Simplified Model Predictive Current Control of Four-Level Nested Neutral Point Clamped Converter
Abstract
:1. Introduction
1.1. Motivation and Incitement
1.2. Literature Review and Research Gaps
1.3. Contribution and Paper Organization
- Analyze the mathematical model, control set, and the performance of 4L-NNPC converters.
- This analysis is used for developing an algorithm, called simplified MPCC, which converts 216 current predictions calculations of the conventional MPCC of 4L-NNPC into one required voltage vector (RVV) calculation for each phase.
- After implementation of this algorithm, the calculation burden is significantly reduced (216 × 3 to 1 × 3 calculations) and the performance of the system is not disturbed.
- Consequently, this simplified MPCC technique is much better than the conventional MPCC method, and it contributes to obtaining low-cost and high-performance 4L-NNPC for high-power medium voltage applications.
2. Four-Level Nested Neutral Point Clamped (4-L NNPC) Converter
2.1. Mathematical Modeling of 4L-NNPC Converter
2.2. Predictive Model of Load Current
2.3. Predictive Model of FC Voltages
3. Conventional MPCC of 4L-NNPC
4. Simplified MPCC of the 4L-NNPC Converter
5. Simulation Results and Discussion
5.1. Steady-State Analysis
5.2. Transient-State Analysis
5.2.1. Balance Reference Step Change
5.2.2. Balanced Reference Falling Ramp Change
5.3. Robustness Analysis with DC Link Voltage Variations
5.3.1. Ramp Change in DC Link Voltage
5.3.2. Step Change in DC Link Voltage
5.4. Comparative Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kouro, S.; Malinowski, M.; Gopakumar, K.; Pou, J.; Franquelo, L.G.; Wu, B.; Rodriguez, J.; Pérez, M.A.; Leon, J.I. Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 2010, 57, 2553–2580. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, Z.; Xu, L.; Li, Y. A four-level hybrid-clamped converter with natural capacitor voltage balancing ability. IEEE Trans. Power Electron. 2014, 29, 1152–1162. [Google Scholar] [CrossRef]
- Wu, B.; Narimani, M. High-Power Converters and AC Drives; John Wiley & Sons: Hoboken, NJ, USA, 2017; Volume 59. [Google Scholar]
- Rodriguez, J.; Lai, J.-S.; Peng, F.Z. Multilevel inverters: A survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 2002, 49, 724–738. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.; Bernet, S.; Wu, B.; Pontt, J.O.; Kouro, S. Multilevel voltage-source-converter topologies for industrial medium-voltage drives. IEEE Trans. Ind. Electron. 2007, 54, 2930–2945. [Google Scholar] [CrossRef]
- Saeedifard, M.; Barbosa, P.M.; Steimer, P.K. Operation and control of a hybrid seven-level converter. IEEE Trans. Power Electron. 2012, 27, 652–660. [Google Scholar] [CrossRef]
- Cortés, P.; Kazmierkowski, M.P.; Kennel, R.M.; Quevedo, D.E.; Rodríguez, J. Predictive control in power electronics and drives. IEEE Trans. Ind. Electron. 2008, 55, 4312–4324. [Google Scholar] [CrossRef]
- Cavalcanti, M.C.; De Oliveira, K.C.; De Farias, A.M.; Neves, F.A.; Azevedo, G.M.; Camboim, F.C. Modulation techniques to eliminate leakage currents in transformerless three-phase photovoltaic systems. IEEE Trans. Ind. Electron. 2010, 57, 1360–1368. [Google Scholar] [CrossRef]
- Buticchi, G.; Barater, D.; Lorenzani, E.; Franceschini, G. Digital control of actual grid-connected converters for ground leakage current reduction in PV transformerless systems. IEEE Trans. Ind. Inform. 2012, 8, 563–572. [Google Scholar] [CrossRef]
- Hou, C.-C.; Shih, C.-C.; Cheng, P.-T.; Hava, A.M. Common-mode voltage reduction pulsewidth modulation techniques for three-phase grid-connected converters. IEEE Trans. Power Electron. 2013, 28, 1971–1979. [Google Scholar] [CrossRef]
- Bradaschia, F.; Cavalcanti, M.C.; Ferraz, P.E.; Neves, F.A.; Santos, E.C.; da Silva, J.H. Modulation for three-phase transformerless Z-source inverter to reduce leakage currents in photovoltaic systems. IEEE Trans. Ind. Electron. 2011, 58, 5385–5395. [Google Scholar] [CrossRef]
- Kaźmierkowski, M.P.; Krishnan, R.; Blaabjerg, F. Control in Power Electronics: Selected Problems; Academic Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Mohan, T.M.U.N.; Robbins, W.P. Power Electronics; Wiley: Hoboken, NJ, USA, 1995; Volume 2. [Google Scholar]
- Linder, A. Modellbasierte Prädiktivregelung in Der Antriebstechnik; Wuppertal University: Wuppertal, Germany, 2005. [Google Scholar]
- Rivera, M.; Rodriguez, J.; Espinoza, J.R.; Abu-Rub, H. Instantaneous reactive power minimization and current control for an indirect matrix converter under a distorted ac supply. IEEE Trans. Ind. Inform. 2012, 8, 482–490. [Google Scholar] [CrossRef]
- Anees, M.; Tariq, M.; Lodi, K.A.; Alam, M.; Chakrabortty, R.K.; Ryan, M.J. Reactive power compensation for grid by Packed-U-Cell inverter using model predictive control strategy with intelligent multi-objective scheme. J. Intell. Fuzzy Syst. 2022, 42, 793–806. [Google Scholar] [CrossRef]
- Alam, M.; Tariq, M.; Anees, M.A.; Azeem, A.; Lodi, K.A.; Bharatiraja, C. Model Predictive Control Based Reactive Power Compensation for Integration of Packed U Cell Inverter with Grid. In Proceedings of the 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 18–21 December 2018, Madras, India; IEEE: New York, NY, USA; pp. 1–6.
- Sanchez, P.M.; Machado, O.; Peña, E.J.B.; Rodríguez, F.J.; Meca, F.J. FPGA-based implementation of a predictive current controller for power converters. IEEE Trans. Ind. Inform. 2013, 9, 1312–1321. [Google Scholar] [CrossRef]
- Scoltock, J.; Geyer, T.; Madawala, U.K. A comparison of model predictive control schemes for MV induction motor drives. IEEE Trans. Ind. Inform. 2013, 9, 909–919. [Google Scholar] [CrossRef]
- Preindl, M.; Bolognani, S. Model predictive direct torque control with finite control set for PMSM drive systems, Part 1: Maximum torque per ampere operation. IEEE Trans. Ind. Inform. 2013, 9, 1912–1921. [Google Scholar] [CrossRef]
- Preindl, M.; Bolognani, S. Model predictive direct torque control with finite control set for PMSM drive systems, part 2: Field weakening operation. IEEE Trans. Ind. Inform. 2013, 9, 648–657. [Google Scholar] [CrossRef]
- Xia, C.; Wang, M.; Song, Z.; Liu, T. Robust model predictive current control of three-phase voltage source PWM rectifier with online disturbance observation. IEEE Trans. Ind. Inform. 2012, 8, 459–471. [Google Scholar] [CrossRef]
- Stephens, M.A.; Manzie, C.; Good, M.C. Model predictive control for reference tracking on an industrial machine tool servo drive. IEEE Trans. Ind. Inform. 2013, 9, 808–816. [Google Scholar] [CrossRef]
- Kennel, F.; Gorges, D.; Liu, S. Energy management for smart grids with electric vehicles based on hierarchical MPC. IEEE Trans. Ind. Inform. 2013, 9, 1528–1537. [Google Scholar] [CrossRef]
- Vyncke, T.J.; Thielemans, S.; Melkebeek, J.A. Finite-set model-based predictive control for flying-capacitor converters: Cost function design and efficient FPGA implementation. IEEE Trans. Ind. Inform. 2013, 9, 1113–1121. [Google Scholar] [CrossRef]
- Toit, D.D.; Mouton, H.T.; Kennel, R.; Stolze, P. Predictive control of series stacked flying-capacitor active rectifiers. IEEE Trans. Ind. Inform. 2013, 9, 697–707. [Google Scholar] [CrossRef]
- Acuna, P.; Moran, L.; Rivera, M.; Dixon, J.; Rodriguez, J. Improved active power filter performance for renewable power generation systems. IEEE Trans. Power Electron. 2014, 29, 687–694. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, J. Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks. IEEE Trans. Ind. Inform. 2012, 8, 746–756. [Google Scholar] [CrossRef]
- Yaramasu, V.; Rivera, M.; Wu, B.; Rodriguez, J. Model predictive current control of two-level four-leg inverters—Part I: Concept, algorithm, and simulation analysis. IEEE Trans. Power Electron. 2013, 28, 3459–3468. [Google Scholar] [CrossRef]
- Rivera, M.; Wilson, A.; Rojas, C.A.; Rodriguez, J.; Espinoza, J.R.; Wheeler, P.W.; Empringham, L. A comparative assessment of model predictive current control and space vector modulation in a direct matrix converter. IEEE Trans. Ind. Electron. 2013, 60, 578–588. [Google Scholar] [CrossRef]
- Rodriguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; Abu-Rub, H.; Young, H.A.; Rojas, C.A. State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inform. 2013, 9, 1003–1016. [Google Scholar] [CrossRef]
- Alam, M.; Ahmad, S.; Anees, M.A.; Tariq, M.; Azeem, A. Comprehensive Review on Model Predictive Control Applied to Power Electronics. Recent Adv. Electr. Electron. Eng. Former. Recent Pat. Electr. Electron. Eng. 2020, 13, 632–640. [Google Scholar] [CrossRef]
- Cortés, P.; Ortiz, G.; Yuz, J.I.; Rodríguez, J.; Vazquez, S.; Franquelo, L.G. Model predictive control of an inverter with output $ LC $ filter for UPS applications. IEEE Trans. Ind. Electron. 2009, 56, 1875–1883. [Google Scholar] [CrossRef]
- Iqbal, H.; Tariq, M.; Sarfraz, M.; Anees, M.A.; Alhosaini, W.; Sarwar, A. Model predictive control of Packed U-Cell inverter for microgrid applications. Energy Rep. 2022, 8, 813–830. [Google Scholar] [CrossRef]
- Hassan, M.; Atif, R.; Ge, X.; Teklu, W.A.; Munir, H.M.; Amjad, M. Model predictive current control of multilevel inverter in traction system. In Proceedings of the 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Swat, Pakistan, 24–25 July 2019. [Google Scholar]
- Rodriguez, J.; Pontt, J.; Silva, C.A.; Correa, P.; Lezana, P.; Cortés, P.; Ammann, U. Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 2007, 54, 495–503. [Google Scholar] [CrossRef]
- Cortes, P.; Rodriguez, J.; Silva, C.; Flores, A. Delay compensation in model predictive current control of a three-phase inverter. IEEE Trans. Ind. Electron. 2012, 59, 1323–1325. [Google Scholar] [CrossRef]
- Xia, C.; Liu, T.; Shi, T.; Song, Z. A simplified finite-control-set model-predictive control for power converters. IEEE Trans. Ind. Inform. 2013, 10, 991–1002. [Google Scholar]
- Bilal Waheed, M.; Bhatti, A.R.; Amjad, M.; Saleem, Y.; Niazi, S.A.; Khokhar, S. A simplified model predictive control of four-leg two-level inverter. Electr. Power Compon. Syst. 2019, 47, 1287–1302. [Google Scholar] [CrossRef]
- Hassan, M.; Ge, X.; Atif, R.; Woldegiorgis, A.T.; Mastoi, M.S.; Shahid, M.B. Computational efficient model predictive current control for interior permanent magnet synchronous motor drives. IET Power Electron. 2022, 15, 1111–1133. [Google Scholar] [CrossRef]
- Narimani, M.; Wu, B.; Cheng, Z.; Zargari, N.R. A new nested neutral point-clamped (NNPC) converter for medium-voltage (MV) power conversion. IEEE Trans. Power Electron. 2014, 29, 6375–6382. [Google Scholar] [CrossRef]
- Narimani, M.; Wu, B.; Yaramasu, V.; Cheng, Z.; Zargari, N.R. Finite control-set model predictive control (FCS-MPC) of nested neutral point-clamped (NNPC) converter. IEEE Trans. Power Electron. 2015, 30, 7262–7269. [Google Scholar] [CrossRef]
States | Sx1 | Sx2 | Sx3 | Sx4 | Sx5 | Sx6 | VCx1 | VCx2 | Vx |
---|---|---|---|---|---|---|---|---|---|
D | 1 | 1 | 1 | 0 | 0 | 0 | No Impact | No Impact | |
C2 | 1 | 0 | 1 | 1 | 0 | 0 | Charging (ix > 0) Discharging (ix < 0) | No Impact | |
C1 | 0 | 1 | 1 | 0 | 0 | 1 | Discharging (ix > 0) Charging (ix < 0) | Discharging (ix > 0) Charging (ix < 0) | |
B2 | 1 | 0 | 0 | 1 | 1 | 0 | Charging (ix > 0) Discharging (ix < 0) | Charging (ix > 0) Discharging (ix < 0) | |
B1 | 0 | 0 | 1 | 1 | 0 | 1 | No Impact | Discharging (ix > 0) Charging (ix < 0) | |
A | 0 | 0 | 0 | 1 | 1 | 1 | No Impact | No Impact | 0 |
Converter Parameters | Values |
---|---|
Converter rating | 5 MVA |
Input DC voltage | 12.5 KV |
Rated current | 400 A |
Output voltages | 7.2 KV |
Flying capacitors® | 1000 μF |
Output frequency (f) | 50 Hz |
Output inductor (L) | 15 mH |
Output load® | 10 Ω |
MPCC Parameters | Values |
---|---|
Sampling time | 20 µs |
Prediction horizon | 1 |
Weighting factor | 0.096 |
Controller | Time(s) | Error (%) | Frequency (Hz) | THD (%) |
---|---|---|---|---|
Conventional MPCC | 2.3 | 0.86 | 1237 | 0.36 |
Simplified MPCC | 1.85↓ | 0.35↓ | 1136↓ | 0.29↓ |
x-Axis Variables | Description |
---|---|
A | Steady-state reference current |
B C | Reference current step change Reference current falling ramp |
D | Reference current rising ramp |
E | DC link voltage step change |
F G | DC link voltage falling ramp DC link voltage rising ramp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atif, R.; Hassan, M.; Shahid, M.B.; Munir, H.M.; Saeed, M.S.R.; Shahzad, M.; Isik, S.; Alharbi, M. Simplified Model Predictive Current Control of Four-Level Nested Neutral Point Clamped Converter. Sustainability 2023, 15, 955. https://doi.org/10.3390/su15020955
Atif R, Hassan M, Shahid MB, Munir HM, Saeed MSR, Shahzad M, Isik S, Alharbi M. Simplified Model Predictive Current Control of Four-Level Nested Neutral Point Clamped Converter. Sustainability. 2023; 15(2):955. https://doi.org/10.3390/su15020955
Chicago/Turabian StyleAtif, Rao, Mannan Hassan, Muhammad Bilal Shahid, Hafiz Mudassir Munir, Mahmoud S. R. Saeed, Muhammad Shahzad, Semih Isik, and Mohammed Alharbi. 2023. "Simplified Model Predictive Current Control of Four-Level Nested Neutral Point Clamped Converter" Sustainability 15, no. 2: 955. https://doi.org/10.3390/su15020955
APA StyleAtif, R., Hassan, M., Shahid, M. B., Munir, H. M., Saeed, M. S. R., Shahzad, M., Isik, S., & Alharbi, M. (2023). Simplified Model Predictive Current Control of Four-Level Nested Neutral Point Clamped Converter. Sustainability, 15(2), 955. https://doi.org/10.3390/su15020955