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Abstract: The aim of change mining is to discover changes in process models based on execution data
recorded in event logs. There may be hidden transitions in the process models related to, for example,
business integration and user requirements that do not exist in event logs. Behavioral change mining
in the case of hidden transitions is a fundamental problem in the field of change mining. Existing
research on change mining has not considered the effects of hidden transitions. This paper proposes
a novel method based on complete logs with hidden transitions for mining behavioral changes. We
analyze the behavioral relations of activities based on changed logs under the condition that the
original model is unknown. Log-driven change mining is realized by calculating the log behavioral
profile, minimum successor relation, and log-weighted coefficient, which allows the mining of hidden
transitions, as well as changed behavioral relations. Finally, this method is applied to disaster chain
risk analysis, and the evolution of disaster chains in different scenarios is mined from disaster logs
to determine the type of disaster chain. The results of this paper provide a scientific basis for the
strategy of chain-cutting disaster mitigation in the emergency management of disaster chains.

Keywords: change mining; complete logs; behavioral profile; log minimum successor relation;
disaster evolution analysis

1. Introduction

With the continuous innovation and development of theory and workflow technology
in business process management, an increasing number of large enterprises and man-
agement organizations are using process models to formalize internal business processes.
However, business process models are constantly changing with the successful develop-
ment of enterprise management and changes in regulations, policies, user requirements,
and software maintenance [1]. These changing factors affect the behavior and structure of
the models. Therefore, correctly identifying and mining process model changes is important
for fault detection and diagnosis and the maintenance of business systems [2].

1.1. Problem Statement and Research Questions

Previous studies on changes in business process models have mainly focused on the
change region, change propagation, change logs, and anomaly detection. In recent years,
many scholars have focused on detecting the differences between different models in the
change region and the change propagation analysis of process models [3–5]. Meanwhile, in
the case that the process model is out of sync and inconsistent, the change queue has been
used to propagate changes and achieve synchronous continuity. The model change analysis
technology proposed in this paper is beneficial for the detection of the abnormal behavior
of process models in actual operation. Previously, a submodel of the labelled business
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process model was constructed on the basis of analyzing the behavioral characteristics of
Petri nets, and the concept of the action mode was proposed to determine the minimum
change region [3].

Once the model changes, model management technology becomes indispensable.
A synchronization method based on model elements [4] has been used for change man-
agement between process models at different levels of abstraction. A method of change
propagation [5] that detects existing changes between different models has been proposed
to determine the change region and solve the inconsistency of a model in layered refine-
ment. Fang et al. proposed a dynamic analysis method based on Petri net modules to
search for the change region [6] and introduced the T invariant to optimize the method and
thus obtain the change region most accurately. Their method also improved the accuracy
and excellence of the model change detection. A change propagation technology based
on software maintenance [7] has been proposed to provide a powerful tool in solving the
change propagation of process models in software maintenance and evolution. In addi-
tion to the research on the change region and change propagation, several scholars have
analyzed change fragments in process models in recent years [8–10]. Cross-organization
collaboration becomes more complex as business requirements become more complex. The
concept of configurable process fragments has been proposed to solve the changes in the
complexity of similar process models [8]. Here, event logs are used as input to construct
a configurable process model that contains change fragments. A method is presented
which is based on the improved process structure tree and software product line [9] to
automatically identify reusable variable fragments and merge similar fragments into main
fragments. This method mainly starts from the change fragments and restructures the
design of the model. Process fragments have been defined [10], and an improved frag-
ment called the morphological fragment has been proposed for detecting process model
changes and reusing process combinations. In the case that the original reference model
is unknown [11], the morphological fragment provides a new cornerstone for research on
business process change mining whereby business process changes can be discovered from
the joint occurrence relations of incomplete event logs. BINet, a neural network architecture
for real-time multi-perspective anomaly detection in business process event logs, has been
introduced [12]. Additionally, a set of heuristics has been proposed for automatically
setting the threshold of an anomaly-detection algorithm automatically. A novel approach
to detecting event log anomalies in process event streams has been described [12]. This
approach focuses on a general framework into which different anomaly-detection methods
can be plugged. As early as 2018, Fang et al. investigated log mining model changes [13],
but they compared system logs with the actual models to obtain possible change patterns.

In recent years, an increasing number of scholars have researched business process
anomaly detection [12,14], workaround detection methods [15], and business process
monitoring techniques [16]. Nolle et al. proposed a method [14] that uses autoencoders to
detect and analyze anomalies. This method has been further refined in terms of performance
and evaluated on more sophisticated datasets. Anomaly detection also focuses on detecting
temporal workarounds in business processes. Weinzierl et al. proposed a deep-learning-
based method [15] that helps to detect different workaround types in event logs. The
method is accurate and functions most effectively in business processes, having fewer
variations and a higher number of different activities. A technique for explainable predictive
process monitoring was proposed in [16], where relevance values for process activities
are extracted from a graph neural network. This method is the first to use gated graph
neural networks (GGNNs) to make decisions more explainable. In short, anomaly detection
research mainly focuses on business process detection and workaround detection. Change
mining is a branch in data mining [17] that focus on researching the behavioral changes
caused by changed logs. These are widespread research branches in business process
management. By identifying outliers, researchers can gain important knowledge and make
better data decisions.
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A Petri net is also widely used in practical application scenarios of risk assessment
and disaster chain analysis since this method dynamically simulates the evolution of
disaster chains as a discrete modeling tool. Examples of its application can be seen for
earthquakes [18], coal mining [19], floods [20], and oil spills [21]. A colored Petri net
demonstrates the recovery process by simulating the behavior of a disaster and capturing
the differences in resource allocation following an earthquake disaster [18]. At the same
time, Petri net technology addresses delays in decision making, responses to conflicts, and
limited resources during emergencies [19]. The construction of an evolutionary analysis
model of a flood disaster chain [20] not only allows an analysis of disaster elements but also
helps to quickly and effectively curb the spread of a disaster. These benefits are similar to
those of an oil spill disaster chain model [21], with both models providing a scientific basis
for a chain break mitigation strategy of disaster chain emergency management through
a dynamic derivation of the evolutionary process of the disaster and an analysis of the
maximum risk path.

However, previous studies on disaster chain risk analysis require a known Petri net
model. In contrast, the actual reference model is unknown or contains hidden transitions
in most business processes. The hidden transition is also called the invisible transition, and
it mainly plays the role of routing. Research on the mining of business process changes
is based on models [3–10] or logs [11–13,22] and fails to consider the effects of hidden
transitions on model changes. In this paper, we propose a behavioral-change-mining
method considering hidden transitions to improve existing methods under the condition
of complete logs. We demonstrate the superior performance of our proposed method
in experiments.

1.2. Contributions and Research Method

The innovations of the present study are summarized as follows.

• The concepts of the log minimum successor relation and log-weighted coefficient are
proposed to quantify the occurrence dependencies of pairs of activities in logs.

• The behavioral relations of pairs of activities are quantitatively analyzed by calculating
the log behavioral profiles and the log minimum successor relations. Additionally, the
behavioral relations of pairs of activities are further refined.

• A change-mining method based on hidden transitions is proposed to mine different
kinds of hidden transitions and solve the problem of searching for behavioral relation
changes with hidden transitions in event logs.

The remainder of the paper is arranged as follows. Section 2 introduces a motivating
example. Section 3 presents related knowledge on the event log, log behavioral profile,
and log minimum successor relation. Section 4 constructs change-mining methods based
on complete logs and presents examples. Section 5 presents an experiment to verify the
correctness of the method. Section 6 describes a specific disaster case to validate the
practicability of the proposed method. Section 7 concludes the paper with suggestions for
future work.

2. Motivating Example

A hidden transition is also called an invisible transition. Since hidden transitions do
not appear in any event trace, it is a challenging problem to discover behavioral changes
that contain hidden transitions in the field of change mining. A complete log is a log that
contains all transition activities and possible behavioral relations among all activities. In
what follows, we illustrate the necessity of the change-mining method proposed in this
paper by giving a detailed example.

Firstly, it is necessary to understand the history logs and actual logs of the system.
To simplify notation, the history logs are denoted Lhis, the actual logs are denoted Lact, a
mapped letter set for logs is denoted YL, and the log behavioral profiles are denoted BPL. For
complete event logs Lhis = {< ABD >,< ACD >} and Lact = {< ABCD >,< ACBD >},
it is clear that YLhis is equal to YLact . If the mapping letters of the history logs and actual logs are
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equal, we need to further calculate the log behavioral profiles of BPLhis and BPLact . Behavioral
profile relations are shown in Tables 1 and 2.

Table 1. Behavioral profile relations (BPLhis ).

A B C D

A → → →
B → →
C →
D

Table 2. Behavioral profile relations (BPLact ).

A B C D

A → → →
B
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The changed behavioral relations are marked with dotted boxes. The log behavioral profiles
have changed when the model does not perform a “Delete”, “Move”, or “Insert” change
operation. It is assumed that the occurrence of hidden transitions affects the actual log
behavioral relations. Therefore, it is necessary to investigate the behavioral changes of the
model with hidden transitions using complete event logs.

3. Preliminaries of Models and Methods

We use event logs as our formal grounding. A class of Petri nets and a Petri net system
is used for process modeling and analysis. This paper refers to basic definitions [23] of Petri
nets, Petri net systems, and behavioral profiles. This section recalls some related concepts,
whereas others are omitted for brevity.

Definition 1. (Event Log [24]) Let T be the set of activities, where σ ∈ T∗ is an event trace. Let
L ∈ B(T∗) be an event log, where B(T∗) is the set of event traces.

Definition 2. (Log Behavioral Profile (BP) [25]) Let Lp = n1, · · · nm be a log of a process model
P = (A, ai, ao, C, F, T). A pair (x, y) ∈ (AL × AL) has at most one of the following relations:

(1) The strict order relation → L , if x �L y, y �L x;
(2) The interleaving order relation ||L, if x �L y, y �L x.

The set of relations is written as BPL = {→ L, ‖L}.

Definition 3. (Log Minimum Successor Relation (MSR) [26]) Let σ ∈ L be a log trace and let
x ∈ σ, y ∈ σ be the transitions, and k ∈ N. The log minimum successor relation is defined by:
x �σ

k y⇔ ∃1 ≤ i ≤ |σ|[σ(i) = x ∧ σ(i + k) = y] , and the log minimum successor relation is
abbreviated as MSR. Therefore, MSR(x,y) = k in log L.

In Definition 3, if transitions x and y are contained in the trace σ, such as σ =< xx1x2x3y >,
it can be obtained that σ(1) = x ∧ σ(1 + 4) = y. The log minimum successor relation of
(x, y) is denoted as MSR(x,y) = 4.

4. Change-Mining Methods for Models with Hidden Transitions Based on
Complete Logs

Before introducing the behavioral change-mining method in detail, we first provide
the classification rules and the types of hidden transition.
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4.1. Classification Rules of Hidden Transitions

Let N = (P, T, F) be a labelled Petri net, where τi, i ∈ {1, 2, · · · n} denotes the hidden
transition, A ∪ τi denotes the set of all activities, and it holds that ti ∈ A.

Rule 1. If both •τ1 = t1
• = 1 and τ1

• = •t2 = 1 are satisfied, then τ1 is defined as a strict hidden
transition. Figure 1 gives a demonstration for Rule 1.
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Figure 1. A case demonstration for strict hidden transition.

Rule 2. If both •τ2 = 1 and τ2
• > 1 hold, then τ2 is defined as an and-split hidden transition. If

both •τ3 > 1 and τ3
• = 1 hold, then τ3 is defined as an and-join hidden transition. Figure 2 gives

a demonstration for Rule 2.
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Rule 3. If •τ4 ∩ t3
• 6= ∅, •τ4 ∩ •t4 = 1 and τ4

• ∩ t4
• = 1 are all satisfied, then τ4 is defined as a

skip hidden transition. Figure 3 gives a demonstration for Rule 3.
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Rule 4. If both t5
• ∩ τ5

• 6= ∅ and •τ5 ∩ •t8 6= ∅ are satisfied, then τ5 is defined as a loop hidden
transition. Figure 4 gives a demonstration for Rule 4.
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Rule 5. If both t11 + t14 and t11
• = •τ6, τ6

• = •t14 are satisfied, then τ6 is defined as a switch
hidden transition. Figure 5 gives a demonstration for Rule 5.
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4.2. Constructing Change-Mining Methods

This section mainly investigates the behavioral changes of models with hidden transi-
tions under complete event logs. Previous research in the field of change mining has mainly
focused on changes in model behavior [6–9] when the original system models are known.
Additionally, few studies have concentrated on mining model changes based on incomplete
event logs [11]. On the one hand, previous studies did not consider the effects of hidden
transitions on model changes. On the other hand, hidden transitions are difficult to mine
because they do not appear in any event trace. In the following, the related concepts of the
log-weighted coefficient and the behavior-relation-change-mining algorithm are proposed.

Definition 4. (Log-Weighted Coefficient) Let L be an event log and let ti ∈ L(i = 1, 2, 3 . . .) be
a transition. A coefficient is assigned to the arcs (drawn as directed edges) connecting transitions
with others. This coefficient is called the log-weighted coefficient and denoted r.

Example 1. (Interpretation of the log-weighted coefficient) We first provide a workflow log L = <
σ1, σ2, σ3, σ4 >, which contains σ1 =< ABHI >, σ2 =< ADGECI >, σ3 =< ADEGCI >,
and σ4 =< AGDECI > . Transition activities (drawn as rectangles) are taken as the start and
end points of each arc, and each arc is labelled with a coefficient (as shown in Figure 6), the log-
weighted coefficient. It can be seen that (G, D) and (G, E) have the relations G �L D, D �L G
and G �L E, E �L G according to σ2, σ3, σ4. These relations are written as G ‖ D and G ‖ E,

respectively. Therefore, there are behavioral relations G
a
�
a

D G
b
�
b

E (where a, b are the weighted

coefficients of arc G, D and G, E respectively). It is clear that a = a and b = b hold, and the
relations of (G, D) and (G, E) are called a strict order relation and inverse strict order relation such
that the values a→ and a← offset each other. The following does not consider a pair of transitions with
an interleaving order a behavioral relation.
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Figure 6 gives a demonstration of Definition 4. The arcs of A→ B→ H → I are
generated by the trace σ1, and each arc is labelled with a weighted coefficient of 1/3.
Specifically, there are three arcs connected to transition A, namely arc AB, arc AD, and arc
AG, whose coefficients are rAB = 1

3 , rAD = 1
3 , and rAG = 1

3 .

Definition 5. (Rules for Determining the Log-Weighted Coefficient) For a complete event log L,
if the weighted coefficients are given for each arc, the weighted coefficients of the event logs are
uniquely determined. The log-weighted coefficients need to be determined according to the two
following rules.
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Rule 6. The coefficients of the output arcs are equal.

In a complete event log, the log-weighted coefficients of the strict order structures
generated by single transition nodes are equal. Generally, the value of the output arc
coefficient of the transition is 1. If the transition has n output arcs, then the coefficients of
these output arcs are r1 = r2 = r3 = · · · = rn = 1

n .

Rule 7. The sum of the coefficients of the arcs is conserved.

For any initial transition, the weighted coefficients of the output arcs are equal to the
weighted coefficients of the input arcs of the final transition. Suppose there are n output
arcs with coefficients r1r2 · · · rn and m input arcs with coefficients b1b2 · · · bm that satisfy

n
∑

i=1
ai =

m
∑

j=1
bj.

In the following, Algorithm 1 details the procedures of hidden transition change
mining. The purpose of Algorithm 1 is to mine different types of hidden transitions and
changed behavioral relations. To make it more readable, Algorithm 1 is divided into
five phases. Taking the second phase as an example, we need to first determine whether
the log Lhis and Lact are equal. If Lhis is not equal to Lact, BP, MSR, and r of the logs must
be calculated (Definitions 2–4). If there is a pair of transition activity (ai, bj) satisfying
BPLhis

(
ai, bj

)
= ∅ and BPLact

(
ai, bj

)
= {‖Lact} under the condition of MSRLact 6= MSRLhis ,

rLact 6= rLhis , this leads to the conclusion that the hidden transition is and-split and the
changed behavioral relation is Rch = BPLact − BPLhis = BPLact

(
ai, bj

)
= {‖Lact}.

Algorithm 1 Behavior-Relation-Change-Mining Algorithm Considering Hidden Transitions
(BRCM algorithm)

Input: Original complete event log Lhis, actual complete event log Lact
Output: Changed behavioral relations Rch
First, calculate the log behavioral profiles, denoted BPLhis and BPL act , the minimum successor
relations, denoted MSRLhis and MSRL act , and the log-weighted coefficients, denoted rLhis

and rL act .

Mining strict hidden transitions:
1 : Judge the equivalence of Lhis and Lact.
2 : If Lact = Lhis ∧ σi ∈ Lact ∧ σj ∈ Lhis(i = j = 1) hold,
3 : then it can be deduced BPL act = BPLhis ∧MSRL act = MSRLhis ∧ rL act = rLhis hold,
4 : return Rch = ∅, σ1 = σ2, and the hidden transition is a strict transition.

Mining and-split hidden transitions:
5 : Suppose that a set of transitions are mapped to YLhis and YLact .
6 : I f YLhis = YLact ∧ Lact 6= Lhis ∧ Lact 6⊂ Lhis ∧ Lhis 6⊂ Lact ∧MSRLact 6= MSRLhis ∧ rLact

6= rLhis hold,
7 : else if ∃ai, bj ∈ YLhis , i, j ∈ N, because of YLhis = YLact . Similarly, ∃ai, bj ∈ YLact , i, j ∈ N. This.

will not be described subsequently. Additionally, BPLhis

(
ai, bj

)
= ∅ and BPLact

(
ai, bj

)
= {‖Lact}.

8 : Return Rch = BPLact − BPLhis . The hidden transition is an and-split transition. Using the same
method, we deduce the and-join hidden transition and the changed behavioral relations Rch.

Mining skip hidden transitions:
9 : I f YLhis = YL act ∧ Lact 6= Lhis ∧MSRLact 6= MSRLhis ∧ rLact 6= rLhis hold,
10 : else if Lact ∩ Lhis = Lhis 6= Lact,
11 : return BPLhis ⊆ BPLact .

12 : If ∃ai, bj ∈ YLhis , i, j ∈ N, BPLhis

(
ai, bj

)
=

{
→ Lhis

}
=

BPLact

(
ai, bj

)
, MSRLhis (ai, bj) = n, and MSRLact (ai, bj) < n hold,

13 : else if ∃ci, dj, em ∈ YLhis , i, j, m ∈ N. According to the original event log the value of,

the weighted coefficient is rLhis

(
ci, dj

)
= 1. However, the value of the weighted coefficient is

rLact

(
ci, dj

)
= rLact (ci, em) =

1
2 in the actual log.



Sustainability 2023, 15, 1655 8 of 21

Algorithm 1 Cont.

14 : Return Rch = BPLact − BPLhis . The hidden transition is a skip transition.

Mining loop hidden transitions:
15 : I f YLhis = YLact ∧ Lact 6= Lhis ∧MSRL act 6= MSRLhis ∧ rLact 6= rLhis hold,

16 : else if ∃ai or bj ∈ YLhis , i, j, m ∈ N. BPLhis (ai, ai) = BPLhis

(
bj, bj

)
= ∅, BPLact (ai, ai) 6= ∅,

BPLact

(
bj, bj

)
6= ∅, MSRLhis (ai, ai) = MSRLhis

(
bj, bj

)
= ∅, MSRLact (ai, ai) 6= ∅,

and MSRLact

(
bj, bj

)
6= ∅ hold.

17 : There exist ai, bj ∈ YLhis , i, j ∈ N satisfying one of the following behavioral relations :
(1)BPLhis (ai, ai) = ∅, BPLact (ai, ai) = {→}; (2)ai �Lhis bj, bj �Lhis ai, ai �Lact bj, bj �Lact

ai; (3) ai �Lhis ai, bj �Lhis bj, ai �Lact ai, bj �Lact bj.
18 : ReturnRch = BPLact − BPLhis , and the hidden transition is a loop transition.

Mining switch hidden transitions:
19 : I f YLhis = YLact ∧ Lact 6= Lhis ∧ Lact ∩ Lhis 6= ∅∧MSRLact 6= MSRLhis ∧ rLact 6= rLhis hold,

20 : else if there exists
(

ai, bj

)
∈ YLhis , i, j ∈ N satisfying BPLhis

(
ai, bj

)
= ∅,

21 : return MSRLhis

(
ai, bj

)
= ∅ and rLhis

(
ai, bj

)
= ∅.

22 : else if BPLact

(
ai, bj

)
= {→ Lact} 6= ∅∧MSRLact

(
ai, bj

)
= 1∧ rLact

(
ai, bj

)
> 0,

23 : return Rch = BPLact − BPLhis . The hidden transition is a switch transition.

4.3. Examples

We choose the specific event logs with hidden transitions for analysis in this section.
Five groups of complete logs are selected for investigation, and each group of logs contains
at least one execution trace. Table 3 provides the relevant information on the trace for the
first group of event logs.

Table 3. Original event logs and actual logs in group 1.

Symbol Trace

σ1 Lhis =<< ABC >>
σ2 Lact =<< ABC >>

Table 3 shows that the original event log is Lhis = {< ABC >} and the actual log is
Lact = {< ABC >}, where Lhis = Lact, MSRLact = MSRLhis and rLact = rLhis hold. In terms
of Algorithm 1, we conclude that the actual log Lact contains a strict hidden transition and
the changed behavioral relation is Rch = ∅.

Table 4 gives the relevant information of the trace for the second group of event logs.

Table 4. Original event logs and actual logs in group 2.

Symbol Trace

σ3 Lhis =<< ABCF >>
σ4 Lhis =<< ADEF >>
σ5 Lact =<< ABDCEF >>
σ6 Lact =<< ABDECF >>
σ7 Lact =<< ADBCEF >>
σ8 Lact =<< ADBECF >>

Table 4 shows the original event log Lhis = {< ABCF >,< ADEF >} and the actual
event log Lact = {< ABDCEF >,< ABDECF >,< ADBCEF >,< ADBECF >}. We cal-
culate log behavioral profiles BPLhis and BPLact according to Definition 2. The log minimum
successor relations calculated using Definition 3 are given in Tables 5 and 6.
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Table 5. Behavioral profiles (BPLhis ) and log minimum successor relations (MSRLhis )(group 2).

A B C D E F

A →(1) →(2) →(1) →(2) →(3)
B →(1) →(2)
C →(1)
D →(1) →(2)
E →(1)
F

Table 6. Behavioral profiles (BPLact ) and log minimum successor relations (MSRLact )(group 2).

A B C D E F

A →(1) →(3) →(1) →(3) →(5)
B →(1) ||(1) →(1) →(4)
C ||(1) →(3)
D ||(1) →(1) →(1) →(2)
E ||(1) →(1)
F

Table 6 shows the minimum successor relations of transition activities. For example,
the behavioral relation between transition activities A and B is a strict order relation, and
the value of minimum successor relation is 1, marked as→(1). Figures 7 and 8 present
two case descriptions of log-weighted coefficients for Lhis and Lact according to Definition 4.
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A comparison of Tables 5 and 6 clearly shows that there are two pairs of transition activ-
ities (B, D) and (C, E), satisfying BPLhis(B, D) = ∅, BPLact(B, D) = {‖}, BPLhis(C, E) = ∅,
and BPLact(C, E) = {‖}. MSRLact 6= MSRLhis and rLact 6= rLhis are under the condition that
YLhis = YLact , where the actual log Lact contains an and-split hidden transition and the
changed behavioral relations are Rch = BPLact − BPLhis = BP(B,D)(‖Lact) + BP(B,E)(→ Lact) +
BP(C,E)(‖Lact) + BP(D,C)(→ Lact).
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Table 7 shows the relevant information of the trace for the third group of event logs.

Table 7. Original event logs and actual logs in group 3.

Symbol Trace

σ9 Lhis =<< ABC >>
σ10 Lact =<< ABC >>
σ11 Lact =<< AC >>

Tables 8 and 9 show the log behavioral profiles and log minimum successor relations
calculated using Definitions 2 and 3, respectively.

Table 8. Behavioral profiles (BPLhis ) and log minimum successor relations (MSRLhis )(group 3).

A B C

A →(1) →(2)
B →(1)
C

Table 9. Behavioral profiles (BPLact ) and log minimum successor relations (MSRLact )(group 3).

A B C

A →(1) →(1)
B →(1)
C

We see that the original logs and actual logs satisfy Lact ∩ Lhis = Lhis. According to
Definition 5, the log-weighted coefficients are calculated as rLhis(A, B) = rLhis(B, C) = 1
and rLact(A, B) = rLact(A, C) = rLact(B, C) = 1

2 . It is inferred that the actual log Lact contains
a skip hidden transition and the changed behavioral relation is Rch = BPLact − BPLhis = ∅.
Meanwhile, the log minimum successor relations changed from MSRLhis(A, C) = 2 to
MSRLact(A, C) = 1.

Tables 10 and 11 present the log instances of groups 4 and 5, respectively.
·
B
·
C indicates

that the transition activity BC is enabled in an infinite loop in σ14.

Table 10. Original event logs and actual logs in group 4.

Symbol Trace

σ12 Lhis =<< ABCD >>
σ13 Lact =<< ABCD >>

σ14 Lact =<< ABCBCBC
·
B
·
C >>

Table 11. Original event logs and actual logs in group 5.

Symbol Trace

σ15 Lhis =<< ABCDG >>
σ16 Lhis =<< ABEFG >>
σ17 Lact =<< ABCDG >>
σ18 Lact =<< ABEFG >>
σ19 Lact =<< ABCFG >>

Tables 12 and 13 show the calculated log behavioral profiles and log minimum succes-
sor relations of group 4, respectively.
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Table 12. Behavioral profiles (BPLhis ) and log minimum successor relations (MSRLhis )(group 4).

A B C D

A →(1) →(2) →(3)
B →(1) →(2)
C →(1)
D

Table 13. Behavioral profiles (BPLact ) and log minimum successor relations (MSRLact )(group 4).

A B C D

A →(1) →(2) →(3)
B →(2) ||(1) →(2)
C ||(1) →(2) →(1)
D

It is inferred that YLhis = YLact , Lact 6= Lhis, MSRLact 6= MSRLhis , and rLact 6= rLhis hold.
Moreover, the transition activity B, C satisfies BPLhis(B, B) = BPLhis(C, C) = ∅, BPLact(B, B) 6= ∅,
BPLact(C, C) 6= ∅, MSRLhis(B, B) = MSRLhis(C, C) = ∅, MSRLact(B, B) 6= ∅, and
MSRLact(C, C) 6= ∅. The pair transition activity (B, C) satisfies
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B �Lact C, C �Lact B,
B �Lhis C, C �Lhis B,
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Additionally, Tables 12 and 13 show that the changed behavioral relations are

Rch = BPLact − BPLhis = BP(B,B)(→ Lact) + BP(B,C)(‖Lact) + BP(C,C)(→ Lact) in the actual logs
and contain the loop hidden transition.

Tables 14 and 15 show the calculated log behavioral profiles and log minimum succes-
sor relations of group 5, respectively.

Table 14. Behavioral profiles (BPLhis ) and log minimum successor relations (MSRLhis )(group 5).

A B C D E F G

A →(1) →(2) →(3) →(2) →(3) →(4)
B →(1) →(2) →(1) →(2) →(3)
C →(1) →(2)
D →(1)
E →(1) →(2)
F →(1)
G

Table 15. Behavioral profiles (BPLact ) and log minimum successor relations (MSRLact )(group 5).

A B C D E F G

A →(1) →(2) →(3) →(2) →(3) →(4)
B →(1) →(2) →(1) →(2) →(3)
C →(1) →(1) →(2)
D →(1)
E →(1) →(2)
F →(1)
G

For the logs of group 5, YLhis = YLact , Lact 6= Lhis ∧ Lact ∩ Lhis = Lhis 6= ∅, and
MSRLact 6= MSRLhis . According to Definition 4, the log-weighted coefficients are calculated
as rLact 6= rLhis . A comparison of Tables 14 and 15 clearly shows that BPLhis(C, F) = ∅
is satisfied.

However, in the actual log Lact, BPLact(C, F) = {→ Lact} 6= ∅ and MSRLact(C, F) = 1
∧rLact(C, F) > 0 are satisfied. The changed relation is written as Rch = BPLact − BPLhis =
BP(C,F)(→ Lact) and the changed transition, called a switch hidden transition, is mined in
the actual log.
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In this section, we discussed several behavioral-change-mining methods. The behav-
ioral relation between the strict hidden transition and other transitions is usually a strict
order relation, such that the strict hidden transition does not affect the model behavior.
Meanwhile, the effects of four types of hidden transitions, namely the and-split, skip, loop,
and switch transitions, on the model behavior can be divided into four categories:

(1) Strict order relation {→}⇒ interleaving order relation {‖};
(2) Interleaving order relation {‖}⇒ strict order relation (→);
(3) BP(a1,a2)

= ∅⇒ BP(a1,a2)
= {‖} or BP(a1,a2)

= {‖} ⇒ BP(a1,a2)
= ∅ ;

(4) BP(a1,a2)
= ∅⇒ BP(a1,a2)

= {→} or BP(a1,a2)
= {→} ⇒ BP(a1,a2)

= ∅ .

5. Experimental Evaluation

The computing resource used in the experiments was an Intel Core I5 eight-generation
central processing unit with 8 GB RAM and a Windows 10 64-bit operating system. The
event logs used in the experiment were typical artificial structured control flow event logs,
namely Artificial Structured Control Flow. Figure 9 presents the results obtained using the
Inductive Miner method in the ProM process mining tool to model the artificial structured
control flow event logs.
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Figure 9. Model mining results obtained using ProM (Inductive Miner).

Figure 9 shows that the number of typical structured control flow event logs is large,
the behavioral relations are relatively complex, and the workload of studying the overall
behavior structure of the model is heavy. A representative local model is thus selected as
the research object to further analyze and verify the effectiveness of the algorithm proposed
in this paper. Figure 10 is a partial view of the ProM simulation diagram mined from the
artificial structured control flow event logs. Table 16 presents model logs obtained using
the online simulation tool CPN Tools, denoted Lhis.
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Table 16. Original event logs Lhis obtained by CPN Tools.

Symbol Trace Symbol Trace

σ1 Lhis = <<a3a15a21a22a13>> σ10 Lhis = <<a3a17a21a22a13>>
σ2 Lhis = <<a3a15a21a12a19>> σ11 Lhis = <<a3a17a21a12a19>>
σ3 Lhis = <<a3a15a21a23a24>> σ12 Lhis = <<a3a17a21a23a24>>
σ4 Lhis = <<a3a20a21a22a13>> σ13 Lhis = <<a3a18a21a22a13>>
σ5 Lhis = <<a3a20a21a12a19>> σ14 Lhis = <<a3a18a21a12a19>>
σ6 Lhis = <<a3a20a21a23a24>> σ15 Lhis = <<a3a18a21a23a24>>
σ7 Lhis = <<a3a16a21a22a13>> σ16 Lhis = <<a3a14a21a22a13>>
σ8 Lhis = <<a3a16a21a12a19>> σ17 Lhis = <<a3a14a21a12a19>>
σ9 Lhis = <<a3a16a21a23a24>> σ18 Lhis = <<a3a14a21a23a24>>

Table 17 presents the behavioral profiles and log minimum successor relations of Lhis
calculated using Definitions 2 and 3.

Table 17. BPLhis and MSRLhis corresponding to the logs in Table 16.

a3 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24

a3 →(3) →(4) →(1) →(1) →(1) →(1) →(1) →(4) →(1) →(2) →(3) →(3) →(4)
a12 →(1)
a13
a14 →(2) →(3) →(3) →(1) →(2) →(2) →(3)
a15 →(2) →(3) →(3) →(1) →(2) →(2) →(3)
a16 →(2) →(3) →(3) →(1) →(2) →(2) →(3)
a17 →(2) →(3) →(3) →(1) →(2) →(2) →(3)
a18 →(2) →(3) →(3) →(1) →(2) →(2) →(3)
a19
a20 →(2) →(3) →(3) →(1) →(2) →(2) →(3)
a21 →(1) →(2) →(2) →(1) →(1) →(2)
a22 →(1)
a23 →(1)
a24

The actual logs that contain the hidden transitions are presented in Table 18, and
the corresponding behavioral profile relations and log minimum successor relations are
presented in Table 19.

Table 18. Actual event logs Lact.

Symbol Trace Symbol Trace

σ1 Lact = <<a3a15a21a22a13>> σ16 Lact = <<a3a17a16a21a22a13>>

σ2 Lact = <<a3a15a21a22
·

a13>> σ17 Lact = <<a3a17a16a21a22
·

a13>>
σ3 Lact = <<a3a15a21a12a19>> σ18 Lact = <<a3a17a16a21a12a19>>
σ4 Lact = <<a3a15a21a23a24>> σ19 Lact = <<a3a17a16a21a23a24>>
σ5 Lact = <<a3a15a21a12a24>> σ20 Lact = <<a3a17a16a21a12a24>>
σ6 Lact = <<a3a20a21a22a13>> σ21 Lact = <<a3a18a21a22a13>>

σ7 Lact = <<a3a20a21a22
·

a13>> σ22 Lact = <<a3a18a21a22
·

a13>>
σ8 Lact = <<a3a20a21a12a19>> σ23 Lact = <<a3a18a21a12a19>>
σ9 Lact = <<a3a20a21a23a24>> σ24 Lact = <<a3a18a21a23a24>>
σ10 Lact = <<a3a20a21a12a24>> σ25 Lact = <<a3a18a21a12a24>>
σ11 Lact = <<a3a16a17a21a22a13>> σ26 Lact = <<a3a14a21a22a13>>

σ12 Lact = <<a3a16a17a21a22
·

a13>> σ27 Lact = <<a3a14a21
·

a22a13>>
σ13 Lact = <<a3a16a17a21a12a19>> σ28 Lact = <<a3a14a21a12a19>>
σ14 Lact = <<a3a16a17a21a23a24>> σ29 Lact = <<a3a14a21a23a24>>
σ15 Lact = <<a3a16a17a21a12a24>> σ30 Lact = <<a3a14a21a12a24>>

It is first inferred that YLhis = YLact , Lact 6= Lhis ∧ Lact 6⊂ Lhis ∧ Lhis 6⊂ Lact, MSRLact 6=
MSRLhis , and rLact 6= rLhis hold. The following conclusions are then drawn from the opera-
tion and analysis of Algorithm 1.

(1) a16, a17 ∈ Yhis are present. Similarly, a16, a17 ∈ Yact are present because Yhis = Yact.
Additionally, we obtain BPLhis(a16, a17) = ∅ and BPLact(a16, a17) = {‖act}. It is inferred
from Algorithm 1 (5–8) that the hidden transition contained in the actual log is an
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and-split transition, and the changed behavioral relation is Rch = BPLact(a16, a17)−
BPLhis(a16, a17) = {‖}.

(2) The following are present: a13 ∈ YLhis , BPLhis(a13, a13) = ∅, BPLact(a13, a13) = {→},
MSRLhis(a13, a13) = ∅, and MSRLact(a13, a13) = 1 6= ∅. It is inferred from Algorithm
1 (15–18) that the hidden transition is a loop transition, and the changed behavioral
relation is Rch = BPLact(a13, a13)− BPLhis(a13, a13) = {→}.

(3) (a12, a24) ∈ YLhis satisfies BPLhis(a12, a24) = ∅ and MSRLhis(a12, a24) = ∅ such that we
obtain rLhis(a12, a24) = ∅. However, BPLact(a12, a24) = {→ Lact} 6= ∅ and
MSRLact(a12, a24) = 1 hold. rLact(a12, a24) = 1

6 is obtained from Definition 5. It is
inferred from Algorithm 1 (19–23) that the hidden transition is a switch transition, and
the changed behavioral relation is Rch = BPLact(a12, a24)− BPLhis(a12, a24) = {→}.

Table 19. BPLact and MSRLact of Lact.

a3 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24

a3 →(3) →(4) →(1) →(1) →(1) →(1) →(1) →(4) →(1) →(2) →(3) →(3) →(4)
a12 →(1) →(1)
a13 →(1)
a14 →(2) →(3) →(3) →(1) →(2) →(2) →(3)
a15 →(2) →(3) →(3) →(1) →(2) →(2) →(3)
a16 →(2) →(3) ‖(1) →(3) →(1) →(2) →(2) →(3)
a17 →(2) →(3) ‖(1) →(3) →(1) →(2) →(2) →(3)
a18 →(2) →(3) →(3) →(1) →(2) →(2) →(3)
a19
a20 →(2) →(3) →(3) →(1) →(2) →(2) →(3)
a21 →(1) →(2) →(2) →(1) →(1) →(2)
a22 →(1)
a23 →(1)
a24

To verify the correctness of the method, the artificial structured control flow event logs
with hidden transitions are mined using ProM Tools, and the Petri net model shown in
Figure 11 is obtained. The model shown in Figure 11 differs from that in Figure 10 due to
the triggering of hidden transitions. As a more intuitive illustration, the model with hidden
transitions in Figure 11 is drawn in Figure 12a, and the original model without hidden
transitions is drawn in Figure 12b.
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It is seen that and-split, loop, and switch hidden transitions are enabled in the actual
model. The simulation results are consistent with the calculation results of the method
presented in this paper regarding the types of change transitions and the model behavioral
relations, which further verifies the correctness of the method.
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6. Case Study
6.1. Basic Types of Disaster Chains

Research on disaster chains is still in its infancy, and further research in terms of risk
assessment, disaster loss estimation, and chain-cutting disaster mitigation is necessary in
conjunction with the adoption of other related technologies. The Petri net as a mathematical
tool for modeling discrete and distributed systems has been widely used in risk assessment
and disaster chain analysis in recent years. Additionally, the Petri net can model the disaster
chains and express the triggering factors in the assessment of safety, reliability, and risk.
Before conducting the actual disaster scenario analysis, four basic types of disaster chain are
introduced from the perspective of disaster interrelationships, namely the causal disaster
chain, concurrent disaster chain, exclusive disaster chain, and coupled disaster chain. These
basic forms are shown in Figure 13.

Figure 13a shows the causal disaster chain: DSEchain1 triggers DSEchain2. The sequen-
tial structure of the causal disaster chain is relatively simple and can help to distinguish
between precursor disasters and subsequent disasters, such as Pre(DSEchain2) = DSEchain1
and Sub(DSEchain1) = DSEchain2. Figure 13b shows the concurrent disaster chain:DSEchain1
triggers DSEchain2 and DSEchain3.The probabilities of subsequent disasters are equal, i.e.,
r(DSEchain1DSEchain2) = r(DSEchain1DSEchain3). Figure 13c shows the exclusive disaster
chain, where the occurrence of disaster events A and B is exclusive, meaning that one
disaster occurs and the other does not occur or diminishes. Figure 13d shows the coupled
disaster chain where DSEchain1 and DSEchain2 together trigger DSEchain3. The risk of a
coupled disaster chain is higher than the risk posed by other disaster chains.
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6.2. Application of the Method

The dynamic evolution of a disaster chain is analyzed for the environmental pollution
and ecological damage caused by a petrochemical leak, taking the 2018 petrochemical leak
of Donggang Petrochemical Chemical Industry Co., Ltd. in the city of Quanzhou, Fujian
Province as an example. During this leak, petrochemicals spread to beaches, causing great
harm to the coastal environment, local industries, and residents. The disaster events of the
oil spill were mapped to log transition activities to clearly describe the effects of the petro-
chemical spill on the environment and the lives of the nearby residents. Tables 20 and 21
show the execution traces of this oil spill disaster and the semantic description of transition
activities, respectively.

Table 20 presents all the execution traces of the oil spill disaster event, denoted as
L =< σ1, σ2 · · · σ29 >. The study of the dynamic evolution of the disaster chain from the
perspective of the event logs intuitively obtains the primary disaster, secondary disaster,
and derived disaster. Disaster event t0, as the primary disaster of the overall disaster chain,
triggers a series of subsequent disaster events. Taking event trace B as an example, the
dynamic transformational relations of the disaster chain are shown in Figure 14. The chain
is a typical causal disaster chain, which is the most common type of disaster chain in
the logs.
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Table 20. Disaster event logs of the oil spill.

Event Logs Ldis

σ1 t0t1t9t10t11 σ16 t0t6t38t39
σ2 t0t1t10t9t11 σ17 t0t7t40
σ3 t0t2t12t13t15 σ18 t0t8t46t41t42t43t44t45
σ4 t0t2t12t14t16t17t18t19t20t21t22 σ19 t0t8t46t41t42t43t45t44
σ5 t0t2t12t14t16t17t18t19t20t22t21 σ20 t0t8t46t41t42t44t43t45
σ6 t0t2t12t14t16t17t18t19t21t20t22 σ21 t0t8t46t41t42t44t45t43
σ7 t0t2t12t14t16t17t18t19t21t22t20 σ22 t0t8t46t41t42t45t43t44
σ8 t0t2t12t14t16t17t18t19t22t20t21 σ23 t0t8t46t41t42t45t44t43
σ9 t0t2t12t14t16t17t18t19t22t21t20 σ24 t0t8t41t46t42t43t44t45
σ10 t0t3t23t24t26 σ25 t0t8t41t46t42t43t45t44
σ11 t0t3t23t25t27t28 σ26 t0t8t41t46t42t44t43t45
σ12 t0t4t29t30 σ27 t0t8t41t46t42t44t45t43
σ13 t0t4t29t31t32t33 σ28 t0t8t41t46t42t45t43t44
σ14 t0t5t34t35t36t37t38t39 σ29 t0t8t41t46t42t45t44t43
σ15 t0t5t34t35t37t36t38t39

Table 21. Semantic descriptions.

Symbol Semantic Symbol Semantic Symbol Semantic

t0 Oil spill t16 Aquatic death t32 Injury and death
t1 Nature reserve t17 Inflow into the market t33 Negative network public opinion
t2 Amount of oil spill t18 Food contamination t34 Maritime traffic disruption
t3 Volatility of oil t19 Negative network public opinion t35 Unconditional trigger
t4 Flammability of oil t20 Market fluctuation t36 Freight break
t5 Maritime traffic area t21 Unsalted aquatic products t37 Tourism damage
t6 Scenic area t22 Social mass incidents t38 Unconditional trigger
t7 Controversial area t23 Air pollution t39 Service industry damage
t8 Shoreline t24 Oil spill responders t40 Foreign-related events
t9 Ecological destruction t25 Coastal residential area t41 Shore beach pollution
t10 Wildlife death t26 responder poisoning t42 Coastal industrial area
t11 Animal epidemic event t27 Mass poisoning event t43 Industrial production damage
t12 Water pollution t28 Negative network public opinion t44 School suspension
t13 Urban water supply area t29 Hazardous chemicals explosion t45 Transport industry damage
t14 Aquaculture t30 Negative network public opinion t46 Soil pollution
t15 Urban water supply interruption t31 Human existence

There are many more event traces and transition activities in the disaster event logs,
corresponding to a huge amount of data and a complex model. In view of the detailed
introduction and calculation of the behavioral profile relations and log minimum successor
relations described in Section 3, this section does not give the complete behavioral profile
matrix but only calculates and analyzes some of the event traces. Taking the sequence of
traces σ4 to σ9 as an example, we calculate the mutual behavioral profile relations and the
log minimum successor relations of the transitions t20t21t22, which satisfy BP(t20,t21)

=‖,
MSR(t20,t21)

= 1, BP(t20,t22)
=‖, MSR(t20,t22)

= 1, BP(t21,t22)
=‖, and MSR(t21,t22)

= 1. To
gain a more intuitive understanding, the behavioral relations of t20t21t22 are simulated
using the Petri net model. The model structure shown in Figure 15 is obtained.
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Similarly, the calculation rules and determination method in Algorithm 1 can be used
to calculate exclusive and coupled disaster chains. However, it should be noted that for
coupled disaster chains, the cause is the coupling of multiple disasters, and their risks and
damage degree are thus higher [27]. This paper mainly introduces the method of change
mining using log behavioral profile relations and does not discuss how to conduct risk
assessment research for a coupled disaster chain or how to transform strong coupling into
weak coupling or zero coupling, which are topics to be explored in further research.

The logical order of disaster events is usually different in different scenarios. Affected
by different environmental and social factors, the previous and subsequent events of a dis-
aster chain are slightly different: σ10 = t0t3t23t24t26 and BP(t26, t28) = ∅ in Ldis. The trace
indicates that the oil spill caused responder poisoning during the rescue process. In different
situations, responder poisoning can directly lead to the occurrence of t28 (negative public
opinions on the network). Therefore, σ10

′ = t0t3t23t24t26t28 includes behavioral relations,
denoted BP(t26, t28) =→, MSR(t26, t28) = 1∧ r(t26, t28) > 0 . An analysis of Algorithm
1 reveals that the occurrence of the switch hidden transition leads to behavioral changes.
We can clearly observe that an oil spill eventually leads to the occurrence of social mass
incidents from σ4 to σ9. The social mass incidents then lead to the continued fermentation
of negative network public opinion. On the basis of this dynamic description, an execution

sequence of L =< σ4, σ5, σ6, σ7, σ8, σ9 > occurs, where σ4 = t0t2t12t14t16t17t18
·

t19
·

t20
·

t21
·

t22,

σ5 = t0t2t12t14t16t17t18
·

t19
·

t20
·

t22
·

t21, σ6 = t0t2t12t14t16t17t18
·

t19
·

t21
·

t20
·

t22, σ7 = t0t2t12t14t16t17t18
·

t19
·

t21
·

t22
·

t20, σ8 = t0t2t12t14t16t17t18
·

t19
·

t22
·

t20
·

t21, and σ9 = t0t2t12t14t16t17t18
·

t19
·

t22
·

t21
·

t20. We
deduce from Algorithm 1 that the occurrence of the loop hidden transition may lead to
changes in the disaster logs. However, because the disaster chain is a concurrent disaster
chain, the location of the hidden transition has three possibilities, which are marked with
dotted boxes in Figures 16 and 17 showing the specific simulation results.
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Figures 16 and 17 are Petri net models of the disaster events with and without hidden
transitions. Using Algorithm 1, we can mine the dynamic evolution process of disaster
chains in different scenarios when only the disaster event logs are given, and we can
clarify the basic types of disaster chain. For example, if there is a higher risk of a coupled
disaster chain, the decision maker can make a reasonable judgment to cut this chain for
disaster mitigation.

7. Conclusions

This paper proposed a method for mining behavioral changes based on complete logs
with hidden transitions. Firstly, to capture the dependencies between transition activities
more accurately, the method of calculating the log minimum successor relations was
defined. Secondly, we proposed classification rules of hidden transitions and calculation
rules of log-weighted coefficients. Process models with strict, and-split, and-join, skip, loop,
and switch hidden transitions were then identified by combining the log behavioral profile,
log minimum successor relation, log-weighted coefficient and changed behavioral relations.
Finally, the correctness and feasibility of the approach were verified in experiments and a
case study. There are three main aspects of future research: (1) improving the methodology
so that it can be applied to non-freely chosen structures; (2) considering how to correctly
mine hidden transitions and changed behavioral relations when the behavioral relations of
logs are incomplete, and (3) considering further application of the methodology to disaster
chain risk assessment by adding probabilistic constraints to estimate the probability of
subsequent disaster events occurring.
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