | 39,065 | 16,218 | 10,508 | 10,508 | 202,680 |
Appendix C
Year | CO2 Emissions (kgCO2) | ||||||||
---|---|---|---|---|---|---|---|---|---|
CHP (Gas) | |||||||||
70% Base | 70% RES | 80% Base | 80% High-Bio | 80% Resilience | 80% RES | 90% Base | 90% RES | No. Plan | |
2021 | 10,538 | 10,538 | 12,266 | 12,554 | 9386 | 13,130 | 13,130 | 13,130 | 5643 |
2022 | 11,402 | 12,842 | 13,130 | 13,130 | 9962 | 13,706 | 14,281 | 14,281 | 5643 |
2023 | 11,978 | 13,418 | 14,281 | 14,281 | 10,250 | 14,281 | 15,433 | 15,433 | 5643 |
2024 | 12,842 | 13,706 | 15,145 | 14,569 | 10,538 | 15,145 | 16,585 | 16,585 | 5643 |
2025 | 13,418 | 14,281 | 16,297 | 15,145 | 11,114 | 15,721 | 18,025 | 17,449 | 5643 |
2026 | 14,281 | 14,857 | 16,873 | 15,721 | 12,266 | 16,297 | 18,313 | 18,025 | 5643 |
2027 | 14,569 | 15,433 | 17,737 | 16,585 | 12,554 | 17,161 | 18,889 | 18,601 | 5643 |
2028 | 15,145 | 15,721 | 18,025 | 17,161 | 13,418 | 17,449 | 19,177 | 19,177 | 5643 |
2029 | 15,721 | 16,585 | 18,601 | 17,737 | 14,281 | 18,025 | 19,753 | 19,753 | 5643 |
2030 | 16,585 | 17,161 | 19,465 | 18,601 | 14,569 | 18,889 | 20,329 | 20,329 | 5643 |
Sum up | 136,479 | 144,542 | 161,820 | 155,484 | 118,338 | 159,804 | 173,915 | 172,763 | 56,430 |
2031 | 17,161 | 17,449 | 19,753 | 18,601 | 14,857 | 19,177 | 20,329 | 20,329 | 5643 |
2032 | 17,449 | 17,449 | 19,753 | 18,601 | 15,145 | 19,177 | 20,329 | 20,329 | 5643 |
2033 | 17,737 | 17,737 | 19,753 | 18,601 | 15,433 | 19,177 | 20,329 | 20329 | 5643 |
2034 | 18,313 | 18,025 | 19,753 | 18,601 | 15,721 | 19,177 | 20,329 | 20329 | 5643 |
2035 | 18,889 | 18,313 | 19,753 | 18,889 | 16,009 | 19,753 | 20,617 | 20,617 | 5643 |
2036 | 18,889 | 18,601 | 20,041 | 18,889 | 16,585 | 19,753 | 20,617 | 20,617 | 5643 |
2037 | 18,889 | 18,601 | 20,041 | 18,889 | 17,161 | 20,041 | 20,617 | 20,617 | 5643 |
2038 | 18,889 | 18,889 | 20,041 | 18,889 | 17,449 | 20,041 | 20,617 | 20,617 | 5643 |
2039 | 18,889 | 18,889 | 20,041 | 18,889 | 18,025 | 20,041 | 20,617 | 20,617 | 5643 |
2040 | 19,177 | 18,889 | 20,041 | 19,177 | 18,601 | 20,329 | 20,617 | 20,617 | 5643 |
2041 | 19,177 | 18,889 | 20,041 | 19,177 | 18,889 | 20,329 | 20,617 | 20,617 | 5643 |
2042 | 19,177 | 19,177 | 20,041 | 19,177 | 19,465 | 20,617 | 20,617 | 20,617 | 5643 |
2043 | 19,177 | 19,177 | 20,041 | 19,177 | 20,041 | 20,617 | 20,617 | 20,617 | 5643 |
2044 | 19,465 | 19,177 | 20,041 | 19,465 | 20,329 | 20,617 | 20,905 | 20,905 | 5643 |
2045 | 19,753 | 19,465 | 20,329 | 19,753 | 20,617 | 20,905 | 20,905 | 20,905 | 5643 |
2046 | 19,753 | 19,465 | 20,329 | 19,753 | 20,617 | 20,905 | 20,905 | 20,905 | 5643 |
2047 | 20,041 | 19,465 | 20,329 | 20,041 | 20,905 | 20,905 | 20,905 | 20,905 | 5643 |
2048 | 20,041 | 19,753 | 20,329 | 20,041 | 20,905 | 20,905 | 20,905 | 20,905 | 5643 |
2049 | 20,041 | 19,753 | 20,617 | 20,041 | 20,905 | 20,905 | 20,905 | 20,905 | 5643 |
2050 | 20,041 | 19,753 | 20,617 | 20,041 | 20,905 | 20,905 | 20,905 | 20,905 | 5643 |
Sum up | 380,948 | 376,916 | 401,684 | 384,692 | 368,564 | 404,276 | 413,204 | 413,204 | 112,860 |
References
- Liu, C.; Zhang, S.; Chen, X.; Xu, W.; Wang, K. A comprehensive study of the potential and applicability of photovoltaic systems for zero carbon buildings in Hainan Province, China. Sol. Energy 2021, 238, 371–380. [Google Scholar] [CrossRef]
- Sen, G.; Chau, H.-W.; Tariq, M.A.U.R.; Muttil, N.; Ng, A.W.M. Achieving Sustainability and Carbon Neutrality in Higher Education Institutions: A Review. Sustainability 2022, 14, 222. [Google Scholar] [CrossRef]
- European Union Commission. The Commission Calls for a Climate Neutral Europe by 2050*. Brussels. 2018. Available online: http://europa.eu/rapid/press-release_IP-18-6543_en.html. (accessed on 28 November 2018).
- European Union Commission. 2030 Climate and Energy Framework. Brussels. 2014. Available online: https://www.consilium.europa.eu/en/policies/climate-change/2030-climate-and-energy-framework/ (accessed on 23 October 2014).
- Oreszczyn, T.; Lowe, R. Challenges for energy and buildings research: Objectives, methods and funding mechanisms. Build. Res. Inf. 2010, 38, 107–122. [Google Scholar] [CrossRef]
- Navia-Osorio, E.G.; Mazarrón, F.R.; Porras-Amores, C.; Cañas, I. Industrial Buildings with Zero Energy Consumption: Cathedral Warehouse for Sherry Wines. Sustainability 2022, 14, 563. [Google Scholar] [CrossRef]
- Jensen, S.; Marszal-Pomianowska, A.; Lollini, R.; Pasut, W.; Knotzer, A.; Engelmann, P.; Stafford, A.; Reynders, G. IEA EBC Annex 67 Energy Flexible Buildings. Energy Build. 2017, 155, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Heikari, L.; Hirvonen, J.; Liang, Y.; Virtanen, M.; Kosonen, R.; Pan, Y. System modelling and optimization of a low temperature local hybrid energy system based on solar energy for a residential district. Energy Convers. Manag. 2022, 267, 115918. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change [IPCC]. Climate Change 2014 Synthesis Report Summary for Policymakers. 2014. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf. (accessed on 1 November 2014).
- IEA (International Energy Agency). Transition to Sustainable Buildings: Strategies and Opportunities to 2050. 2013. Available online: https://www.oecd-ilibrary.org/deliver/9789264202955-en.pdf?itemId=/content/publication/9789264202955-en&mimeType=pdf (accessed on 27 July 2013).
- DOE (US Department of Energy). Building Energy Data Book. Available online: http://buildingsdatabook.eren.doe.gov/ (accessed on 11 June 2015).
- Yuan, X.; Liu, J.; Yang, Y.; Wang, Y.; Yuan, X. Investigation and improvement of air distribution system’s airflow performance in data centers. Procedia Eng. 2017, 205, 2895–2902. [Google Scholar] [CrossRef]
- Li, S.; Pan, Y.; Xu, P.; Zhang, N. A decentralized peer-to-peer control scheme for heating and cooling trading in distributed energy systems. J. Clean. Prod. 2021, 285, 124817. [Google Scholar] [CrossRef]
- Ma, J.; Ding, X.; Horton, W.; Ziviani, D. Development of an automated compressor performance mapping using artificial neural network and multiple compressor technologies. Int. J. Refrig. 2020, 120, 66–80. [Google Scholar] [CrossRef]
- Qiu, S.; Feng, F.; Zhang, W.; Li, Z.; Li, Z. Stochastic optimized chiller operation strategy based on multi-objective optimization considering measurement uncertainty. Energy Build. 2019, 195, 149–160. [Google Scholar] [CrossRef]
- Guo, X.; Goumba, A. Air source heat pump for domestic hot water supply: Performance comparison between individual and building scale installations. Energy 2018, 164, 794–802. [Google Scholar] [CrossRef]
- Zhang, Y.; Akkurt, N.; Yuan, J.; Xiao, Z.; Wang, Q.; Gang, W. Study on model uncertainty of water source heat pump and impact on decision making. Energy Build. 2020, 216, 109950. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Yuan, X.; Niu, X.; Liu, J. Investigation of the influence of groundwater seepage on the heat transfer characteristics of a ground source heat pump system with a 9-well group. Build. Simul. 2019, 12, 857–868. [Google Scholar] [CrossRef]
- Zhong, H.; Zeng, L.; Long, J.; Xia, K.; Lu, H.; Yongga, A. Anti-frosting operation and regulation technology of air-water dual-source heat pump evaporator. Energy 2022, 254, 124393. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Zhao, H. Thermodynamic performance analysis of a novel electricity-heating cogeneration system (EHCS) based on absorption heat pump applied in the coal-fired power plant. Energy Convers. Manag. 2015, 105, 1125–1137. [Google Scholar] [CrossRef]
- Gediz, I.; Demir, G.H.; Saha, B. Innovative approach in adsorption chiller: Combination of condenser-adsorber for improving performance. Appl. Therm. Eng. 2021, 192, 116958. [Google Scholar] [CrossRef]
- Guerrero Delgado, M.; Sánchez Ramos, J.; Castro Medina, D.; Palomo Amores, T.; Cerezo-Narváez, A.; Álvarez Domínguez, S. Fresnel solar cooling plant for buildings: Optimal operation of an absorption chiller through inverse modelling. Energy Rep. 2022, 8, 3189–3212. [Google Scholar] [CrossRef]
- Yang, B.; Wang, C.; Ji, X.; Zhang, R.; Yue, X.; Nie, J. Two-stage evaporative cooling system with composite activated carbon fiber dehumidification. Int. J. Therm. Sci. 2022, 179, 107725. [Google Scholar] [CrossRef]
- Wang, Y.; Quan, Z.; Zhao, Y.; . Wang, L.; Jing, H. Operation mode performance and optimization of a novel coupled air and ground source heat pump system with energy storage: Case study of a hotel building. Renew. Energy 2022, 201, 889–903. [Google Scholar] [CrossRef]
- Hosseinnia, S.; Sorin, M. Techno-economic approach for optimum solar assisted ground source heat pump integration in buildings. Energy Convers. Manag. 2022, 267, 115947. [Google Scholar] [CrossRef]
- Skordoulias, N.; Koytsoumpa, E.; Karellas, S. Techno-economic evaluation of medium scale power to hydrogen to combined heat and power generation systems. Int. J. Hydrogen Energy 2022, 47, 26871–26890. [Google Scholar] [CrossRef]
- Wang, H.; Hua, P.; Wu, X.; Zhang, R.; Granlund, K.; Zhu, Y.; Lahdelma, R.; Teppo, E.; Yu, L. Heat-power decoupling and energy saving of the CHP unit with heat pump based waste heat recovery system. Energy 2022, 250, 123846. [Google Scholar] [CrossRef]
- Subramanyam, V.; Ahiduzzaman, M.; Kumar, A. Greenhouse gas emissions mitigation potential in the commercial and institutional sector. Energy Build. 2017, 140, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Kurtuluş, A.; Uygan, C. The effects of Google SketchUp based geometry activities and projects on spatial visualization ability of student mathematics teachers. Procedia-Soc. Behav. Sci. 2010, 9, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Liveri, A.; Xanthacou, Y.; Kaila, M. The Google Sketch Up Software as a Tool to Promote Creativity in Education in Greece. Procedia-Soc. Behav. Sci. 2012, 69, 1110–1117. [Google Scholar] [CrossRef] [Green Version]
- Sperber, E.; Frey, U.; Bertsch, V. Reduced-order models for assessing demand response with heat pumps—Insights from the German energy system. Energy Build. 2020, 223, 110144. [Google Scholar] [CrossRef]
- Christantoni, D.; Oxizidis, S.; Flynn, D.; Finn, D. Implementation of demand response strategies in a multi-purpose commercial building using a whole-building simulation model approach. Energy Build. 2016, 131, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Abu Qadourah, J. Energy and economic potential for photovoltaic systems installed on the rooftop of apartment buildings in Jordan. Results Eng. 2022, 16, 100642. [Google Scholar] [CrossRef]
- Rashad, M.; Żabnieńska-Góra, A.; Norman, L.; Jouhara, H. Analysis of energy demand in a residential building using TRNSYS. Energy 2022, 254, 123457. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Zhang, H.; Ma, Y.; Zhao, S. Optimization of solar-assisted GWHP system based on the Trnsys model in cold regions. Renew. Energy 2022, 196, 1406–1417. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, W.; Qian, C.; Chen, X.; Jin, G. Investigation on the feasibility and performance of ground source heat pump (GSHP) in three cities in cold climate zone, China. Renew. Energy 2015, 84, 89–96. [Google Scholar] [CrossRef]
- Zhou, S.; Cui, W.; Zhao, S.; Zhu, S. Operation analysis and performance prediction for a GSHP system compounded with domestic hot water (DHW) system. Energy Build. 2016, 119, 153–163. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, J.; Lee, H. Multi-criteria evaluation of medium-sized residential building with micro-CHP system in South Korea. Energy Build. 2019, 193, 201–215. [Google Scholar] [CrossRef]
- Martinez, S.; Michaux, G.; Bouvier, J.; Salagnac, P. Numerical investigation of the energy performance of a solar micro-CHP unit. Energy Convers. Manag. 2021, 243, 114425. [Google Scholar] [CrossRef]
- Vera-García, F.; Rubio-Rubio, J.; López-Belchí, A.; Hontoria, E. Modelling and real-data validation of a logistic centre using TRNSYS®: Influences of the envelope, infiltrations and stored goods. Energy Build. 2022, 275, 112474. [Google Scholar] [CrossRef]
- Campos Celador, A.; Odriozola, M.; Sala, J. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants. Energy Convers. Manag. 2011, 52, 3018–3026. [Google Scholar] [CrossRef]
- Calise, F.; D’Accadia, M.; Vicidomini, M.; Scarpellino, M. Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle. Energy Convers. Manag. 2015, 90, 347–363. [Google Scholar] [CrossRef]
- TRNSYS. TESS Libraries. 2019. Available online: https://www.trnsys.com/tess-libraries/. (accessed on 8 March 2019).
- Safa, A.; Fung, A.; Kumar, R. Heating and cooling performance characterisation of ground source heat pump system by testing and TRNSYS simulation. Renew. Energy 2015, 83, 565–575. [Google Scholar] [CrossRef]
- CIBSE. TM46 Energy Benchmarks. 2008. Available online: https://www.cibse.org/knowledge-research/knowledge-portal/tm46-energy-benchmarks (accessed on 10 October 2008).
- CIBSE. Environment Design-CIBSE Guide A, Chartered Institution of Building Services Engineer; CIBSE: London, UK, 2006. [Google Scholar]
- HM Government. Building Regulations-Ventilation: Part F, Her Majesty’s Stationery Office; HM Government: London, UK, 2010.
- CISBE. AM11 Building Performance Modelling. 2015. Available online: https://www.cibse.org/knowledge-research/knowledge-portal/applications-manual-11-building-performance-modelling-2015 (accessed on 20 April 2016).
- UK Statutory Instruments. Building and Buildings England and Wales, the Building Regulations 2000. 2000. Available online: https://www.legislation.gov.uk/uksi/2000/2531/introduction/made (accessed on 13 September 2000).
- HM Government. Analytical Annex: The UK Low Carbon Transition Plan; HM Gov.: London, UK, 2009.
- DECC. Climate Change Act 2008: Impact Assessment, Department of Energy and Climate Change; DECC: London, UK, 2009. [Google Scholar]
- Shahrestani, M.; Yao, R.; Cook, G. A fuzzy multiple attribute decision making tool for HVAC&R systems selection with considering the future probabilistic climate changes and electricity decarbonisation plans in the UK. Energy Build. 2018, 159, 398–418. [Google Scholar] [CrossRef]
- Energy Consumption Guide 19: Energy Use in Offices. United Kingdom. 2003. Available online: http://www.carbontrust.co.uk/publications/publicationdetail?productid=ECG019 (accessed on 8 April 2003).
Part | Height (m) | Description |
---|---|---|
Floor-to-floor | 4.0 (Above floor) | Floor height |
2.5 (Basement) | ||
Floor-to-ceiling | 3.0 | Room height |
Doors | 2.0 | |
Windows | 3.8 | Ultra |
1.0 | Big | |
0.25 | Small |
Floor (m2) | Floor | Ceiling | Exterior Wall | External Roof | Windows |
---|---|---|---|---|---|
Basement | 15.6 | 15.6 | 29.4 | 0 | 0 |
Ground | 633.0 | 633.0 | 456.2 | 0 | 187 |
First | 723.5 | 714.2 | 509.6 | 9.3 | 160 |
Second | 714.2 | 10.8 | 503.2 | 703.4 | 126 |
Third (Roughly) | 4.0 | 4.0 | 15.0 | 20.0 | 0 |
Floor | Persons (P) | Human Body Heat Rejection (W/Person) | Computers (W) | Artificial Lighting (w/m2) | |
---|---|---|---|---|---|
Sensible | Latent | ||||
Ground | 32 | 75 | 55 | 1680 | 10.0 |
First | 30 | 1680 | 10.0 | ||
Second | 24 | 1680 | 10.0 |
Type | Parameter | Values | Notes |
---|---|---|---|
Infiltration | Air change of Infiltration | 0.3 air change per hour | |
Ventilation | Air change rate | 10 (L/s person) | |
Room temperature control | Set temperature for heating | 22 °C | |
Comfort | Clothing factor | 1 clothes | Air velocity < 0.15 m/s |
Metabolic rate | 1.2 met | ||
External work | 0 met | ||
Relative air velocity | 0.1 m/s |
Layer/Units | λ | c | Ρ | Exterior Wall | Ceiling | Exterior Floor | Internal Floor | Roof | |
---|---|---|---|---|---|---|---|---|---|
(W/m K) | (kJ/kg K) | (kg/m3) | (m) | (m) | (m) | (m) | (m) | ||
PB | 0.11 | 0.84 | 95250 | 0.013 | 0.013 | -- | -- | 0.02 | |
Insulation materials | PS | 0.13 | 1.25 | 40 | -- | 0.1 | -- | -- | 0.03 |
PU20 | 0.07 | 2.09 | 600 | 0.05 | -- | 0.12 | 0.04 | -- | |
LC | 0.34 | 1.1 | 2400 | -- | -- | -- | 0.06 | -- | |
Concrete | RC | 2.3 | 1.0 | 1400 | -- | -- | -- | -- | 0.36 |
CB | 1.32 | 1.0 | 1400 | 0.12 | -- | 0.05 | 0.15 | 0.1 | |
CS | 1.32 | 1.0 | 1400 | -- | 0.15 | 0.15 | 0.15 | -- | |
Screed | 3.13 | 1.0 | 1800 | -- | 0.05 | -- | -- | -- | |
WB | 0.79 | 1.0 | 500 | 0.105 | -- | -- | -- | -- | |
Total thickness | -- | -- | -- | 0.288 | 0.313 | 0.32 | 0.4 | 0.51 | |
U-value (W/m2 K) | -- | -- | -- | 0.35 | 0.226 | 0.231 | 0.237 | 0.181 |
Element | Area-Weighted Average U-Value (W/m2·K) | Limiting U-Values (W/m2·K) |
---|---|---|
Roof | 0.25 | 0.35 |
Floor | 0.25 | 0.7 |
Wall | 0.35 | 0.7 |
Windows | 2.2 | 3.3 |
Scenario Name | Compared to Levels in 1990, Carbon Emission Decline (%) | Assumptions | Commission | |
---|---|---|---|---|
In 2020 | In 2050 | |||
70% base | 28 | 70 | Max nuclear and Carbon Capture and Storage (CCS) build rate | CCC |
–3 GW p.a. in the 2020s –5 GW p.a. thereafter | ||||
70% RES | 29 | 70 | –Models are constrained to provide enough renewable energy generation in 2020 to meet renewable energy targets | DECC |
80% ‘resilience’ (Low electricity) | 26 | 80 | –Decrease the energy demand by minimum 1.2% per year –Limit the proportion of single energy below 40% in primary energy mix –Constrain the expected unserved energy level –Supplement power sector models to better explain intermittency | UKERC |
80% RES | 29 | 80 | –Models are constrained to provide enough renewable energy generation in 2020 to meet renewable energy targets | DECC |
80% high bioenergy | 31 | 80 | To fulfill the renewable energy target: | Defra |
–Domestic and imported biomass high availability –High biomass liquids capacity | ||||
80% base | 33 | 80 | Max nuclear and Carbon Capture and Storage (CCS) build rate | CCC |
–3 GW p.a. in the 2020s –5 GW p.a. thereafter | ||||
90% RES | 29 | 90 | –Models are constrained to provide enough renewable energy generation in 2020 to meet renewable energy targets | DECC |
90% base | 38 | 90 | Max nuclear and Carbon Capture and Storage (CCS) build rate | CCC |
–3 GW p.a. in the 2020s –5 GW p.a. thereafter |
Component | Type | Component | Type |
---|---|---|---|
Heating coil | Type 753e | Tank | Type 531- No Plug in |
Fan coil | Type 600 | Heat pump | Type 927 |
AD valve | Type 646 | Pump | Type 114 |
FD valve | Type 647 | CHP system | Type 907 |
FM valve | Type 649 | Weekly profile | Type 516 |
Controller | Type 1502 | Weather data | Type 15-6 |
Heat exchanger/source | Type 557a | Displayer | Type 65c-7 |
Parameters | Liquid Specific Heat (kJ/(kg·K) | Humidity Mode | Rated Air Flow Rate (kJ/) | Rated Power (kJ/h) |
---|---|---|---|---|
Pump | 4.19 | -- | 15,428 | 2648 |
Heating coil | 2 | -- | -- | |
Fan coil | 2 | 21,600 | 617 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Storage volume (m3) | 13,000 | U-tube pipe outer radius (m) | 0.01664 |
Depth of boreholes (m) | 100 | U-tube pipe inner radius (m) | 0.01372 |
Number of boreholes | 6 | Center-to-center half distance (m) | 0.0254 |
Radius of boreholes (m) | 0.102 | Fill thermal conductivity (kJ/(h·m·K)) | 4.68 |
Number of boreholes in series | 3 | Pipe thermal conductivity (kJ/(h·m·K)) | 1.5122 |
Storage thermal conductivity (kJ/(h·m·K)) | 4.68 | Gap thermal conductivity (kJ/(h·m·K)) | 5.04 |
Storage heat capacity (kJ/(m3·K)) | 2016 | Fluid specific heat (kJ/(kg·K)) | 4.19 |
Parameter | Value |
---|---|
CHP capacity (kW) | 111.11 |
Maximum power output (kJ/h) | 400,000 |
Jacket water fluid specific heat (kJ/(kg·K)) | 4.19 |
Oil cooler fluid specific heat (kJ/(kg·K)) | 4.19 |
Exhaust air specific heat (kJ/(kg·K)) | 1.007 |
After-cooler fluid specific heat (kJ/(kg·K)) | 1.007 |
Rated exhaust air flow rate (kg/h) | 700 |
Items | Heating Demand (kWh/m2) | |
---|---|---|
Building (ideal heating demand) | 110 | |
ECG 19 | Typical (with hot water) | 178 |
Typical (without hot water) | 158 | |
Good practice (with hot water) | 97 | |
Good practice (without hot water) | 85 | |
CIBSE TM46 | 120 |
Month | Simulation Results (kWh) | Data in 2020 from FM Department (kWh) | Data in 2021 from FM Department (kWh) | Deviation (2020) | Deviation (2021) |
---|---|---|---|---|---|
Jan. | 2806 | 3112 | 3117 | 10.9% | 11.1% |
Feb. | 2463 | 2653 | 2878 | 7.7% | 16.8% |
Mar. | 2657 | 2559 | 2479 | −3.7% | −6.7% |
Apr. | 2630 | 2610 | 2451 | −0.8% | −6.8% |
Oct. | 2685 | 2394 | 2333 | −10.8% | −13.1% |
Nov. | 2593 | 2588 | 2461 | −0.2% | −5.1% |
Dec. | 2593 | 2444 | 2608 | −5.7% | −0.6% |
Total | 18,427 | 18,360 | 18,327 | −0.4% | −0.5% |
Scenario | Scenario Description | Short-Term (2021–2030) | CO2 Emissions Reduction of GSHP System Compared to CHP System (%) | Long-Term (2031–2050) | CO2 Emissions Reduction of GSHP System Compared to CHP System (%) | ||
---|---|---|---|---|---|---|---|
GSHP | CHP | GSHP | CHP | ||||
S1 | 70% base | ☆ | −63.3% | ☆ | −91.8% | ||
S2 | 70% RES | ☆ | −68.9% | ☆ | −91.1% | ||
S3 | 80% base | ☆ | −79.0% | ☆ | −95.6% | ||
S4 | 80% high bio | ☆ | −75.6% | ☆ | −92.5% | ||
S5 | 80% resilience | ☆ | −47.8% | ☆ | −89.4% | ||
S6 | 80% RES | ☆ | −78.0% | ☆ | −96.0% | ||
S7 | 90% base | ☆ | −85.0% | ☆ | −97.5% | ||
S8 | 90% RES | ☆ | −84.4% | ☆ | −97.5% | ||
S9 | No electricity decarbonization plan | ☆ | 79.6% | ☆ | 79.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Zhu, M.; Liang, Y.; Shahrestani, M.; Kosonen, R. Comparison of Short and Long-Term Energy Performance and Decarbonization Potentials between Cogeneration and GSHP Systems under MARKAL Scenarios. Sustainability 2023, 15, 1604. https://doi.org/10.3390/su15021604
Yuan X, Zhu M, Liang Y, Shahrestani M, Kosonen R. Comparison of Short and Long-Term Energy Performance and Decarbonization Potentials between Cogeneration and GSHP Systems under MARKAL Scenarios. Sustainability. 2023; 15(2):1604. https://doi.org/10.3390/su15021604
Chicago/Turabian StyleYuan, Xiaolei, Mingya Zhu, Yumin Liang, Mehdi Shahrestani, and Risto Kosonen. 2023. "Comparison of Short and Long-Term Energy Performance and Decarbonization Potentials between Cogeneration and GSHP Systems under MARKAL Scenarios" Sustainability 15, no. 2: 1604. https://doi.org/10.3390/su15021604
APA StyleYuan, X., Zhu, M., Liang, Y., Shahrestani, M., & Kosonen, R. (2023). Comparison of Short and Long-Term Energy Performance and Decarbonization Potentials between Cogeneration and GSHP Systems under MARKAL Scenarios. Sustainability, 15(2), 1604. https://doi.org/10.3390/su15021604