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Abstract: Precise and detailed speed information is indispensable for ensuring safe and efficient
transportation. This is particularly true within unstable flow (UF) segments, which are especially
prone to accidents due to the significant speed variations between vehicles and across lanes, and in
the context of evolving transportation systems, where autonomous and non-autonomous vehicles
are increasingly mixing. To address the limitations of existing methods in providing such data, this
study aims to improve the detail, accuracy, and granularity of road information for micro-segments
by leveraging individual vehicle big data. The proposed approach utilizes the geohash algorithm
for spatial segmentation and introduces a novel criterion for identifying UF segments based on the
relationship between space mean speed (SMS) and time mean speed (TMS). The presented strategy
was validated through a comprehensive analysis of DTG (Digital Tachograph) data from freight
vehicles on Expressway No. 50 in the Gyeonggi region in the Republic of Korea. As a result, a total of
301 segments were identified, including 178 eastbound and 123 westbound segments. UF segments
corresponded to partitions falling beyond the reference standard deviation range. Compared with
VDS (Vehicle Detection System) and conzone speeds, the proposed method provided more precise and
continuous speed information, surpassing those obtained from conventional link-based approaches.

Keywords: geohash; space mean speed; time mean speed; unstable segment; speed deviation

1. Introduction

By the year 2022, the Republic of Korea witnessed a total of 196,836 traffic accidents,
resulting in 2735 fatalities. Alarmingly, on expressways alone, the accident count reached
4860, with 184 lives lost—nearly 2.7 times the fatality rate compared with other roadways.
Because of the median barriers featured by expressways, most of those accidents were
side or rear-end collisions (1207 and 1698, respectively), whereas only 40 corresponded to
head-on collisions, as shown in Table 1. A significant contributor to accidents is unstable
flow (UF) caused by various interferences affecting traffic movement, such as interactions
at entrance and exit ramps and accidents, which lead to rapid speed reductions as traffic
volume escalates. The prevalence of UF across continuous flow zones like highways
underscores its potential role in traffic accidents, necessitating the classification of road
segments based on their traffic flow characteristics.

Currently, traffic information segments (a unit of the road network that provides
speed information) are established on nodes and links derived from the road’s central
axis. Nodes and links are generated at locations such as road intersections, origin and
destination points, traffic control sections, points of structural or road management changes,
administrative zone transitions, and entry/exit junctures. However, due to these static
links, traffic information segments do not correspond to actual speed alteration segments or
indicate speed attributes, i.e., despite internal speed differentials within the same segment,
they are presented as a singular data entity.
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Table 1. Traffic accident statistics in 2022.

Accident Type Road Type Number of Accidents Number of Deaths Number of Injured

Head-on collision

National highway 7849 110 12,590
Provincial road 5376 88 8707

Metropolitan city road 28,854 112 42,697
City road 25,989 207 38,946

County road 3568 48 5587
Expressway 1333 10 2374
Unknown 3588 15 5255

Rear-end collision

National highway 4521 66 8403
Provincial road 2052 27 3736

Metropolitan city road 11,917 48 19,860
City road 8820 69 15,075

County road 694 16 1176
Expressway 1943 100 4852
Unknown 1257 3 2091

Etc./unknown

National highway 4729 41 7093
Provincial road 2171 18 3301

Metropolitan city road 17,893 75 25,026
City road 13,276 69 18,890

County road 739 8 1097
Expressway 1374 27 2775
Unknown 3733 14 5191

The rapid advancement of autonomous vehicles and Cooperative Intelligent Trans-
portation Systems (C-ITS) is expected to transform the road/traffic environment into a com-
plex amalgamation of autonomous and non-autonomous vehicles in the near future. This
underscores the critical importance of ensuring precision and accuracy in the surrounding
vehicle attribute data (such as location and speed) obtained through Vehicle-to-Everything
(V2X) communication [1]. Notably, the acquisition of precise micro-segmented speed data is
considered a pivotal factor for ensuring safe and comfortable vehicle operation, facilitating
autonomous driving, and seamless C-ITS integration in environments where autonomous
and non-autonomous vehicles coexist [2]. The provision of precise and reliable information
on the speed of proximate vehicles within a relatively large spatial domain is particu-
larly critical to ensuring safety when implementing autonomous driving with high-speed
vehicles, given the reduced reaction time available for unforeseen circumstances [3].

The present study utilizes substantial Digital Tachograph (DTG) data—big data con-
taining location information acquired from individual vehicles—to identify and expound
upon UF occurrences, such as instances of speed alterations and segments characterized
by velocity disparities between lanes. We introduce discerning criteria for segregating seg-
ments characterized by uneven speed distribution, employing space mean speed (SMS) to
detect both intra- and inter-vehicle speed differences within a single segment. Furthermore,
to provide detailed traffic information, we divide UF segments where speed differences
occurred by lane.

2. Literature Review

A junction is a location where vehicles merge and sort, prompted by competitive
conflicts arising from divergent traffic demands. Primarily established to link the traffic
streams of an expressway and a standard route, this segment exhibits a higher frequency of
lane changes compared with the main expressway artery, resulting in inherently unstable
traffic flow, heightened congestion, and a higher propensity for accidents. The most
common type of connections are entrance and exit ramps; the impact area is calculated
based on the junction’s geometric design, road alignment, and lane count, whereas service
levels are determined based on traffic volume [4]. Efforts to mitigate UF have encompassed
the integration of Variable Message Signs (VMS) and density metrics within a congestion
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prediction model that leverages the cumulative moving average of vehicle speed arrays [5].
A vehicle trajectory model rooted in Vehicle Detection System (VDS) data was used in the
construction of a dynamic Origin–Destination (O-D) prediction model to explore congested
traffic flow dynamics [6]. Factors that can explain lane interdependencies were identified in
the study “Development of Impulse Propagation Model between Lanes through Temporal-
Spatial Analysis” [7]. This led to the development of a lane impact propagation model,
employing multiple regression analysis to quantify impact based on the analyzed segment
and lane. Notably, prior research grappled with the challenge of precisely timing UF
instances through the examination of detector data from junctions, such as entrance and
exit ramps.

Given the inherent variation in speeds within a traffic stream, an accurate single
depiction of the speed of a traffic stream necessitates understanding speed distribution,
typically approximated by a normal distribution. The average speed is usually divided into
two components: time mean speed (TMS) and SMS. TMS represents the arithmetic mean
of speeds exhibited by vehicles traversing a point or short road segment over a defined
interval. On the other hand, SMS quantifies the sum of all vehicles passing through a specific
segment within a specific period, divided by the distance traveled [8]. Consequently, the
speed of vehicles in a specific segment is expressed by the relationship between TMS and
SMS, with UF surfacing when individual vehicle speeds diverge from a given value.

Because they are fixed on individual vehicles and provide crucial information about
their operation, DTG data emerge as a promising resource for generating finer-grained
micro-speed information [9]. The widespread integration of diverse sensors within vehicles
has ushered in an era of location-based big data, sourced from individual vehicle sensors.
These data assume a pivotal role by not only contributing to road and traffic information
but also offering insights into the operational conditions of neighboring vehicles [10].
Particularly, DTG data based on satellite positioning systems differ from VDS data collected
through devices such as loop detectors and Closed-Circuit Television (CCTV) due to
their ability to furnish copious amounts of data, encompassing vehicle locations and
instantaneous speeds. While VDS data bear reliability, their utility is constrained by their
focus on point information, thereby limiting their ability to capture the dynamic behaviors
of vehicles characterized by frequent accelerations and decelerations [11]. Moreover, the
generation of diverse traffic information faces spatial limitations, potentially compromising
the reliability of the yielded data depending on the traffic environment [12].

The expeditious processing of DTG big data is an imperative facet in collating and
presenting micro-segment speed information of vehicles. In this regard, the velocity in
processing location-based big data is the most important aspect in deciding whether big
data-driven road and traffic information can be delivered in real time [13]. Notably, the
potency and rapidity of spatial analysis exert a commanding influence on the processing
of location-based big data. However, the present approach of spatial analysis, entailing
the connection of current point data with link data, proves inadequate for real-time data
provisioning due to its requirement of map matching technology. This arises from the
necessity to precisely map coordinates onto the geographical layout and subsequently
match them with the requisite buffer area encompassing surrounding links. Moreover,
depending on the distance between data points and reference points, varied matching
strategies—ranging from point-to-point and point-to-curve to curve-to-curve approaches—
to align individual vehicle big data with map data may lead to considerable errors [14,15].
Therefore, providing accurate speed information based on DTG big data hinges on a
comprehensive assessment of accurate and efficient matching procedures between spatial
orientation and data representation.

Various methodologies have been proposed for generating accurate vehicle speed
data. Han [16] examined methodologies for calculating SMS on expressways, utilizing
vehicle trajectory data from radar detectors. Ko [17] discussed the challenges of continuous
micro-traffic analysis, contrasting prevalent image-based traffic analysis approaches with a
microscopic traffic analysis framework using drone-acquired photographs. These aerial
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images facilitated the extraction of essential metrics, including speed, traffic volume, and
density. Liu [18] employed GPS data to compute SMS for node links, elucidating the nexus
between speed and vehicle collision incidents along a segment of the Shanghai trunk route.

While the aforementioned studies have contributed commendable methodologies for
generating accurate speed data pertinent to their respective datasets, certain limitations
persist. First, data procured from roadside stations, loop detectors, CCTV, and probe cars
operate within a static link framework relative to the road’s central axis. This approach,
however, may fall short of representing genuine speed variations or capturing speed
homogenous segments characterized by distinctive speed attributes. Fixed sensors like
radar and loop detectors solely furnish speed information at designated points, neglecting
the broader spatiotemporal distribution of speed [19]. Second, speed data emanating
from node links cannot adequately reflect micro-segment attributes. Lastly, methodologies
reliant on mobile platform videos face difficulties in acquiring continuous, relevant data
and maintaining constant observation [17].

Numerous investigations have explored the geographic alignment of vehicle big data
based on Global Navigation Satellite Systems (GNSS). Zhao [20] mapped GPS data on a
60 m grid to predict vehicle speeds. Ibarra-Espinosa [21] generated regional model data
for traffic flow and speed, mapping vehicle GPS data on a fixed grid. Liu [18] studied
spatial patterns of urban traffic congestion through a grid-based analysis of node capacity
shortages, bottlenecks, and intersection congestion trends. Nonetheless, because these
existing studies rely on a fixed grid size, their accuracy may vary depending on the grid
configuration. Moreover, reducing grid size to enhance precision might inadvertently delay
data processing.

The central aim of this study was to create dynamic homogeneous speed zones from
DTG data and to use them to facilitate the generation of speed information pertinent to
micro-segments. These homogeneous speed zones were determined by comparing TMS
and SMS. Typically, drivers are presented with an average speed for a designated segment,
which is further partitioned into TMS and SMS. TMS and SMS represent, respectively,
the arithmetic mean of vehicle speeds traversing a point or small road segment within
a specified timeframe, and the quotient of speed by the distance covered by all vehicles
transiting a road segment during the same period [8]. Usually, TMS is lower than SMS and
both would be equal if all vehicles within a segment maintained an identical pace. Thus,
the similarity between TMS and SMS serves as a metric for assessing the uniformity of
vehicle speeds within a given segment. The present study evaluates TMS-SMS congruence
based on the correlation between the two speeds. Past research has drawn upon empirical
analyses to elucidate the relationship between TMS and SMS in the context of vehicles on
expressways or national highways [22]. Garber [23] established an empirical linear linkage
between TMS and SMS within expressway settings. Leong [24] also determined a linear
relationship between these two speeds on a Malaysian national highway.

3. Methodology
3.1. Determination of Unstable Flow

SMS and TMS are equal if all vehicles in the same space have the same speed. How-
ever, divergent individual vehicle speeds introduce discernible differentials between these
two means, as illustrated in Figure 1. The relationship between these mean speeds is math-
ematically expressed in Equation (1). Employing the ratio of the square of TMS speed’s
standard deviation to TMS itself offers an effective measure to quantify the dissimilarity
between these mean speeds. This quantification is particularly informative when speed
variations are uniformly spread across a designated space. In such instances, the extent of
speed variability among vehicles may fluctuate, as dictated by the variance denoted as σ′.
Notably, the range of Speed Fluctuation (SF) per speed resides within the confines defined
by the function of the two mean speeds, as described by Equation (2). This depiction is
graphically elucidated in Figure 2.
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SMS = TMS− σ2
TMS/TMS (1)

SMS = TMS− σ′
2/TMS (2)
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3.2. Establishment of Unstable Flow Boundaries

UF manifests as a significant speed discrepancy among vehicles transiting a brief
segment. This divergence in speed precipitates abrupt decelerations, in turn affecting
trailing vehicles. In this context, the standard deviation, as outlined in Equation (3), serves
as the pivotal demarcation for speed deviations. The crux of this boundary definition lies
in identifying segments characterized by akin actual driving speeds. To expound upon
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this, Figure 3 offers a visualization of DTG data pertinent to Expressway no. 50, specifically
focusing on the right-handed upbound data stream. The calculation of the speed’s standard
variation was executed through link data analysis across eight distinct straight or curved
segments, each devoid of entrance and exit ramp junctions—a configuration summarized in
Table 2. The resulting standard deviation was derived from a sample of six segments tallied
at 9.45 kph, thus serving as the benchmark standard deviation value for this investigation
using Figure 4.

SMS = TMS− 89/TMS (3)

Figure 3. Identifying segments characterized by akin actual driving speeds.

Table 2. A configuration summarized.

Statistics S1 S2 S3 S4 S5 S6 S7 S8 Average

Number 280 342 202 195 219 275 299 121 241

Sum 23,507 27,657 16,885 17,631 19,003 25,488 28,132 11,176 21,185

Average 83.95 80.87 83.59 90.42 86.77 92.68 94.09 92.36 88.09

Median 81 81 83 91 87 87 92 93 86.88

Standard deviation (population) 7.60 8.29 8.61 11.41 9.71 9.34 9.37 11.25 9.45

Standard deviation (samples) 7.61 8.30 8.63 11.44 9.73 9.35 9.38 11.29 9.47

Minimum 73 66 63 71 73 78 80 77 72.63

Maximum 108 103 109 108 108 109 109 109 107.88

Range 35 37 46 37 35 31 29 32 35.25

Minority 106 99 69 83 93 89 84 97 90.00

Majority 81 86 77 81 87 87 87 109 86.88

Variety 27 36 32 27 31 26 29 17 28.13
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Figure 4. Establishment of unstable flow boundaries.

3.3. Dynamic Segmentation Method

In this study, the process of spatial segmentation at the study location was executed
using the geohash algorithm. The geohash algorithm, a grid-based and string encoding
technique, generates a hierarchical grid map by iteratively quartering (2 × 2) the target
region. Figure 5 illustrates the fundamental components of the geohash algorithm. The
black numerals within the figure depict the code assigned to the initial partitioned area,
while the blue, green, and red letters signify grid code numbers corresponding to the
second, third, and fourth subdivisions, respectively. Employing the geohash algorithm,
the study partitioned the geographic expanse of the Republic of Korea, encompassing
longitudes 126◦ to 130◦ and latitudes 34◦ to 38◦.

Figure 5. Geohash-based space segmentation method. (a) N-th (b) N+1st (c) N+2nd spaces.

Dynamic segmentation, a pivotal facet of this study, orchestrates the hierarchy of
segmentation predicated on UF determination. To elaborate, the partitioning process
hinges on the interplay between TMS and SMS, dictating the UF categorization for each
grid. In essence, grids identified as SF halt further partitioning, while non-SF grids undergo
continued subdivision. This dynamic segmentation methodology is comprehensively
depicted in Figure 5. The initial step, depicted in Figure 5a, entails the division of the
grid along both latitude and longitude axes, with sequential codes 0, 1, 2, and 3 allocated.
Grid 3, devoid of road passages, is excluded from this partitioning. Similarly, Figure 5b
displays a parallel division, with space 1 from Figure 5a now labeled as 10, 11, 12, and 13.
To maintain granularity while averting excessive coverage or exceedingly diminutive road
lengths, the study instituted a minimum of 5 partitions and a maximum of 12. This selection
rationale balances the need to avoid overly extensive regions (fewer than 5 partitions) and
the requirement for road segments of adequate length (more than 12 partitions) to furnish
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micro-segment speed data for expressways. As earlier outlined, the partitioning process
follows the pre-determined UF categories. Notably, space 0 qualifies as SF, while spaces
1 and 2 are identified as UF, as illustrated in Figure 6a. The ensuing space segmentation
follows the pattern outlined in Figure 6b. Upon determining space no. 20 as UF, partitioning
proceeds accordingly. When the partition count reaches 12, space 203 again meets the
criteria for UF classification, as evident in Figure 6c, culminating in the conclusion of
further partitioning.

Figure 6. Space segmentation according to the determination of UF. (a) N-th (b) N+1st (c) N+2nd
spaces.

3.4. Research Data

The focal point of this study rests upon expressways, and for the purpose of calculating
micro-segment speeds, DTG data sourced from freight vehicles and expressway node link
data were employed. The study’s aim revolves around partitioning lengthy road segments
based on variations in vehicle speeds and subsequently generating speed data for each
delineated segment. Consequently, emphasis was placed on expressways characterized by
extended segment lengths and higher speed limits. This selection rationale stemmed from
the prevalence of continuous entrance and exit ramp junctions, accident occurrences, and
sporadic instances of congestion—features more pronounced on expressways as compared
with those on urban roads. Urban roads, typified by relatively shorter segment lengths,
lower speed limits, and fluctuations in traffic flow due to intermittent patterns, were thus
excluded from the study’s scope.

To effectively capture prototypical vehicle driving behaviors and amass comprehen-
sive position and speed data, DTG data from freight vehicles were harnessed. While DTG
data can be culled from taxis, buses, and trucks, this study chose to focus solely on freight
vehicles. The rationale behind this exclusion was rooted in the potential divergence in
driving patterns exhibited by taxis and buses, largely stemming from their prevalence
within urban domains. Notably, taxis and city buses often engage in frequent stops, dic-
tated by factors like passenger embarkation, disembarkation, and service halts. Moreover,
the presence of bus-exclusive lanes can introduce distinctive attributes to intercity buses’
driving behaviors. In contrast, freight vehicles exhibit unique characteristics, predomi-
nantly traversing at lower speeds and frequently occupying the right lane. Aligning with
the objective of securing congruence in driving patterns and data availability, this study
concentrated on freight vehicle DTG data. A comprehensive overview of the obtained
data’s scope is enumerated in Table 3.

Data extraction was undertaken based on expressway routes, utilizing the standard
node link framework established by the National Transport Information Center [25]. The
experimental setup encompassed 951 nodes and 2133 links situated on Expressway no.
50 within the Gyeonggi region. The attributes encompassed in this extraction process are
itemized in Table 3.

Table 4 further delineates a comparison between national node links for expressways
and Gyeonggi-do regional node links applicable to urban freeways.
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Table 3. DTG data definition.

Time 1–30 April 2018 Region of Interest (Road) Expressway No. 50 in Gyeonggi-do

Data Size
Approx. 3.13 TB

(Approx. 22.35 billion files,
intervals of 1 s)

Number of
Vehicles 2775

Data Fields

Field Name Attribute Note

T_KEY Trip key Encoding
CARNUM Car number Encoding

SPEED Vehicle speed km/h
WGS84_X Vehicle location X Latitude coordinate (WGS84)
WGS84_Y Vehicle location Y Longitude coordinate (WGS84)

AZIM GIS azimuth Degree
TIME Time Date-hour-minute-second (18042809074000)

Table 4. Node-link data definition.

Expressway Data Fields

Node Link Field Name Attribute Value

Nationwide 4501 9835
LINK_ID Link ID Digit (2440063100)
LANES Number of lanes Digit (5)

ROAD_NO Road number Digit (1)

Gyeonggi-do 951 2133

ROAD_NAME Road name Text (Youngdong)
CONNECT Link Digit (000/101)
MAX_SPD Maximum speed limit Digit (110 km/h)
LENGTH Link length Digit (344.7723755 km)

4. Results and Discussion
4.1. Analysis Results

The DTG data sourced from freight vehicles along the Interstate 50 corridor facilitated
the acquisition of comprehensive individual vehicle information traversing the expressway.
Extracting data from peak traffic periods demonstrated noteworthy fluctuations in speed
homogeneity across distinct timeframes. Notably, Tuesday registered the lengthiest average
trip duration of 339.5 min, coupled with the shortest average journey distance of 165.1 km.
Consequently, data from Tuesday at 9:30 a.m.—falling within the peak hour range of
8:00 a.m. to 10:00 a.m., a period characterized by heightened truck activity—was selected
for further analysis. Raw data fields from truck DTGs underwent preprocessing, with the
encrypted trip key and chassis number serving as criteria for bulk elimination of erroneous
entries. Paramount data for this study encompassed vehicle speed, vehicle position, and
GIS azimuth angle fields, with the ‘TIME’ field employed to facilitate time-based filtering.

The outcome of the 12-step grid partitioning of the Gyeonggi region along Expressway
no. 50, as executed using the geohash algorithm with DTG data, is visually presented in
Figure 7. If it is located above the standard deviation relationship curve between SMS and
TMS, it is classified as SF, and if it is located below, it is classified as UF and the space is
separated repeatedly.

Figure 8 delineates the resultant 12-step grid division for the eastbound Expressway no.
50 in Figure 8a, road line configurations and overlapping segmentation in Figure 8b, and
the extraction of the unstable traffic component within the final 12 segments in Figure 8c. A
parallel analysis conducted on Interstate 50’s westbound trajectory is showcased in Figure 9.
Table 5 comprehensively encapsulates the statistics derived from this analysis. Here, the
part where the matched road alignment was cut off was excluded due to insufficient data
for analysis.
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Figure 7. Comparison of TMS, SMS, and UF boundaries in the12-step grid split result.

Figure 8. Eastbound UF results for Expressway No. 50.
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Figure 9. Westbound UF results for Expressway No. 50.

Table 5. UF results for Expressway No. 50.

Grid
Level

Eastbound Westbound

ID Instance Average
TMS

Average
SMS

Grid
Count ID Instance Average

TMS
Average

SMS
Grid

Count

5 20301 89.29 88.19 8 20301 85.65 84.92 4
6 212033 83.78 82.22 2 213033 89.54 88.67 5
7 2120231 80.44 78.78 3 2120333 88.88 87.83 10
8 21202303 62.46 60.65 8 21231011 93.92 93.44 8
9 212032032 74.85 73.77 9 212311101 80.10 79.12 9

10 2031022200 77.25 76.52 8 2031210231 83.56 82.66 11
11 20312013210 75.60 74.31 5 21230001013 89.85 89.31 13
12 203131231212 80.46 77.97 135 212310103130 88.70 86.19 63

The segmentation results encompassing 301 segments, stemming from the 12-fold
division of 188 grids, identified outliers beyond the standard deviation threshold. Termed
UF segments, these anomalies are featured within the westbound direction of Expressway
no. 50, as depicted in Table 6. Within this context, 13 out of the total 63 segments emerged
as UF segments, distinct in their characteristics.
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Table 6. Comparison of UF in the 12-step split grids for Expressway no. 50.

Grid ID TMS SMS Flow Grid ID TMS SMS Flow Grid ID TMS SMS Flow

212300011203 97.91 96.91 SF 212311110300 82.37 77.41 UF 212300000311 111.12 111.11 SF
212300011202 100.63 100.58 SF 212032031223 48.19 42.32 UF 212300000310 110.42 110.39 SF
212300011201 78.33 77.94 SF 203121023003 81.14 80.84 SF 213200013001 96.40 95.99 SF
212300011200 103.86 103.84 SF 203121023002 67.12 60.04 UF 213200013000 5.50 5.45 SF
212300001201 112.61 112.53 SF 203130321211 4.00 3.87 SF 212310102113 98.22 97.98 SF
212300001200 111.06 111.04 SF 203130321210 78.92 78.86 SF 212310102112 101.53 101.50 SF
212300010123 99.64 98.79 SF 212022113233 81.69 81.56 SF 212300001123 108.50 108.48 SF
212300010122 102.44 102.12 SF 212022113232 80.31 80.17 SF 212300001122 109.44 109.44 SF
212300010023 104.96 104.80 SF 212022103131 46.93 13.00 UF 212300000301 107.94 107.94 SF
212300010022 108.47 108.47 SF 212022103130 13.11 8.92 SF 212300000300 105.38 105.36 SF
212310103102 69.00 48.57 UF 213200011222 53.50 14.89 UF 212310103121 100.24 100.14 SF
212310103003 96.67 96.29 SF 212022113223 79.31 79.15 SF 212310103120 101.06 101.00 SF
212310103002 97.29 97.01 SF 212022113222 77.86 77.69 SF 212300001133 107.96 107.88 SF
212300011212 88.40 85.29 UF 212022113220 81.50 81.22 SF 212300001132 108.90 108.85 SF
212311100311 101.88 101.81 SF 213032233303 45.33 43.88 SF 212300001033 110.05 110.03 SF
212311100310 102.60 102.48 SF 213032233202 75.50 68.51 UF 212300001032 110.78 110.75 SF
212311110311 80.36 74.69 UF 212311111301 86.60 83.80 UF 212300010033 102.92 102.70 SF
212311110310 81.90 76.58 UF 212311111300 83.12 80.40 UF 212300010032 104.68 104.50 SF
212310103013 96.00 95.30 SF 212311111310 96.00 94.34 SF 212310103133 100.81 100.64 SF
212310103012 96.93 96.40 SF 212300010311 104.15 104.12 SF 212310103132 99.67 99.49 SF
212311110301 81.03 75.68 UF 212300010310 104.85 104.82 SF 212310103130 103.25 103.25 SF

4.2. Interpretation of Results

The velocity insights concerning Korean expressway segments are conventionally
established through the concept of ‘conzones,’ wherein VDS facilitate the determination of
instantaneous and average speeds within these delineated areas. A ‘conzone’ constitutes an
expressway segment characterized by a consistent volume of passing vehicles, commonly
associated with nodes such as interchanges, junctions, and toll gates. The particulars of
this mechanism are exhibited in Table 7, which illustrates real-time data captured at 09:00
on 10 April 2018, encompassing various detectors and zones. VDS installations, spaced
at irregular intervals spanning from 330 m to 2.96 km, engage in vehicle speed detection.
Subsequently, the velocity data gleaned from two or more VDSs are amalgamated into an
averaged conzone speed, imparting uniform interval-based information. Nevertheless, this
approach falls short in accounting for instances such as accidents within a segment or the
influence of subdivisions, thereby obscuring insights into UF occurrences.

Table 7. Speed information guidance criteria for westbound segment of Expressway No. 50.

Count VDS_ID Distance
(km)

VDS Zone
Length (m) Conzone ID Instantaneous

Speed (km/h)

1 0500VDE00100 1.3 1240 0500CZE010
2 0500VDE00200 2.3 1050 0500CZE010
3 0500VDE00300 3.4 1300 0500CZE010
4 0500VDE00400 4.9 850 0500CZE010
5 0500VDE00500 6.05 2960 0500CZE020
6 0500VDE00700 8.7 1340 0500CZE025
7 0500VDE00800 9.9 740 0500CZE025
8 0500VDE00900 11.3 2500 0500CZE030 66
9 0500VDE01000 12.6 660 0500CZE040 106

10 0500VDE01100 13.8 1300 0500CZE040 126
...

...
...

...
...

95 0500VDE09400 109.9 1350 0500CZE200 89
96 0500VDE09500 111.2 1950 0500CZE200

Minimum 330 49
Maximum 2960 126
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The spatial domain under scrutiny encompasses the two-way traffic of Expressway no.
50 within Gyeonggi Province, characterized by a cumulative one-way expanse of 102.14 km.
To derive segment speeds, the study employed DTG-based individual vehicle statistics. Seg-
ments featuring uniform speeds bereft of substantial inter-vehicle discrepancies underwent
further partitioning into a geohash-derived grid, establishing a sense of uniformity, termed
SF. In contrast, segments characterized by significant speed disparities among vehicles
were systematically subdivided into smaller units designated as UF, until each grid reached
a minimum size of 100 m. Notably, instances manifesting pronounced disparities in vehicle
speeds, as illustrated in Table 8, were classified as UF segments.

Table 8. Average speed and traffic flow on westbound segment of Expressway No. 50.

Count Length (m) CHGRID Average Speed (km/h) Flow

1 599.52 212311111300 83.12 UF
2 599.52 212311111301 86.60 UF
3 599.60 21320000 107.62 SF
4 472.33 212301 85.19 SF
...

...
...

...
...

8 4900.36 212310103133 100.81 SF
9 468.00 212301 85.19 SF

10 4900.36 212310103130 103.25 SF
...

...
...

...
...

27 39.16 21231011 99.78 SF
...

...
...

...
...

320 599.52 2123111112 82.50 SF
321 599.52 21320000 107.62 SF

Minimum 39.16 4.00
Maximum 5450.80 112.61

With UF segments thus identified, the intricate road network map was subsequently
scrutinized to pinpoint influential variables. Figure 10 elucidates the outcomes of this
analytical endeavor; the red line in the picture is the UF segments analysis result. This line
matches the center line of the road, and the shape of the road matches the background of
the map, highlighting distinct scenarios:

(1) UF emerges as a segment characterized by a mixture of vehicles undergoing speed
reduction before the expressway toll plaza, intermingled with those maintaining high
velocities, yielding an average speed of 51 km per hour.

(2) The UF category is typified by an average speed range of 66–67 kph, wherein vehicles
of varying velocities merge from the right.

(3) The first segment maintains an average speed range of 83–93 kph, juxtaposed with
a second segment registering a speed of 60 kph. The former segment attains Level
of Service A, yet it faces the influence of lane-changing vehicles decelerating into the
right-hand turn lane. Concurrently, vehicles operating at standard speeds along the
mainline further affect this segment. In contrast, the second segment reflects Level of
Service C, contending with the deceleration of vehicles converging towards the toll
plaza ahead, alongside a blend of both sluggish and rapid-moving vehicles.

(4) The final classification designates the speed range of 91–99 kph as UF. This range is
subject to fluctuations attributable to frontal classifications, culminating in a mixture
of slow and swift vehicles traversing the lanes.

Hence, UF characterizes short road segments spanning less than 100 m, wherein
pronounced fluctuations in vehicle speeds ensue, potentially culminating in side or rear-
end collisions. As exemplified in Figure 10, instance 1 highlights scenarios where segment
driving speeds remain relatively low, yet substantial disparities emerge between front
and rear vehicles due to hindrances preceding the lead vehicle or the downstream impact
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of diminished speeds. Additionally, example 4 underscores that even within a relatively
seamless segment marked by elevated overall speeds, noteworthy discrepancies in speed
distribution between left and right lanes may arise. These differentials can be attributed
to abrupt lane shifts, deceleration events related to entering and exiting vehicles, or the
influence of junctions and classification zones. Such nuances elude comprehension through
conventional average segment speed analyses, underscoring the criticality of delving
deeper into speed variations to provide insights into hazardous segment attributes. This
distinctive facet distinguishes the findings of this study from the existing body of research,
spotlighting the paramount importance of driving safety considerations.

Figure 10. Analysis of the precise road network map of the UF segment.

5. Conclusions

This study introduced a methodology aimed at enhancing the precision of road infor-
mation for fine-grained micro-segments through the utilization of individual vehicle big
data and a criterion for categorizing UF segments characterized by speed variations across
lanes. The presented approach involves establishing criteria for identifying segments with
uneven speed distributions, leveraging inter-vehicle speed deviation based on the relation-
ship between SMS and TMS, which can indicate the speed difference of individual vehicles
within the same segment. Segment divisions were determined by computing standard
deviation in speed discrepancies among vehicles through a geohash-coded approach. This
approach, in turn, facilitated the identification and classification of UF segments exhibiting
lane-specific speed differences, thereby providing detailed traffic information.

In this investigation, DTG data encompassing vehicle identifiers, coordinates, azimuth
angles, and speed measurements from freight vehicles were harnessed within the Gyeonggi
region of Expressway No. 50. As a result, a total of 301 segments were identified, including
178 eastbound and 123 westbound segments. UF segments corresponded to partitions
falling beyond the reference standard deviation range. Compared with VDS and conzone
speeds, the proposed method provided more precise and continuous speed information,
surpassing those obtained from conventional link-based approaches.

A salient outcome of this study resides in its ability to pinpoint specific sections char-
acterized by speed differentials and lane-specific velocity fluctuations. This demonstrated
that UF segments can be segmented while under the effect of classification or merging,
yielding insights into sudden decelerations or lane-specific slowdowns along expressways.
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Such information holds a direct correlation with rear-end and side-impact incidents, posi-
tioning it as a valuable tool for furnishing drivers with proactive traffic accident mitigation
guidance. Future research endeavors should contemplate the integration of additional data
sources, including autonomous vehicles, as well as the exploration of lane-specific speed
variation benchmarks based on precise road maps and speed deviation standards for each
vehicle in SF according to specific parameters, including road type, lane configuration,
vehicle category, and road alignment.

Due to its capacity to effectively deliver speed information with higher accuracy, the
methodological framework introduced in this study for generating micro-segment speed in-
formation based on segmentation using individual vehicle big data can be used for real-time
micro-segment speed information services. As a result, this approach holds the potential to
improve the efficiency of the collection, analysis, segmentation, and dissemination of traffic
information, leveraging driving data streams from autonomous, connected, and shared ve-
hicles. Moreover, its applicability extends to supporting secure vehicle operation in dynamic
driving environments encompassing both autonomous and non-autonomous vehicles.
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