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Abstract: Microbes (e.g., plant-growth-promoting rhizobacteria, arbuscular mycorrhizal fungi and
endophytes) are the natural inhabitants of the soil-plant-environment ecosystem having the potential
to ameliorate the negative effects of environmental extremities. Plant-microbe interactions are
integral events of agricultural ecosystems which must be studied in order to modulate the systemic
mechanisms in field crops. Under changing climatic scenarios, drought and heat stresses tend
to induce numerous physiological, morphological, metabolic and biochemical alterations in crop
plants, while microbes hold the potential to mitigate these adverse impacts in a sustainable way.
However, plant-microbe interaction mechanisms remain understudied owing to their complexities
in the rhizosphere and within the cellular systems of plants. In this review, we have attempted to
summarize microbes’ interactions with crop plants that tend to influence hormonal and nutrients
balance, and the biosynthesis of metabolites and phytohormones, etc. In particular, focus has been
kept on the underlying mechanisms related to plant-microbe interactions which confer abiotic stress
tolerance. Moreover, various physiological, morphological, metabolic and biochemical responses
of plants subjected to water scarcity and elevated temperatures have been synthesized objectively.
Lastly, from the perspective of microbes’ application as biofertilizers, both challenges and future
research needs to develop microbe-mediated tolerance as a biologically potent strategy have been
strategically pointed out.

Keywords: abiotic stresses; biochemical responses; heat amelioration; morphological alterations; rhizobia

1. Introduction

Plants tend to intimately intertwine, with numerous microbial communities residing
around the roots network in the rhizosphere (soils in close proximity to roots, and influenced
by root exudates) [1–3]. Microbes such as endophytes (which live within plant tissues
without causing any harm to the host plants), plant growth promoting rhizobacteria
(PGPR) (microbes colonizing plant roots) and arbuscular mycorrhizal fungi (AMF) can
impart numerous alterations in the host plants [4–9]. The plants’ health is closely tied
to associated microbial activity, while a plant’s species also determines the diversity and
composition of its associated microbial communities [10–15]. Microbes might be utilized to
develop a potent, economical and ecofriendly strategy for offsetting the adverse impacts of
environmental extremes [16–19], for instance, PGPR modulate plant hormones for boosting
biomass production through enhanced nutrient uptake and biosynthesis of antioxidants
and numerous osmolytes [20–22]. These include proline, sugars, polyamines, betaines,
quaternary ammonium compounds, polyhydric alcohols, and other amino acids [17,20].
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The effective rhizosphere–rhizobacterial interaction attracts microbes in the roots’
vicinity [23,24] due to the secretion of root exudates which contain amino acids, organic
acids, sugars, enzymes, peptides, vitamins and numerous primary and secondary metabo-
lites [21,24]. The in-depth study of plant-microbe interaction has become even more perti-
nent because abiotic stresses have raised interest in developing microbe-based stress mitiga-
tion strategies [25–27]. The abiotic stresses, especially drought stress (DS) and high temper-
ature stress (HS), have caused serious losses to the productivity of farming systems [28–32],
which necessitates research efforts in order to devise plant-microbe-interaction-based strate-
gies. Figure 1 elucidates different types of abiotic stresses (e.g., heat, drought, salinity,
water logging, heavy metals toxicity), especially drought-induced alterations in crop plants
(e.g., plasma membrane deterioration, impaired photosynthesis, transpiration losses) and
in microbes (Psychrophilic microbes population decreases under elevated temperatures,
in contrast to Psychrotrophic microbes). However, a vital caveat to note is that, so far, our
understanding regarding key processes that trigger microbe-mediated plant adaptations
under abiotic stresses remains scant.
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types of microbes.

In this review, a robust but critical attempt has been made to objectively synthesize and
elaborate the latest advances on the morphological and physiological alterations imparted
by DS and HS in crop plants. However, the prime focus revolves around plant responses to
these abiotic stresses along with highlighting the underlying mechanisms of plant-microbe
interactions which confer tolerance. The study culminates with a brief discussion on
perspectives of microbial application such as bio-fertilizers (BFs) and potential development
of a microbes application strategy.

2. Morphological and Physiological Effects of Drought Stress and Plant Responses

Drought occurs when humidity in the soil and atmosphere becomes disproportionally
low while the ambient air temperature is high [33]. Resultantly, DS occurs, given the
greater evapotranspiration flux, coupled with the reduced water intake [34]. The DS
tends to trigger a cascade of morphological, physiological and bio-chemical alterations in
plants. For instance, DS significantly reduced germination rate and seedling establishment
of sunflower and wheat [35,36]. Likewise, DS hampered the roots development and
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hypocotyl length in rice (Oryza sativa L.), field peas (Pisum sativum L.) and alfalfa (Medicago
sativa L.) [37–39]. Additionally, plant height, leaf diameter, and the stem girth were greatly
reduced in maize and canola (Brassica napus) under DS [40,41]. This reduced growth is
usually owing to disruption in nutrients such as N, Ca, Mg, etc. movement via diffusion
and mass flow which leads to retarded plants growth [42]. Similarly, reduced absorption of
less mobile nutrients was attributed to thinner leaves having much smaller leaf areas [43].
Overall, drought induced yield reduction was in the range of 21–40% for maize and 20–63%
for wheat at 40% water deficiency [44].

Interestingly, plants exposed to DS develop leaves having smaller cells and higher
stomatal density [45–48]. In addition, drought damages the photosynthetic pigments
and the thylakoid membranes [49], while the reduction in chlorophyll content under
DS was caused by the ceasing of chlorophyll biosynthesis and the degradation of existing
chlorophyll [50]. Furthermore, the impaired cell elongation restricted the flow of water from
xylem to adjacent cells [51]. Besides, DS imparts mitosis and cell elongation impairment [52]
along with loss of turgor, which reduces the photosynthesis rate [53–57]. Furthermore,
reduced transpiration rates and leaf water potential [58] disrupted water use efficiency
(WUE) (ratio of accumulated dry matter to the total consumed water) in drought-sensitive
cultivars of Eastern cottonwood (Populus deltoides) [54]. In contrast to cereals, legumes
roots witness impaired flux of oxygen and CO2, coupled with greater N accumulation
which inhibits N fixing capacity [55]. Additionally, microbial colonies’ composition and
functioning in the soil are adversely influenced, which eventually disturbs plant-nutrient
relations [56]. The DS disturbs assimilated balance [57,58] and net reduction in the sucrose
content restricts assimilates’ flow towards sinks [59]. Likewise, sink capacity for utilizing
the imported assimilates in an efficient way declines [60]. Moreover, disruption of acid
invertase activity restricts the phloem loading-and-unloading process, which in turn causes
disturbance in partitioning of the assimilates and dry matter accumulation. However, there
is a dire need to study nutrients’ relations in terms of interactive effects among themselves
and overall physiological alterations caused by nutrients deficiency under DS.

In response to DS, plants trigger stomatal closure in order to avoid water losses
through transpiration [61,62]. This reduces CO2 intake, causing severe oxidative damage
and ceasing of carbohydrates’ assimilation process [53,62]. Additionally, heat dissipation in
the leaves of crop plants under DS is a vital growth-restricting phenomenon [63]. Moreover,
stomatal closure under DS has been attributed to biosynthesis of abscisic acid (ABA)
in roots [64]. However, crop-specific studies are required, because stomatal responses
differ across plant species under water scarcity [65]. Interestingly, drought-resistant wheat
cultivars recorded higher WUE by enhancing dry matter accumulation and reducing
the transpiration rate [66]. In contrast, drought-sensitive genotypes of potato (Solanum
tuberosum L.) had lesser WUE under early season DS, which reduced biomass and tuber
yield [67]. Another pertinent response of crop plants to DS is incremental growth in root
length and surface area, along with alterations in roots architecture which facilitate uptake
of mobile nutrients [55]. Estill et al. [68] recorded enhanced chlorophyll content in alfalfa
and some cultivars of black gram [Vigna mungo (L.) Hepper] [69]. This varied response
was attributed to different enzymes’ biosynthesis which trigger chlorophyll formation.
Similarly, chlorophyll-a remained higher as compared to chlorophyll-b under DS [70],
while a significant decrease in the chlorophyll a/b ratio in Brassica species has also been
reported [71].

Besides, plants respond to drought by synthesizing ethylene, reactive oxygen species
(ROSs), and triggering leaf senescence [72,73]. Moreover, DS manifests through free radicals’
accumulation, which induces disruptions in membrane functions, denaturation of amino
acids and proteins, lipid peroxidation and lastly, cell death occurs [72]. Figure 2 depicts
sugarcane response in terms of morphological alterations such as production of leaves
with thick cuticle, a leaf hair named pilosity, and physiological changes such as reduced
leaf transpiration, increased root hydraulic activity, biosynthesis of osmolytes and various
growth hormones under DS [58]. However, future research is still needed to explore the
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underlying mechanisms which enable crop plants to survive short-to-moderate periods of
drought [73,74].
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3. Heat Stress Induced Morphological and Physiological Effects and Plants Responses

Heat stress (HS) occurs when air and soil temperatures rise beyond an optimum
threshold level for a determined time span, restricting crop growth [75–79]. Among
the most pronounced morphological impacts of elevated temperatures include leaves’
and twigs’ scorching with visual sunburn symptoms, leaf senescence, stunted growth
and discolored leaves and fruits [80–82]. However, reduced germination and planting
density are the first impacts of HS [83–85]. In addition, HS-restricted growth of spikes and
florets occur in rice along with disturbing seed-set in sorghum [86]. Likewise, anthers and
pollens inside the florets remained highly susceptible in comparison to ovules under HS.
Moreover, heat-induced floret sterility was attributed to diminished dehiscence of anther,
poor pollens shedding, reduced pollen germination on the stigma, and declined pollen
tubes elongation [87].

Maize and sugarcane (Saccharum officinarum L.) plants, in response to elevated temper-
ature, recorded lesser inter-nodal length owing to restricted net assimilation rate [88–90].
Likewise, reduced fresh and dry weights of sugar beet plants were observed owing to
restricted photosynthetic rate caused by denaturation of photosynthetic pigments and mul-
tiplication of malondialdehyde content [91]. However, reduced leaf area, leaf yellowing,
necrosis, epinasty and leaf abscission in cape gooseberry were the prime impacts of HS [92].
In contrast, wheat yield was reduced owing to substantially reduced grain weight and
grain number per spikelet [93]. Likewise, rice growth, development and paddy yield were
reduced by HS, especially tillering, the stage most sensitive to elevated temperature [94].
Moreover, reduced grain weight reduced paddy yield [95], while in tomato (Lycopersicum
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esculentum Mill.), disruption of fertilization, meiosis, and reduced embryo growth ulti-
mately led to decline in yield [96]. Along with cereals, the HS remained equally drastic
for legumes such as common beans (Phaseolus vulgaris L.) and peanut (Arachis hypogea L.)
which seriously hampered vegetative and reproductive growth [97,98]. Similarly, decline
in roots number, mass and growth occurred under HS [99]. However, very scant infor-
mation available related to the direct impacts of elevated temperatures on crops-nutrient
relations [100,101]. Future studies may investigate the reduced nutrients uptake under HS
as influenced by restricted root growth.

Besides morphological alterations, HS also induces numerous physiological disrup-
tions in crop plants such as deterioration of plasma membrane, enhanced transpiration,
impaired photosynthesis rate, restriction in enzymes biosynthesis and cell division. Ad-
ditionally, changes in the hormonal concentrations, such as increases in jasmonic acid,
suppress uptake of nutrients [81,82,102,103]. Other pronounced physiological impacts of
HS include protein de-structuring, inactivation of enzymes, damage to cell membranes,
oxidative damage, and decreased photosynthetic rate [27,99]. Especially, photosystem
II (PSII) is highly sensitive to HS, which damages the oxygen evolving complex (OEC)
and vital proteins (D1 and D2) in wheat and barley [104–108]. Similarly, cotton [109] and
rice [87] witnessed disruption in the electron chain and regeneration capacity of RuBP.
Further, UV radiation altered biosynthesis of ABA, flavonoids and IAA concentrations in
soybean [110]. Likewise, major enzymes such as nitrate reductase, which is required for nu-
trient metabolism, was significantly reduced by HS [111]. Additionally, 5-aminolevulinate
dehydratase can be deactivated in wheat plants exposed to HS, which results in disruption
of the pyrrole biosynthesis pathway [112]. The inactivation of this enzyme at 42 ◦C also
caused chlorophyll biosynthesis reduction by 60% in cucumber (Cucumis sativus L.) [81].
Another vital enzyme’s (protochlorophyllide) biosynthesis was reduced by 70% under
elevated temperatures [113,114].

Plants have evolved many intricate regulatory mechanisms to cope with HS through al-
teration of physiological processes, such as perception of signal, transduction of signal and
ultimately triggering the gene action [81,102], all of which lead to signal response by crop
plants, as exhibited in Figure 3. Additionally, plants trigger their response to HS by employ-
ing biosynthesis of enzymes and accumulation of osmolytes. Furthermore, biosynthesis of
heat shock proteins (HSP-20, HSP-60, HSP-70, HSP-90 and HSP-100) and ROSs-scavenging
enzymes, including ascorbate peroxidase and catalase, enable plants to survive short peri-
ods of HS [115–117]. Genome editing must be performed, enabling crop plants to maintain
water status within plant tissues under elevated temperatures [118,119] as rapid reduction
in the water contents of leaf tissues in sugarcane under HS was recorded [89]. However,
heat mediated restriction in root conductance owing to disruption of hydraulic activity has
been observed in tomato plants [120]. Moreover, wheat genotypes exposed to HS varied
significantly in terms of assimilates’ partitioning [121] which necessitates further in-depth
studies for exploring the wheat gene-pool for heat tolerance.
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4. Plant-Microbe Interaction Conferring Tolerance against Drought and Heat Stress

The rhizosphere harbors a wide range of microbes having plant-growth-promoting
abilities [122–124]; the DS-prone rhizosphere in Israel contained a higher population and
diversity of PGPR. Additionally, enzymatic activity remained higher in isolates of DS
rhizosphere. A variety of direct and indirect biochemical and molecular mechanisms are
put to work by microbes to promote plants’ growth DS. For instance, PGPR promotes plant
growth by effective regulation of hormonal and nutritional balances in plants [125]. In
addition, PGPR synthesizes many metabolites and siderophores in the rhizosphere which
restricted the availability of iron and ultimately pathogen attack on stressed plants was
inhibited [126]. Likewise, PGPR facilitates fixing of atmospheric N through biological
fixation process and solubilize clay fixed phosphate [14]. Figure 4 illustrates drought
induced alterations in maize plants and microbes along with microbial response to water
scarcity as few microbes like actinobacteria multiply under water deficiency while others
get depleted, such as planktomycetes.

The PGPR accelerated the flowering phase [127,128], resulted in an earlier seed set
and delayed senescence, which assisted crop plants to escape drought [129]. These also
stimulated mobilization of vital nutrients within plant tissues and triggered the production
of exopolysaccharide and rhizobitoxine [130] through inhibition of ethylene synthesis [131].
Besides, microbes triggered the biosynthesis of key enzymes including glucanase, ACC-
deaminase and chitinase [132]. Moreover, microbes have sigma factors (multi-domain
subunits of RNA polymerase having critical role in RNA synthesis) to alter the gene ex-
pression under stressful environment [133]. Along with PGPR, plant-AM fungi interaction
in the root zone of the field crops may improve nutrients’ cycling and absorption along
with translocation of nutrients. These vital but comparatively lesser studied plant-microbes
interaction assist crop plants in maintaining the desired growth under stressful environ-
ments. The schematic presentation of plant-microbe interactions under drought and heat
stresses has been depicted in Figure 5, where microbes ameliorated osmotic and oxidative
stresses through biosynthesis of hormones like ABA and exopolysaccharides (EPS), while
drought stress was also ameliorated by N fixing bacteria via enhancement in N and water
supply through extensive root network development.
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Plants endophytes thrive within plant tissues without causing any damage or disease
to the host plants [121]. The phytohormones were synthesized by root endophytes which
conferred drought tolerance in pepper [134] through improved nutrient (N, P, Fe, etc.) up-
take [135,136]. Maize seeds inoculated with the endophytic microbes such as Piriformospora
indica, which belongs to root-colonizing type of Sebacinales family, increased root growth,
canopy development, SPAD values (indicating differential transmittance of red and an
infrared light having 650 nm and 940 nm wavelength respectively through the leaf) and
antioxidants (catalase and superoxide dismutase) up-regulation. More importantly, inocu-
lation boosted proline content and suppressed the malondialdehyde (MDA) content [137].
Likewise, wheat-endophytic microbes’ interaction significantly boosted PSII efficiency,
and triggered increased plant height and seed weight [138]. Additionally, japonica rice
interaction with Paecilomyces formosus improved the growth traits through down regulation
of signaling molecules, ABA and jasmonic acid [139].

Similarly, soybean inoculated with Paecilomyces formosus suppressed lipid peroxidation
rate and accumulation of linolenic acid, peroxidase (POX), catalase (CAT), and superoxide
dismutase (SOD). It was attributed to biosynthesis of phytohormones such as aldehyde
dehydrogenase forindole acetic acid, indole-3-acetamide hydrolase, and geranylgeranyl-
diphosphate synthase [140]. In addition, plant-microbe interaction promotes synthesis of
enzyme including ACC deaminase [141]. Furthermore, plant-microbe interaction created a
specific extracellular matrix that maintained hydrated root environment [142]. Similarly,
Paenibacillus polymyxa heightened the production of biofilm in wheat which enhanced
plant survival [143]. Moreover, in the roots of Arabidopsis, Bacillus megaterium secreted
polyamine spermidine that effectively scavenges ROS along with upregulating the biosyn-
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thesis of ABA which led to augmentation of photosynthesis and root architecture [144,145].
Moreover, Pseudomonas chloroaphis synthesized butanediol which plays a vital role in
drought related signaling pathway allowing stomatal closure in Arabidopsis [146].
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Overall, plant-microbes (e.g., Bacillus spp., Anabaena azollae, Azotobacter spp., Paeni-
bacillus spp. etc.) interactions hold potential to ameliorate the adverse effects of HS and
DS [147] which might be studied in three different ways. Firstly, microbes’ roles in pro-
moting host plant nutritional status must be the subject of future studies and secondly,
microbes’ mediated antagonism against various pathogens also needs urgent attention.
Thirdly, microbes’ interaction in the perspectives of their capabilities to stimulate a variety
of defense mechanisms in crops and plants must be studied at physiological and molecular
levels. Last but not least, the plant-microbes association holds the potential to save over
25–40% cost of chemical fertilizers and pesticides by bolstering soil-available nutrients and
triggering natural plant defenses against environmental hazards.

5. Mechanisms of Microbe Survival and Drought Amelioration

The DS-tolerant microbes have evolved and adapted various tolerance mechanisms
which enable them to survive through development of thick cell encapsulation, going into
dormant phase, accumulation of osmolytes and production of exopolysaccharides (EPS).
Interestingly, a significant increment in gram-positive to gram-negative bacteria ratio was
observed in a drought-hit rhizosphere [147], while varying impacts of drought on different
microbial strains has also been reported [148,149]. Specifically, DS led to sharp declines in
gram-negative phyla such as Bacteroidetes, Proteobacteria and Verrucomicrobia [150–152].
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Contrarily, gram-positive phyla (Actinobacteria and Firmicutes) recorded significant in-
crease in their population under water shortage [153]. This behavior of microbes might be
attributed to substrate preference and capabilities of both types of bacteria which impart
distinct drought susceptibilities. Likewise, the oligotrophs microbes tend to thrive well
under DS despite being slow growers, and are declared highly specific in terms of substrate
requirement [154–156]; contrastingly, copiotrophs microbes need abundant nutrients and a
moisture-rich environment. Moreover, the soils experiencing DS tend to contain bacterial
strains that degrade complex plant polysaccharides and low microbial-population-targeting
oligosaccharides [157]. Different microbes, especially endophytes, ensure their survival by
entering into the plant tissues through injured roots, stomata, hydathodes and lenticels
openings in leaves, flowers and seeds of different crops (Figure 6).
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As far as microbe-mediated drought tolerance is concerned, provision of nutrients
and synthesis of various phytohormones (e.g., abscisic acid ABA, indole-3- acetic acid
IAA and cytokinins Ck), bacterial exopolysaccharides and ACC deaminase are the major
mechanisms [151,154,158]. The PGPR-mediated hormones synthesis stimulated cell divi-
sion under DS, especially IAA, the most active auxin, which regulates the differentiation
of vascular tissues and adventitious roots along with promoting cell division and shoot
growth [159]. Moreover, ABA optimized the hydraulic conductivity of roots and regu-
lated the drought-related gene transcription, which enhanced water use efficiency [160].
Likewise, Azospirillum brasilense ameliorated drought tolerance in Arabidopsis thaliana via
ABA synthesis [161]. The ACC deaminase has been recognized as ethylene’s precursor
under DS, while ACC deaminase synthesized by microbes hydrolyzes ACC into derivatives
such as ammonia and alphaketobutyrate, which ultimately promote plants’ growth and
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productivity [161]. For instance, Pseudomonas aeruginosa, Proteus penneri, and Alcaligenes
faecalis increased amino acids and proteins along with the sugar content of maize [25].
Moreover, microbe inoculation restricted the antioxidant activity and boosted the synthesis
of free amino acids, proline, and sugars in crops plants under suboptimal moisture con-
ditions [162,163]. Furthermore, Pseudomonas putida H2-3 inoculation enhanced synthesis
of various hormones like EPS which impart tolerance against drought [164]. Along with
EPS synthesis, microbe-mediated synthesis of various compatible solutes, including pro-
line, glycine and betain, along with trehlose and spore formation, assist crop plants to
survive DS by maintaining the membrane permeability, prevent destructing of enzymes
and keep different proteins in the functional form [165]. Various underlying mechanisms
of microbe-mediated drought tolerance in cereal crops such as wheat, rice, maize etc. have
been described in Table 1. However, consortia of endophytic plants and PGPR must be
studied in depth for determining their effectiveness to mitigate the negative effects of water
scarcity.

Table 1. Different microbial strains mediated drought tolerance mechanisms for cereal crops under
water-limited conditions.

Crops Microbial Strains Mechanism of Conferring
Tolerance against Drought References

Maize (Zea mays) Azospirillum lipoferum
Enhanced soluble sugars,

biosynthesis of amino and proline,
along with roots and shoot.

[25]

Maize (Zea mays) Bacillus spp.

Greater accumulation of sugars
and decline in electrolytes

leakage. and enzymes (CAT and
glutathione peroxidase) activity.

[130]

Rice (Oryza sativa) Trichoderma harzianum Promotes root network, which
delays the onset of drought. [25]

Wheat (Triticum aestivum) Azospirillum brasilense Triggers attenuation of transcript
levels and balances homeostasis. [147]

Wheat (Triticum aestivum) Bacillus amyloliquefaciens
Attenuates the levels of transcript
leading to improved homeostasis

under DS.
[147]

Wheat (Triticum aestivum) Mesorhizobium ciceri
Boosting drought tolerance index

under severe water-
scant conditions.

[52]

Wheat (Triticum aestivum) Rhizobium leguminosarum Improve biosynthesis of IAA,
CAT and EPS. [147]

Wheat (Triticum aestivum) Rhizobium phaseoli
Produce CAT, EPS and IAA which

improved the growth, biomass
and drought tolerance index.

[52]

Besides cereals, legumes, Brassica spp., arabidopsis’ interaction with microbes also
remained effective in mitigating the adverse effects of DS through improved nutrient
and water uptake. Moreover, cop plants association with Pseudomonas putida and Bacillus
thuringiensis restricted stromal conductance and minimized leakage of electrolytes owing
to proline accumulation in the roots and shoot of stressed plants [166]. Different micro-
bial strains mediated drought tolerance mechanisms for various legumes, Brassica and
arabidopsis have been summarized in Table 2. However, there is dire need to conduct further
in-depth studies for exploring the microbes’ effectiveness in mitigating the deleterious
effects of drought and enhance our understanding related to underlying mechanisms which
impart tolerance against water scarcity.
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Table 2. Different microbial strains mediated drought tolerance mechanisms for legumes, Brassica
spp. and other crops under water limited conditions.

Crops Microbial Strains Mechanism of Conferring
Tolerance against Drought References

Arabidopsis (Arabidopsis thaliana) Azospirilum brasilense

Better plant survival and seed
yield owing to proline and
malondialdehyde, better
water retention capacity

and reduced
stomatal conductance.

[161]

Arabidopsis (Arabidopsis thaliana) Phyllobacterium brassicacearum

Enhanced the level of ABA,
delayed reproductive

development and improved
water and nutrient

use efficiencies.

[161]

Barrelclover (Medicago truncatula) Sinorhizobium medicae
Improved nutrient absorption,

root nodulation and
canopy development.

[18]

Chickpeas (Cicer arietinum) Pseudomonas putida

Improved accumulation of
osmolytes, ROS scavenging
capacity and expression of

stress related genes.

[72]

French lavender
(Lavandula dentate) Bacillus thuringiensis

IAA induced higher proline
and K-content and decreased

glutathione reductase (GR)
and ascorbate peroxidase

(APX) activity.

[163]

Lettuce (Lactuca sativa) Azospirillum spp.

Enhanced chlorophyll,
ascorbic acid, chroma

functioning and antioxidant
potential along with lowering

the drought induced
browning intensity.

[147,149]

Smooth-stemmed turnip
(Brassica oxyrrhina) Pseudomonas libanensis

Optimized leaf water contents
and pigments synthesis along

with reducing proline and
malondialdehyde

concentrations in leaves.

[165]

Smooth-stemmed turnip
(Brassica oxyrrhina) Pseudomonas reactans

Increased relative water
content of leaves and reduced
proline and malondialdehyde

contents in leaves.

[165]

Soybean (Glycine max) Pseudomonas putida

Lowered abscisic acid,
salicylic acid, flavonoids,

superoxide dismutase, and
free radicals scavenging

activity while jasmonic acid
synthesis was boosted.

[163]

6. Mechanisms of Microbe-Mediated Heat Tolerance

Before studying microbe-mediated heat tolerance, it is necessary to understand the
underlying mechanisms which enable microbes to survive elevated temperatures. The
most strategic microbial characteristics are the synthesis of enzymes and structural proteins
which ensure membrane integrity and appropriate functioning of nucleic acids under
HS [32]. On the basis of survival potential under HS, microbes are classified into psy-
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chrophilic (whose maximum growth occurs at or below 15 ◦C) and psychrotrophic (which
need 15 ◦C or higher temperature for attaining the maximum growth). Interestingly,
molecular chaperons are the most effective mechanism to defend microbes against heat.
In addition, HS induced gene expression also ensures microbes’ survival under HS. For
instance, DnaK, the gene present in Alicyclobacillus acidoterrestris, is triggered to code heat
shock proteins which protect microbes. Future research investigations are needed to explore
further HSP expression for adapting microbes to higher soil temperatures [31].

Regarding microbe-mediated heat mitigation, improved nutrient supply and translo-
cation within plant tissues triggered photosynthesis under HS [31]. Additionally, osmotic
and oxidative stress amelioration through biosynthesis of ABA and EPS have been depicted
in Figure 5. Likewise, synthesis of trehalose multiplied under HS, which protected plants
from heat shock injury and oxidative stress [33,34]. Likewise, it plays a critical role in cells
proteins’ stabilization and resultantly, the survival of field crops under HS becomes possible.
Another microbe-mediated heat tolerance mechanism is synthesis of various metabolites,
however, very scant information is available about underlying mechanisms. Compared to
heat tolerant microbes, more research is available for chilling stress tolerant microbes such
as Brevundimonas terrae, Pseudomonas cedrina and Arthrobacter nicotianae [166,167]. Further-
more, psychrophilic bacteria isolated from Antarctica exhibited antimicrobial activity [168]
which demands further research to explore the underlying mechanisms. Moreover, thermo-
tolerant phosphate solubilizing the microbe’s inoculation might act as multifunctional
bio-fertilizer. Besides, their function as catalyst to promote biogeochemical cycling of
phosphorus in agricultural fields awaits further studies [169–171].

7. Perspectives of Bio-Fertilizers, Challenges and Future Research Needs

Generally, BFs are classified on the basis of their functions N-fixer, P and K solubilizers,
and plant growth promoting rhizobacteria. The N-fixing microbes include Azotobacter,
Azospirillium, cyanobacteria and various symbionts such as Anabaena Azolla, Rhizobium, and
Frankia. The legume-associated microbes include members of the genera Azorhizobium,
Bradyrhizobium, Mesorhizobium, Sinorhizobium, and Allorhizobium. For non-legumes crops,
N-fixing microbes include genera of Arthrobacter, Acetobacter, Azomonas, Enterobacter, Lig-
nobacter and Mycobacterium. Although hundreds of microbial genera have been isolated
from the rhizosphere, for the most part, only members of Azospirillum and Azotobacter have
been widely tested. The microbe-based bio-fertilizers (BFs) which are the formulation-
adjustable products encompass untapped potential to supply essential nutrients to plants
under DS and HS. Few of the most prominent microbial candidates include Azotobacter,
Acetobacter, Anabaena azollae, Azospirillum, and Pseudomonas, which can effectively ame-
liorate the adverse effects of abiotic stresses through biosynthesis of vitamins, growth
hormones, antioxidants, antibiotics and phosphate solubility [172–175] (Figure 7). Addi-
tionally, Bacillus spp. containing BF might be investigated in terms of most efficient dose,
plant species, time of application, crop growth stage etc. under unfavorable environmental
conditions [131]. Furthermore, in vivo screening studies for isolating putative PGPR from
drought-hit plants for preparing BFs might be used as potent strategy in order to confirm
the effectiveness and extent of their growth promotion effects under abiotic stresses [123].

More importantly, BFs containing stable microbial consortia might have synergistic
effects in alleviating drought and heat effects than do individual microbial genera. For in-
stance, a consortium entailing 10 endophytic strains ensured plant survival of hybrid poplar
under water-scarce conditions through unknown drought-responsive pathways [171,172].
These findings indicate that environmental extremities might be confronted using mul-
tiple microbes-based BFs because they trigger many tolerance-imparting activities and
this aspect direly requisites more research studies to explore the underlying mechanisms.
However, the prime challenge in promoting BFs for drought and heat mitigation are to
identify, isolate and culture microbes from drought-hit plants for subsequent use as BFs.
In addition, research findings are scant regarding microbial strains’ potential to convert
atmospheric N into available ammonia along with solubilizing P in the rhizosphere under
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water limited conditions [175]. It is important to note that crop modeling which involves
mathematical presentation of biological systems in agro-ecosystems may also assist to
evaluate BFs efficacy as influenced by multiple factors such as intensity and duration of
abiotic stress, crop species, microbial strains suitability etc.
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Some of the prime constraints which have restricted the application of BFs on a large
scale include competition of local flora with bio-inoculants for niche, non-supportive soil
characteristics, presence of soil pollutants, climatic extremities, and unavailability of specific
strains and effective carriers. Moreover, a shortage of skilled staff in BFs production unit,
a scarcity of research funds, meager research on storage and transport necessities, and
insufficient farmer awareness and marketing constraints, along with non-establishment
of production standards are future challenges [171,173,175]. A real-time series of BFs-root
relationship under DS and HS can highlight trends of accumulation and/or depletion of
microbe’s taxa, along with revealing the impacts of plant developmental stage on microbial
recruitment leading to devising of effective mitigating strategies for ensuring food security
under a changing climate.

8. Conclusions

A wide array of factors influence microbe-mediated tolerance in field crops, especially
crop type, growth stage, intensity and duration of abiotic stresses, and particularly microbes’
species (gram-positive or gram-negative, and oligotrophy or copiotrophy). Additionally,
microbes present in the rhizosphere, or their exogenous application, can impart resilience
against drought and heat stress, while their efficacy can be further enhanced through
microbe-based biofertilizers application. However, a single microbe-mediated mechanism
may not be declared as universally linked for drought and heat mitigation. The research
gaps exist related to underlying mechanisms which impart resilience in microbes to survive
abiotic stresses along with microbe-induced alterations in crop plants which confer stress
tolerance. New insights into plant-associated microbial taxa might assist in identifying the
potential strains for boosting plant growth. Under changing climate scenarios, microbial-
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based mitigation strategies involving soil and foliar application of microbial consortia can
effectively alleviate the adverse effects of drought and heat stresses in arid and semi-arid
regions, thus ensuring food security.
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