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Abstract: Liveability is an abstract concept with multiple definitions and interpretations. This
study builds a tangible metric for liveability using responses from a user survey and uses Machine
Learning (ML) to understand the importance of different factors of the metric. The study defines the
liveability metric as an individual’s willingness to live in their current location for the foreseeable
future. Stratified random samples of the results from an online survey conducted were used for the
analysis. The different factors that the residents identified as impacting their willingness to continue
living in their neighborhood were defined as the “perception features” and their decision itself was
defined as the “liveability feature”. The survey data were then used in an ML classification model,
which predicted any user’s liveability feature, given their perception features. ‘Shapley Scores’ were
then used to quantify the marginal contribution of the perception features on the liveability metric.
From this study, the most important actionable features impacting the liveability of a neighborhood
were identified as Safety and Access to the Internet/Organic farm products/healthcare/Public
transportation. The main motivation of the study is to offer useful insights and a data-driven
framework to the local administration and non-governmental organizations for building more
liveable communities.

Keywords: urban planning; liveability; supervised machine learning; online user survey

1. Introduction

Liveability is an abstract concept with multiple definitions and interpretations. Live-
ability is the degree to which a place fulfills the expectations of its residents for their
well-being and quality of life. Myers [1] mentioned that liveability could be expressed as
sustainability, quality of life, the “character” of place, the health of communities, etc. Live-
ability is an “ensemble concept”. Balsas [2] measured the ‘city-center liveability’ through a
set of Key Performance Indicators (KPIs). The online survey for this study was designed
on the perception of liveability factors, such as preserving green spaces, reduction of traffic
congestion, restoring community, promoting neighboring community’s collaboration, and
enhancing competitiveness at an economic level. Emphasis is given to safety, affordability
of housing, and transportation options as important aspects of liveability. Tyce and Re-
becca [3], in their research initiative, reviewed 237 sources related to liveability and found
that the three most common categories used to define liveability were Transportation,
Development, and Community features.

Philips, a global leader in energy technology and electronics, analyses regional trends
in liveability, health, and well-being based on five factors: employment, community, physi-
cal health, emotional health, and family/friends [4]. This survey reveals regional liveability
patterns. This survey’s flaw is that it cannot rank cities. In 2008, Organization for Economic
Cooperation and Development (OECD) developed a worldwide project for measuring

Sustainability 2023, 15, 1633. https://doi.org/10.3390/su15021633 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15021633
https://doi.org/10.3390/su15021633
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-2978-1600
https://orcid.org/0000-0002-4695-0234
https://doi.org/10.3390/su15021633
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15021633?type=check_update&version=3


Sustainability 2023, 15, 1633 2 of 15

society’s progress [5]. It proposed rethinking measuring methods and initiated an interna-
tional conversation on economic, environmental, and social objectives and whether they are
represented in national and international metrics. This led to a better life index and United
Nations (UN) commissioned happiness studies. The OECD has identified 11 themes vital
to material welfare (housing, money, employment) and human welfare (life satisfaction,
safety, community, education, governance, health, environment, and work-life balance).
This is a major worldwide index used to assess nations’ welfare and quality of life, although
the metrics utilized are not disaggregated. The UN-Habitat city prosperity index measures
how well cities support their populations’ well-being [6]. It expands economic prosperity to
include infrastructure, quality of life, equity, and environmental sustainability. The Index’s
data provides useful information about population status (health, education, income, etc.)
and resource provision, which are important indicators of well-being and liveability. Nestor
et al. [7] have explained the impact of amenities and public goods in the neighborhood on
happiness and satisfaction with several life domains like health, family, social life, work,
and economic situation. The first step of the life satisfaction methodology is to ask the
residents how satisfied their lives are. The place diagram developed by the Project for Pub-
lic Spaces (PPS) [8] provides a measurement framework for the residents to evaluate any
place through refined questionnaires. Different authors use specific indicators to evaluate
well-being [9,10] which is more inclined to their studies. Kim et al. [11] aimed to contribute
to sustainable development in Seoul for urban planning by analyzing a questionnaire
collected from an electronic platform in which citizens in the city participated.

Most of the literature reviewed defined factors of liveability and weighed them based
on their subject matter expertise or provided equal weight to derive liveability. However,
these methods are neither easily transferable nor replicable due to the varying relative
importance of factors with different geo-cultural contexts. Hence this study provides
a framework to recalibrate the weights of the factors using the wisdom of the crowd
(responses of the residents collected from a survey) through an ML prediction model. The
prediction model was then transformed into an explainable model using Shapley Additive
exPlanations (SHAP) Values [12]. Random Forest (RF) method is used in this study which
reduces the generalization error of a forest of tree classifiers [13]. According to Lundberg
and Lee [14], the SHAP values help us to get clear insights into the model by understanding
the reasons behind predictions. The factors associated with liveability are then used only
as falsifiable and testable hypotheses.

1.1. Purpose Statement

The intent of the study is:

• To design a tangible metric (the individual’s preference to live in any place is defined
as a tangible metric in this study) for liveability at an individual level and make it
scalable across any administrative unit (the administrative unit here defines a postal
code, a village, a city, or a state);

• To understand and quantify the marginal contribution of the different factors of
liveability towards the designed metric.

1.2. Research Design

This study proposes the use of a survey design with close-ended questions randomly
distributed to residents of different neighborhoods in the study area. The results of the
survey were used to build Machine Learning (ML) and explainable models. The process
explained in Figure 1 can be broken down into the following steps:

• Hypotheses generation;
• Design & distribution of the questionnaire;
• Collection & analysis of survey data (Feature Engineering & data munging);
• Fitting ML Classification model to predict liveability;
• Using the SHAP model to quantify the marginal contribution of the different factors.
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Figure 1. Research design flowchart.

2. Methodology
2.1. Hypotheses Generation

Demographics, access to transportation facilities and amenities, neighborhood charac-
teristics, civic and social engagement, employment, and educational opportunities were
hypothesized as the factors of liveability based on the literature review conducted [15],
as shown in Table 1. Liveability feature was defined as the respondent’s willingness to
continue living in their location in the foreseeable future, to validate these hypotheses. Since
the liveability feature was a binary response (yes/no), we were able to define liveability as
a simple, measurable, and scalable signal, attributable to the factors of liveability.
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Table 1. Liveability features derived from the responses to the questionnaire (Questionnaire Survey
Link: https://forms.gle/etEuXGKQ97Ei69Re8).

Assumed Factors from Literature
Reviews Questionnaire Framework Derived Features

Demographic identifier • Pincode Spatial Feature

Transportation Facilities
• Use of Public Transportation
• Waiting time in Traffic Perception Feature

Accessibility

• To Health care
• To Market/grocery store
• To Organic farm products

Perception Feature

Neighborhood

• No. of parks
• No. of Libraries
• Safety
• Neighbors’ dependability

Perception Feature

Ecology and Environment

• Water Quality
• Air Quality
• Open space/Green space

Perception Feature

Civic and Social Engagement

• Socio-economic Equality
• Access to Internet
• Cultural/sports/entertainment institutions
• Tourist Attractions
• Member of a Social Organization
• Small-Scale household farming

Perception Feature

Opportunity
• Educational Opportunity
• Employment Opportunity Perception Feature

Likelihood to stay in their neighborhood
• Happy with the Neighborhood
• Given an opportunity, “Will you shift?” Liveability Metric

2.2. Design and Exploratory Analysis of the Questionnaire

The Indian state of Kerala was chosen as the site for the case study. In this study,
to measure the perceptions of the residents regarding the quality of life in their city, an
online survey was conducted. People who reside in the 14 districts of Kerala and were
aged above 18 were randomly selected and invited to participate. A total of 3280 responses
were received. Some of the residents took the survey through an online link sent to them.
The rest of the respondents (about 2800 people) took the survey when they had visited
the e-service centers called Akshaya centers in Kerala. These centers provide a range of
government services, such as applying for a passport or paying utility bills. The survey was
given to a diverse group of people, including those from different income levels and with
varying levels of internet access. However, there may be biases in the survey results due to
self-selection (only certain types of people may have voluntarily chosen to take the survey)
and the fact that some people who may have needed to use the government services offered
at Akshaya centers were not able to do so in person (for example, due to disability).

https://forms.gle/etEuXGKQ97Ei69Re8
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The residents were briefed the purpose of the survey and were required to provide the
Pin code of their residence along with other questions which were of 2 formats. One was a
Likert Scale question, on a scale of 0–5 (0 is the least likely and 5 is the most likely). The
other format was a Yes or No type. A total of 3280 responses were received on which the
preliminary Exploratory Data Analysis (EDA) was performed, to understand the nuances
of the data better [16].

2.3. Building an ML Model

A supervised machine learning classification model uses sample data generated by a
process and its known outcomes (labels) to create a model, which can predict the outcome
for a future/unseen set of data [17]. Among many ML models that were used, Random
Forest (RF) model was selected because most of the perception features were categorical
Likert scale values, and they did not have a simple linear relationship with the target metric.
Additionally, the performance values were high for this model from Table 2.

Table 2. Comparison of different ML model’s Performance values.

Machine Learning Model AUC ACCURACY SENSITIVITY SPECIFICITY F1-Measure

Random Forest 70 80.5 92.6 71.4 89.41

SVM 68.5 78.6 80 65 80.52

Decision Tree 65.6 77.6 88.3 70.5 84.7

Naïve Bayesian 69.5 70.52 77.84 75 79.5

An RF is nothing but an “ensemble” of Decision Trees [18]. With the aggregation
of the results (via. majority voting of the classes) of all the unique decision tree models,
the problem of overfitting the training data is overcome. In this study, the entire model
was built using Python programming. There are a total of 20 features (including the
target variable). Before applying the supervised learning algorithm, the following feature
engineering techniques were applied to the raw data.

2.3.1. Feature Engineering & Data Munging for ML Training

The Categorical (non-numerical) values must be converted to numerical values for a
machine-learning model to work. ‘Yes’ or ‘No’ type of responses for questions such as, “Are
you a member of any social organization?” were coded as 1/0, respectively. The missing
values (NaN) were imputed with the median of the feature column. One of the final survey
questions asks the residents whether they would be ready to move to a different place
(supposedly with a better liveability) if given the opportunity. The response to this question
enables the inference of their willingness to stay (rephrased as “Will u Stay?”) by swapping
the 0s and 1s (0 = No, 1 = Yes). This was chosen as the target metric (“liveability metric”) of
this study.

2.3.2. Fitting ML Classification Model to predict Liveability
Splitting the Train-Test Data

Initially, the dataset used for analysis was split into two subsets:

1. Training set: a subset from the dataset to train the model;
2. Test set: a holdout subset from the dataset to evaluate the model.

Hyperparameter Tuning

Hyperparameter tuning is the process of finding the ideal set of parameters for the
model by evaluating it against a fixed criterion (such as F1 score or ROC_AUC) over a large
set of parameter combinations. During the Hyperparameter tuning, the training data was
equally split into k subsets [19]. The model was trained k times on k-1 unique subsets and
cross-validated on the left-out subset each time. Each cross-validated model was trained on
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a specific set of parameters chosen from all possible combinations of parameters as shown
in Figure 2. Each hyperparameter combination yielded a model which was evaluated k
times on the holdout dataset and the average of the evaluation metric (F1 & ROC-AUC)
was used to choose the best parameters.
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2.3.3. Predicting the Test Data

The trained model was used to predict the liveability metric (target metric) based on
the test data perception features. The predicted class and the actual class were compared to
find the efficiency of the model. The interpretation of the model errors is as follows:

• False Positive (FP): (Type 1 Error) The model wrongly classified that the residents
would stay when the resident indicated that they would not;

• False Negative (FN): (Type 2 Error) The model wrongly classified that the residents
would not stay when the resident indicated that they would;

• The True Positives and True Negatives for the model should be inferred as follows:
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• True Positive (TP): The model correctly classified that the residents would stay when
the resident indicated that they would;

• True Negative (TN): The model correctly classified that the residents would not stay
when the resident indicated that they would not.

There is a tradeoff between these errors. Multiple useful metrics like Precision, Recall,
F1 Score, etc., can be calculated based on this tradeoff. In this model, Precision is the
proportion of people who were correctly classified as they will be staying, to those that the
model predicted to stay. Recall or True Positive Rate (TPR) is the proportion of people who
were correctly classified as will be staying, to those that indicated to stay. To accommodate
the tradeoff between Precision and Recall, a comprehensive metric such the F1 Score can be
used, which is nothing but the harmonic mean of the model’s Precision and Recall.

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(1)

False Positive Rate (FPR) is the proportion of people who were wrongly classified as
saying they would stay to those that indicated they would not. Yet another comprehensive
metric to evaluate the performance of the model is the Receiver Operating Characteristics—
Area Under the Curve (ROC-AUC). ROC handles the tradeoff between FPR and TPR [20].
The higher the AUC, the better the model is at predicting ‘Will stay’ classes as ‘Will stay’
and ‘Will not stay’ classes as ‘Will not stay’. For this study F1 score and ROC Curve (AUC)
were used as evaluation measures.

2.4. SHAP Model

While the ML Classification model is good at predicting the target metric for a given
set of perception features, the model does not have a good way of explaining the impact
and directionality of perception features on the liveability metric at an individual level [20].
Shapely (SHAP) values, a game-theoretical approach towards the ML model’s explainability,
solve this problem [21,22]. SHAP helps us to understand what decisions the model is
making. SHAP trains 2ˆFeatures models and finds out the marginal contribution of each
feature toward that observation’s prediction. In this study, SHAP represents the marginal
contribution of each perception feature to the liveability metric (target variable).

3. Results and Discussions
3.1. Descriptive Statistics

From the summary of responses of the residents, the following observations have been
tabulated in Table 3.

A high correlation was found between accessibility features, which was evident from
the fact that accessibility connected to the transportation network of a place.

3.2. Random Forest Classifier Model Predictions

After the feature engineering steps, the dataset was split into Train and Test datasets.
Hypertuning of parameters was performed to get the optimal model.

3.2.1. F1 Score and ROC Curve

The optimal model chosen had an F1 score of 81.41% and a ROC-AUC of 70%. The
classification threshold of 0.491 (shown in Figure 3) was found to be the optimal one based
on the max F1 score. This threshold yielded a better classifier which meant that only those
who had a prediction probability greater than 49.1% were predicted to live in their location.
The area under the curve in the ROC-AUC (Figure 4) was found to be around 70% which
meant 70% of the dataset would be correctly classified in relation to their respective classes
without an error.



Sustainability 2023, 15, 1633 8 of 15

Table 3. Descriptive statistics from the summary of responses of the residents.

Features

Description

Positive Responses
(Approx. %)

(Only Ratings 5 and 4)
Other Responses

Residents who use public transportation 28% rest all used private modes of
transportation

Residents who waited for a long time in
traffic 14% 52% of the residents never waited in

traffic.

Residents who could find an ample open
space/green space for

exercise/walking/jogging/cycling in
their neighborhood

44%

Residents who could feel that there is the
availability of good quality drinking

water and air
73%

Residents who had access to a grocery
store or a market 82%

Residents who had access to health care
services 73%

Residents who had access to the internet 88%

Residents who said that they have
experienced perfect socioeconomic

equality
26% 26% claim to experience high

socioeconomic inequality

Residents who rated the availability of
cultural, arts, sports, or entertainment

institutions in their city
90%

Residents who rated that they had a good
or great educational opportunity in their

location
60% only 5% were lacking good educational

opportunities

Residents who rated the employment
opportunities in their location 80% of them felt it was not very high

Residents who rated their access to farm
products 30%

Residents who rated the safety of their
neighborhood 54% Only 7% of the respondents felt that their

neighborhood is not safe

Residents who were happy with their
neighborhood 94%

Residents who wanted to continue living
in their location

(Liveability metric)
65%

3.2.2. Liveability Confusion Matrix

The optimal model chosen was evaluated against the test data and the confusion
matrix was plotted for the same, which provided a grid of correctly and wrongly classified
data against their true labels. From Figure 5, it can be observed that among the 656 residents
in the test dataset, 405 were correctly predicted to stay (TP) and 150 were correctly classified
as will not stay (TN). The number of residents who were wrongly predicted to not stay
(FN) was 38 and 63 residents were wrongly classified as saying they would stay (FP).
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3.2.3. Random Forest

In decision tree models, the Gini impurity is a measure of the impurity or disorder
at a given node in the tree. It is used to evaluate the quality of a split, with higher values
indicating a less pure or more mixed split and lower values indicating a more pure or
less mixed split. The Gini impurity is calculated based on the probability of a randomly
chosen element belonging to the wrong class if it was classified using the current node. If
the probability is high, the Gini impurity is high, indicating a poor split. If the probability
is low, the Gini impurity is low, indicating a good split. In the decision tree shown in
Figure 6, the safety feature is the root node, which means it is the first feature used to split
the data. This is because the Gini impurity for the safety feature is the lowest among the
features considered, indicating that it is the most effective feature for separating the data
into distinct classes.
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Further split was done by a binary tree creation process and the branched nodes were
further selected so that it has a lower Gini impurity than the parent node. The branching
was continued till the node where it cannot be further split, and the Gini impurity cannot
be smaller than the parent node. Those final nodes are called the leaves of the Decision tree.
When test data is run through this decision tree model, each observation passes through
the branch nodes and finally reaches a leaf node, which gives us the class of the observation
(whether they will stay or not).

3.3. Feature Importance

Features such as safety, usage of public transport, traffic wait time, access to organic
farm products, dependability of the neighbors, availability of cultural/arts/sports institu-
tions, access to the internet, and access to health care came out to be the most important
features per the random forest model’s feature importance method as shown in Figure 7.

Figure 7. Feature importance.

3.4. Shapley Values and Their Analysis

The SHAP model provided the “feature importance” at the individual resident level.
The ‘feature importance’ is nothing but the contribution of the feature values towards
that resident’s predicted liveability [23]. In Figure 8, the selected resident had a 66.1%
predicted probability (base probability) of living in their location, in the absence of any
other information. However, we know that the resident gave a rating of 5 for “safety”
contributed 9% toward the final prediction probability of 71.1% from the base probability.
Likewise, a rating of 2 for “traffic wait” and “access to farm products” contributed 2% and
1% toward the final prediction from the base probability. Whereas a 4 rating for “cultural”
and “access to healthcare” contributed -3% and -1% each towards the final prediction from
the base probability.

A partial dependence plot of a feature provides the partial dependence of the liveability
metric on each distinct value of the feature. These plots provide an idea of each feature’s
marginal contribution for different levels of ratings. In the partial dependence plot for
safety shown in Figure 9a, the x-axis shows the distinct values for the ratings provided for
safety by all respondents, whereas the y-axis shows the SHAP values. The box plots in the
figure show the distribution of SHAP values for each distinct rating, whereas the line plot
shows the 95% confidence interval of the SHAP values for each rating, with the central
point indicating the mean of the SHAP values.
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For the safety feature, ratings of 0 to 2 had little or insignificant change in the SHAP
values. These ratings bring down the base value of liveability by around 20% points.
However, there was a huge jump in SHAP values—20% points—when the rating changed
from 2 to 3 and 10% points when the rating changed from 3 to 4. As shown in Figure 9b,
when the ratings for access to the internet were in the range of 0 to 3, the SHAP values
were in the range of −12% to −9% points. In contrast, when the ratings changed from 3 to
4, there was a huge positive leap of 16% points in the SHAP values.

For access to organic farm products and access to health care, the SHAP values shot
up when the ratings changed from 3 to 4 and from 4 to 5 correspondingly, as shown in
Figure 10a,b. For the usage of the public transportation feature, a different trend was
observed. When the ratings increased from 2 to 3, the SHAP values rose, and when they
further increased from 3 to 4, the SHAP values fell, as shown in Figure 11.
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4. Conclusions

By adopting an analytic approach to measuring liveability using a simple metric, this
study was able to look at and understand the different hypotheses put forward as the factors
of liveability. Furthermore, the study quantified the impact of each factor on the metric
while disproving some of them as evidenced by the marginal contribution as well as the
importance of the different factors towards the target metric (liveability). Based on the data
collected, safety, usage of public transport, traffic wait time, access to organic farm products,
dependability of the neighbors, availability of cultural/arts/sports institutions, access to
the internet, and access to health care seemed to be important, whereas the other features
were deemed less important/insignificant by the model. Among the important features
selected by the model, only “actionable features” were considered to compute the marginal
contributions. Actionable features are the ones, which can be impacted or influenced by
an external agent such as a government authority or an NGO. For example, safety, access
to the internet/organic farm products/healthcare/public transport, etc., were deemed
“actionable”, whereas features such as the dependability of neighbors and involvement in
social organizations were deemed “non-actionable”. The study provides some interesting
insights into the marginal contribution it has on the liveability metric at different levels. For
example, the marginal contribution of the access to the internet on liveability increased only
if the rating was increased from 3 to 4, and not for any other increase in rating. Similarly,
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safety could only improve liveability if it was rated above 3, and when it did, it improved
liveability by almost 20% points.

The authors hope that the findings and insights from this study will help to inform
the design of future neighborhoods and will drive policy changes in urban planning.
Although the concept of liveability has been studied for many years, the dynamic nature of
technology and people, calls for continuous research in this area. The concept of liveability
or how suitable an area is for living, is influenced by a variety of factors. However, these
factors and their importance may vary based on the cultural context of the area. This
study proposes a generic framework for assessing liveability that can be adjusted based
on survey responses from people living in a specific geographic and cultural context. In
other words, the framework can be tailored to the specific cultural considerations of a
particular area. Non-survey-based models of liveability can be constructed using features
that do not require the collection of survey data, such as access to amenities and services,
demographics, safety, and employment indices. These models can be useful because they
can be developed without the need to gather information directly from individuals through
a survey. Causal inference techniques are statistical methods that can be used to identify the
causal relationships between different factors. For example, a causal inference technique
might be used to determine whether access to amenities and services is a cause of liveability,
or whether liveability is the result of other factors such as demographics or safety. These
techniques can be useful for understanding the underlying causes of liveability in a given
area and for identifying potential interventions that could improve liveability. These
techniques can be further explored and researched.
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