Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems
Abstract
:1. Introduction
- Construction of physical meteorological,
- Statistical methods;
- Methods based on machine learning.
2. Materials and Methods
2.1. The Study Object—Gorno-Badakhshan Autonomous Oblast
2.2. The Forecasting Model and Learning Process Control Algorithm
- (1)
- Inputs are the previous hours that coincide with the forecast hour during the month (30 values);
- (2)
- Inputs are all previous hours considered during the week (168 values).
- Min-max normalizer layer (it scales wind speeds to values from 0 to 1).
- Input layer: 30 or 168 wind speed values.
- Hidden layer with an adjustable number of neurons:
- weighted summators;
- activation function: sigmoid or ReLU.
- Output neuron.
- Inverse min-max normalizer (it scales the last neuron output to wind speed).
- (1)
- The number of hidden layer neurons that varies from 3 to 21 with a step of 3;
- (2)
- The activation functions of the hidden layer such as ReLU and sigmoidal;
- (3)
- The learning method such as SGD and Adam:
- (4)
- The learning rate such as 10−4, 10−3, and 10−2.
2.3. Neural Network Learning Algorithms
- (1)
- The number of hidden layer neurons that varies from 3 to 21 with a step of 3;
- (2)
- The activation functions of the hidden layer such as ReLU and sigmoidal;
- (3)
- The learning method such as SGD and Adam:
- (4)
- The learning rate such as 10−4, 10−3, and 10−2.
3. Obtained Validation Results and Discussion
4. Conclusions
- Non-use of additional meteorological features such as humidity, pressure, and temperature;
- Absence of wind direction in the forecasting model;
- Manual determination of the point in time when the neural network training process should be completed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burton, T.; Jenkins, N.; Bossanyi, E.; Sharpe, D.; Graham, M. The nature of the wind. In Wind Energy Handbook, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Moreno-Munoz, A. Description of wind power forecasting systems. In Large Scale Grid Integration of Renewable Energy Sources; Institution of Engineering and Technology (The IET): London, UK, 2017. [Google Scholar]
- Kennedy, N.; Miao, C.; Wu, Q.; Wang, Y.; Ji, J.; Roskilly, T. Optimal Hybrid Power System Using Renewables and Hydrogen for an Isolated Island in the UK. Energy Procedia 2017, 105, 1388–1393. [Google Scholar] [CrossRef]
- Guo, S.; Liu, Q.; Sun, J.; Jin, H. A review on the utilization of hybrid renewable energy. Renew. Sustain. Energy Rev. 2018, 91, 1121–1147. [Google Scholar] [CrossRef]
- Singh, R.; Bansal, R.C.; Singh, A.R.; Naidoo, R. Multi-Objective Optimization of Hybrid Renewable Energy System Using Reformed Electric System Cascade Analysis for Islanding and Grid Connected Modes of Operation. IEEE Access 2018, 6, 47332–47354. [Google Scholar] [CrossRef]
- Straatman, P.J.T.; van Sark, W.G.J.H.M. A new hybrid ocean thermal energy conversion-offshore solar pond (OTEC-OSP) design: A cost optimization approach. Sol. Energy 2008, 82, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Mellit, A.; Benghanem, M.; Kalogirou, S.A. Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure. Renew. Energy 2007, 32, 285–313. [Google Scholar] [CrossRef]
- Anagnostopoulos, J.S.; Papantonis, D.E. Pumping station design for a pumped-storage wind–hydro power plant. Energy Convers. Manag. 2007, 48, 3009–3017. [Google Scholar] [CrossRef]
- Erdinc, O.; Uzunoglu, M. Optimum design of hybrid renewable energy systems: Overview of different approaches. Renew. Sustain. Energy Rev. 2012, 16, 1412–1425. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, C.; Zhang, G. Hybrid forecasting system based on an optimal model selection strategy for different wind speed forecasting problems. Appl. Energy 2019, 250, 1559–1580. [Google Scholar] [CrossRef]
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cassola, F.; Burlando, M. Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Appl. Energy 2012, 99, 154–166. [Google Scholar] [CrossRef]
- Fang, S.; Chiang, H. A High-Accuracy Wind Power Forecasting Model. IEEE Trans. Power Syst. 2017, 32, 1589–1590. [Google Scholar] [CrossRef]
- Erdem, E.; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 2011, 88, 1405–1414. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Q.; Zhang, X. Wind power forecasting based on time series ARMA model. IOP Conf. Ser. Earth Environ. Sci. 2018, 199, 022015. [Google Scholar] [CrossRef]
- Jonsson, T.; Pinson, P.; Nielsen, H.A.; Madsen, H. Exponential smoothing approaches for prediction in real-time electricity markets. Energies 2014, 7, 3710–3732. [Google Scholar] [CrossRef] [Green Version]
- Cadenas, E.; Rivera, W.; Campos-Amezcua, R.; Heard, C. Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model. Energies 2016, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Ran, L. Short-term wind speed forecasting model for wind farm based on wavelet decomposition. In Proceedings of the 3rd International Conference Electronic Utility Deregulation Restructuring Power Technology, Nanjing, China, 6–9 April 2008; pp. 2525–2529. [Google Scholar]
- Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 2014, 34, 243–254. [Google Scholar] [CrossRef]
- Wu, C.; Wang, J.; Chen, X.; Du, P.; Yang, W. A novel hybrid system based on multi-objective optimization for wind speed forecasting. Renew. Energy 2020, 146, 149–165. [Google Scholar] [CrossRef]
- Hu, Y.-L.; Chen, L. A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm. Energy Convers. Manag. 2018, 173, 123–142. [Google Scholar] [CrossRef]
- Khosravi, A.; Koury, R.; Machado, L.; Pabon, J. Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system. Sustain. Energy Technol. Assess. 2018, 25, 146–160. [Google Scholar] [CrossRef]
- Yadav, A.K.; Malik, H. Short-term wind speed forecasting for power generation in Hamirpur, Himachal Pradesh, India, using artificial neural networks. In Applications of Artificial Intelligence Techniques in Engineering; Springer: Singapore, 2019; pp. 263–271. [Google Scholar]
- Chitsaz, H.; Amjady, N.; Zareipour, H. Wind power forecast using wavelet neural network trained by improved clonal selection algorithm. Energy Convers. Manag. 2015, 89, 588–598. [Google Scholar] [CrossRef]
- Quan, H.; Srinivasan, D.; Khosravi, A. Short-term load and wind power forecasting using neural network-based prediction intervals. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Osorio, G.; Matias, J.; Catalao, J. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 2015, 75, 301–307. [Google Scholar] [CrossRef]
- Jiang, P.; Yang, H.; Heng, J. A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting. Appl. Energy 2019, 235, 786–801. [Google Scholar] [CrossRef]
- Liu, T.; Jin, Y.; Gao, Y. A new hybrid approach for short-term electric load forecasting applying support vector machine with ensemble empirical mode decomposition and whale optimization. Energies 2019, 12, 1520. [Google Scholar] [CrossRef] [Green Version]
- Lydia, M.; Kumar, S.S.; Selvakumar, A.I.; Kumar, G.E.P. Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Convers. Manag. 2016, 112, 115–124. [Google Scholar] [CrossRef]
- Han, Y.; Mi, L.; Shen, L.; Cai, C.S.; Liu, Y.; Li, K.; Xu, G. A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting. Appl. Energy 2022, 312, 118777. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, H.; Wang, J.; Yang, X.; Yan, R.; Jia, J. Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction. Energy Convers. Manag. 2020, 205, 112345. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Kozekalani Sales, A.; Safari, M.J.S. Estimating the short-term and long-term wind speeds: Implementing hybrid models through coupling machine learning and linear time series models. SN Appl. Sci. 2020, 2, 1048. [Google Scholar] [CrossRef]
- Potter, C.W.; Negnevitsky, M. Very short-term wind forecasting for Tasmanian power generation. IEEE Trans. Power Syst. 2006, 21, 965–972. [Google Scholar] [CrossRef]
- Mogos, A.S.; Salauddin, M.; Liang, X.; Chung, C.Y. An Effective Very Short-Term Wind Speed Prediction Approach Using Multiple Regression Models. IEEE Can. J. Electr. Comput. Eng. 2022, 45, 242–253. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.; Li, Y. An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm. Renew. Energy 2018, 123, 694–705. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, Y.; Wang, J. Short-term wind speed forecasting using a hybrid model. Energy 2017, 119, 561–577. [Google Scholar] [CrossRef]
- Yuan, X.; Tan, Q.; Lei, Q.X.; Yuan, Y.; Wu, X. Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine. Energy 2017, 129, 122–137. [Google Scholar] [CrossRef]
- Prema, V.; Bhaskar, M.S.; Almakhles, D.; Gowtham, N.; Rao, K.U. Critical Review of Data, Models and Performance Metrics for Wind and Solar Power Forecast. IEEE Access 2022, 10, 667–688. [Google Scholar] [CrossRef]
- Asim Singh, S.N.; Mohapatra, A. Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting. Renew. Energy 2019, 136, 758–768. [Google Scholar] [CrossRef]
- Liu, D.; Niu, D.; Wang, H.; Fan, L. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew. Energy 2014, 62, 592–597. [Google Scholar] [CrossRef]
- Peng, H.; Liu, F.; Yang, X. A hybrid strategy of short term wind power prediction. Renew. Energy 2013, 50, 590–595. [Google Scholar] [CrossRef]
- Lawan, S.M.; Abidin, W.A.W.Z.; Masri, T. Implementation of a topographic artificial neural network wind speed prediction model for assessing onshore wind power potential in Sibu, Sarawak. Egypt. J. Remote Sens. Space Sci. 2020, 23, 21–34. [Google Scholar] [CrossRef]
- Khasanzoda, N.; Zicmane, I.; Beryozkina, S.; Safaraliev, M.; Sultonov, S.; Kirgizov, A. Regression model for predicting the speed of wind flows for energy needs based on fuzzy logic. Renew. Energy 2022, 191, 723–731. [Google Scholar] [CrossRef]
- Safaraliev, M.; Kiryanova, N.; Matrenin, P.; Dmitriev, S.; Kokin, S.; Kamalov, F. Medium-term forecasting of power generation by hydropower plants in isolated power systems under climate change. Energy Rep. 2022, 8, 765–774. [Google Scholar] [CrossRef]
- Manusov, V.; Beryozkina, S.; Nazarov, M.; Safaraliev, M.; Zicmane, I.; Matrenin, P.; Ghulomzoda, A. Optimal Management of Energy Consumption in an Autonomous Power System Considering Alternative Energy Sources. Mathematics 2022, 10, 525. [Google Scholar] [CrossRef]
- Ghulomzoda, A.; Safaraliev, M.; Matrenin, P.; Beryozkina, S.; Zicmane, I.; Gubin, P.; Gulyamov, K.; Saidov, N. A Novel Approach of Synchronization of Microgrid with a Power System of Limited Capacity. Sustainability 2021, 13, 13975. [Google Scholar] [CrossRef]
- Matrenin, P.; Safaraliev, M.; Dmitriev, S.; Kokin, S.; Eshchanov, B.; Rusina, A. Adaptive ensemble models for medium-term forecasting of water inflow when planning electricity generation under climate change. Energy Rep. 2022, 8, 439–447. [Google Scholar] [CrossRef]
- Safaraliev, M.K.; Odinaev, I.N.; Ahyoev, J.S.; Rasulzoda, K.N.; Otashbekov, R.A. Energy Potential Estimation of the Region’s Solar Radiation Using a Solar Tracker. Appl. Sol. Energy 2020, 56, 270–275. [Google Scholar] [CrossRef]
- Kirgizov, A.K.; Dmitriev, S.A.; Safaraliev, M.K.; Pavlyuchenko, D.A.; Ghulomzoda, A.H.; Ahyoev, J.S. Expert system application for reactive power compensation in isolated electric power systems. Int. J. Electr. Comput. Eng. 2021, 5, 3682–3691. [Google Scholar] [CrossRef]
- Laldjebaev, M.; Isaev, R.; Saukhimov, A. Renewable energy in Central Asia: An overview of potentials, deployment, outlook, and barriers. Energy Rep. 2021, 7, 3125–3136. [Google Scholar] [CrossRef]
- Sangov, K.S.; Chorshanbiev, S.N. Integration of Renewable Energy Sources into the Power Supply System of the Murghab Settlement, Gorno-Badakhshan Autonomous Region. In Proceedings of the Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), Saint Petersburg, Russia, 25–28 January 2022; pp. 1260–1263. [Google Scholar]
- Sharifov, B.N.; Safaraliev, M.K.; Manusov, V.Z.; Kokin, S.E.; Dmitriev, S.A.; Tavlintsev, A.S.; Gulyamov, K.H. Electromagnetic transients in the control system of output parameters of a solar power plant in Tajikistan Central Asia region. Int. J. Hydrogen Energy 2022, 47, 5757–5765. [Google Scholar] [CrossRef]
- Matrenin, P.V.; Manusov, V.Z.; Khalyasmaa, A.I.; Antonenkov, D.V.; Eroshenko, S.A.; Butusov, D.N. Improving Accuracy and Generalization Performance of Small-Size Recurrent Neural Networks Applied to Short-Term Load Forecasting. Mathematics 2020, 8, 2169. [Google Scholar] [CrossRef]
Hyperparameters | Neurons | Learning Rate | Epochs | MAPE, Train Set | MAPE, val. Set |
---|---|---|---|---|---|
ReLU, Adam | 15 | 10−3 | 800 | 15.34 | 19.57 |
ReLU, SGD | 9 | 10−3 | 1200 | 31.6 | 31.08 |
Sigm., Adam | 12 | 10−3 | 1800 | 30.73 | 30.21 |
Sigm., SGD | 15 | 10−2 | 600 | 34.09 | 32.75 |
Hyperparameters | Neurons | Learning Rate | Epochs | MAPE, Train Set | MAPE, val. Set |
---|---|---|---|---|---|
ReLU, Adam | 15 | 10−3 | 600 | 24.58 | 22.11 |
ReLU, SGD | 6 | 10−3 | 1200 | 34.97 | 33.19 |
Sigm., Adam | 6 | 10−3 | 1200 | 36.05 | 33.65 |
Sigm., SGD | 15 | 10−2 | 600 | 36.48 | 33.78 |
Hyperparameters | Neurons | Learning Rate | Epochs | MAPE, Train Set | MAPE, val. Set |
---|---|---|---|---|---|
ReLU, Adam | 12 | 10−3 | 600 | 21.58 | 22.58 |
ReLU, SGD | 12 | 10−4 | 1000 | 26.49 | 25.20 |
Sigm., Adam | 12 | 10−3 | 1200 | 27.06 | 25.24 |
Sigm., SGD | 3 | 10−4 | 1000 | 27.01 | 25.20 |
Hyperparameters | Neurons | Learning Rate | Epochs | MAPE, Train Set | MAPE, val. Set |
---|---|---|---|---|---|
ReLU, Adam | 15 | 10−3 | 600 | 19.44 | 27.78 |
ReLU, SGD | 18 | 10−3 | 400 | 36.31 | 36.71 |
Sigm., Adam | 12 | 10−3 | 600 | 38.84 | 38.92 |
Sigm., SGD | 18 | 10−2 | 600 | 38.90 | 38.98 |
Learning Rate | Epochs | MAPE, Train Set | MAPE, val. Set |
---|---|---|---|
10−2 | 200 | 31.98 | 31.07 |
10−2 | 400 | 32.08 | 31.53 |
10−3 | 200 | 27.10 | 27.32 |
10−3 | 400 | 20.09 | 22.49 |
10−3 | 800 | 15.38 | 19.57 |
10−4 | 200 | 34.42 | 35.38 |
10−4 | 400 | 33.47 | 32.40 |
10−4 | 800 | 32.37 | 31.54 |
10−4 | 3000 | 23.11 | 24.55 |
Neurons | MAPE, Train Set | MAPE, val. Set |
---|---|---|
9 | 26.53 | 26.64 |
12 | 20.39 | 24.44 |
15 | 15.38 | 19.57 |
18 | 17.07 | 20.93 |
21 | 18.02 | 21.72 |
Season | Neurons | MAPE, Train Set | MAPE, val. Set | MAPE, val. Set, 24 h ahead |
---|---|---|---|---|
Winter | 18 | 29.40 | 35.39 | 19.57 |
Spring | 15 | 28.26 | 39.50 | 22.11 |
Summer | 18 | 25.43 | 31.91 | 22.58 |
Autumn | 18 | 25.24 | 36.52 | 27.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manusov, V.; Matrenin, P.; Nazarov, M.; Beryozkina, S.; Safaraliev, M.; Zicmane, I.; Ghulomzoda, A. Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems. Sustainability 2023, 15, 1730. https://doi.org/10.3390/su15021730
Manusov V, Matrenin P, Nazarov M, Beryozkina S, Safaraliev M, Zicmane I, Ghulomzoda A. Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems. Sustainability. 2023; 15(2):1730. https://doi.org/10.3390/su15021730
Chicago/Turabian StyleManusov, Vadim, Pavel Matrenin, Muso Nazarov, Svetlana Beryozkina, Murodbek Safaraliev, Inga Zicmane, and Anvari Ghulomzoda. 2023. "Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems" Sustainability 15, no. 2: 1730. https://doi.org/10.3390/su15021730
APA StyleManusov, V., Matrenin, P., Nazarov, M., Beryozkina, S., Safaraliev, M., Zicmane, I., & Ghulomzoda, A. (2023). Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems. Sustainability, 15(2), 1730. https://doi.org/10.3390/su15021730