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Abstract: With the continuous expansion of power grids and the gradual increase in operational
uncertainty, it is progressively challenging to meet the capacity requirements for power grid devel-
opment based on manual experience. In order to further improve the efficiency of the operation
mode calculation, reduce the consumption of manpower and material resources, and consider the
sustainability of energy development, this paper proposes a typical power grid operation mode
generation method based on Q-learning and the deep belief network (DBN) for the first time. Firstly,
the operation modes of different generator combinations located in different regions are obtained
through Q-learning intelligent generation. Subsequently, the generated operation modes are clustered
as different operation mode sets according to the data characteristics. Furthermore, comprehen-
sive evaluation indexes are proposed from the perspectives of the steady state, transient state, and
the economy. These multi-dimensional indexes are integrated via the analytical hierarchy process–
entropy weight method (AHP-EWM) to enhance the comprehensibility of the evaluation system.
Finally, DBN is introduced to construct a rapid operation mode evaluation model to realize the
evaluation of operation mode sets, and typical operation mode sets are obtained accordingly. In this
way, the system calculator only needs to compare the composite values to obtain the typical operation
modes. The proposed method is validated by the Northeast Power Grid in China. The experimental
results show that the proposed method can quickly generate typical power grid operation modes
according to actual demand and greatly improve the efficiency of operation mode calculation.

Keywords: power grid operation mode; Q-learning; deep belief network; clustering; artificial intelli-
gence

1. Introduction

In the context of large-scale access to a power grid by a high proportion of renewable
energy sources, the power grid structure is becoming progressively more complex and the
number of power grid operation modes that need to be taken into account and the difficulty
of analysis are increasing. Traditional calculation and analysis methods based on manual
experience are unable to address the difficulties caused by power grid improvements, so
there is an urgent need to generate efficient and accurate typical operation modes.

The purpose of operation mode calculations is to ensure that the power production and
load consumption of the whole power grid are equal; however, with the increasing scale
and complexity of the power grid, the operation mode calculation workload is large and
the calculations are inefficient and dependent on manual labor [1]. Lan et al. [2] proposed a
sample generation framework and training method combining the generative adversarial
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network (GAN) and model-based transfer learning, which could efficiently obtain a high-
performance typical operation mode sample generation model. In order to ensure secure
and economical operation modes, Iqbal et al. [3] proposed a novel optimized coordination
strategy for frequency regulation via electric vehicles. Li et al. [4] proposed a fast generation
method of power system operation modes based on optimal power flow, and the experi-
mental results showed that this method had the characteristics of fast calculation speed and
high accuracy. Xu et al. [5] introduced an improved deep-reinforcement-learning-based
approach to obtain a convergent and feasible power flow state automatically, significantly
saving the workload of the operation state calculation. However, the methods proposed in
the above literature are verified in the examples of the IEEE model, and do not consider
how to apply them in the actual power grid. Reinforcement learning has demonstrated
superiority in improving learning performance. With the abilities of autonomous learning
and exploration, adaptability to environmental changes, and interaction with the environ-
ment, it can effectively support the sequential decision-making process [6]. Q-learning is a
widely used reinforcement learning method [7], which is characterized by not relying on
an a priori model of the environment and requiring fewer parameters. It can make good
decisions in the face of high-dimensional, complex environments, and has been applied
to load forecasting [8] and multi-intelligence body reinforcement learning [9]. Xi and
Lei [10] presented the QTLBO and OTLBO algorithms, which integrate Q-learning and
metaheuristics, to proficiently address the challenges of solving the distributed two-stage
hybrid flow shop scheduling problem characterized by fuzzy processing times. Kushwaha
et al. [11] introduced a pioneering approach grounded in Q-learning, enabling intelligent
wind speed sensor-less maximum power point tracking. This innovative methodology
facilitates real-time peak power tracking even under fluctuating conditions. To solve the
energy-sharing problem, Cao et al. [12] designed an energy-sharing algorithm based on the
Q-learning algorithm. Q-learning can provide good decision making in the face of different
situations, so this paper proposes to combine it with the actual power grid to generate
typical power grid operation modes.

System operators analyze historical typical operation modes, summarize the operation
characteristics, and formulate safe and stable operation regulations. To guarantee the
relevance of power grid security and economic operations, along with the applicability
of operation regulations to ensure stability, these personnel meticulously monitor each
mode’s performance under boundary circumstances. A comprehensive and reasonable
index system is the key to evaluating operation modes, while a scientific and appropri-
ate index integration method can reflect the complete and objective level of power grid
operation [13]. Common index integration methods include fuzzy decision theory [14],
fuzzy comprehensive evaluation [15], the entropy weight method [16], AHP-EWM [17],
and so on. Zhou et al. [18] introduced an original method rooted in fuzzy comprehensive
evaluation to optimize suppression techniques, thereby reducing the impact of magnetic
flux leakage generated by air core reactors in static var compensators. Lo et al. [19] pro-
posed an innovative multi-criteria decision analysis model to discern critical failure modes
in products and systems, demonstrating its efficacy through a practical case study. Wang
et al. [20] advocated for evaluating high-voltage direct-current protection system reliability
using the AHP-EWM, which provided both qualitative and quantitative assessments of
equipment performance, confirming its effectiveness and suitability. However, the above
methods are limited by the computational efficiency of the evaluation indexes.

The recent remarkable advancements in deep learning have ushered in a novel cogni-
tive approach for efficient assessments of operation modes. This entails the construction of
machine learning models endowed with multiple concealed layers and an extensive corpus
of training data, thereby enabling an enhanced determination of pivotal attributes [21].
Among deep learning methods, the deep belief network (DBN) [22] has received wide atten-
tion; it adopts a two-stage learning method of forward pre-training and reverse fine-tuning
of parameters to train network parameters. A trained DBN model can fully utilize the
feature extraction advantages of the deep architecture. DBN has been used in uncertainty
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factor generation, such as customer-side load [23] and uncertainty generation, as well
as fault diagnosis [24] and power grid transient analysis [25]. Su et al. [26] integrated
DBN and the Non-dominated Sorting Genetic Algorithm (NSGA-III) to develop a new
preventive control method for a power system. Li and Wu [27] integrated DBN and active
learning based on information entropy to conduct a transient stability assessment within a
power grid. Zhang et al. [28] introduced an innovative framework that seamlessly incorpo-
rates DBN alongside Adaboost algorithms, aimed at achieving precise and efficient power
demand forecasting.

With the aim of enhancing index computation efficiency, in this study, we introduce a
comprehensive power grid operation mode evaluation model based on DBN. This approach
capitalizes on the DBN’s intrinsic feature extraction ability to establish the correlation
between pivotal grid variables and all-encompassing evaluation metrics.

The contributions of this paper are as follows:

1. A power grid operation mode set extraction method based on Q-learning and DB-
SCAN clustering is proposed. Based on several typical operation modes used in
previous years, the load level is expanded by 5% year-on-year in order to simulate the
growth trend of load, and through the reinforcement learning algorithm Q-learning,
the operation modes of different optimal combinations of generators located in differ-
ent regions are intelligently generated. Then, based on the data characteristics of each
operation mode, the DBSCAN clustering algorithm is applied to divide the operation
modes into different clusters to extract operation mode sets. It should be noted that in
this paper, operation modes are generated without considering power grid structure
changes.

2. A rational evaluation index system for the operation modes collection is established.
The key indexes to meet the demand of actual work procedures are selected from three
perspectives: steady state, transient state, and economy mode. Index calculation can
replace the system operator calculation process. At the same time, in order to facilitate
the system operator to compare each mode, and the application of the analytical
hierarchy process–entropy weight method (AHP-EWM) for the fusion of the weights
of the multi-dimensional indexes, the results of the operation of the multi-indicator
mode are synthesized into a single composite value, which effectively reduces the
workload of the system operator.

3. An evaluation model of operation mode sets is established based on DBN. This paper
proposes a fast evaluation method of operation modes based on DBN, which no
longer needs to calculate each index of operation modes, but constructs the correlation
relationship between the feature data of operation modes and the composite values
through a neural network, to quickly and accurately obtain the composite values of
operation modes. In this way, the system operator can select the highest value of each
operation mode set according to the comprehensive value, and then obtain the typical
operation mode.

The sections of this paper are organized as follows: Section 2 presents the methods,
including the reinforcement learning algorithm for intelligent operation mode generation,
the operation mode clustering method based on the historical typical operation mode,
and the operation mode evaluation indexes and the deep learning-based operation mode
evaluation framework. Section 3 presents simulation examples and results of the Northeast
Power Grid in China. Section 4 discusses the results and compares them with other research.
Section 5 concludes the full paper.

2. Methods
2.1. Reinforcement-Learning-Based Power Grid Operation Mode Generation Model
2.1.1. Actual Engineering Needs

In practical engineering, after calculating the converged power flow, the system op-
erator still needs to adjust the power of key transmission sections [29] and analyze the
transient stability to determine the safe and stable operation boundary of the power grid.
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The whole process is cumbersome, inefficient, overly dependent on manual labor, and
unable to keep up with the increasing scale and complexity of the power grid operation
mode calculations. Therefore, an operation mode generation method combining manual ex-
perience and reinforcement learning is proposed. In this paper, we consider the adjustment
of generator switching without preserving the reserve capacity.

The power grid power flow convergence adjustment process can be regarded as a
sequential decision-making process based on reinforcement learning, in which the system
operator is regarded as the agent and the power flow calculation program is regarded
as the environment. The system operator, as an agent, adjusts power grid components
by performing a series of actions, and the effect of this adjustment on each action can be
quantitatively described by feeding back the instantaneous reward value, which reflects the
change in operation mode after each adjustment step. Through continuous interaction with
the environment, the intelligent agent gradually learns which actions lead to significant
improvements in the operation mode, and thus can make more optimal decisions. The
increase in cumulative rewards represents the improved performance and operational
efficiency of the system. In this process, the intelligent agent continuously adjusts its
actions through interaction with the environment and updates its strategies according to
the feedback from the environment, thus gradually improving the overall performance of
the system.

2.1.2. Computational Process Modeling in Operation Modes

The interaction between the intelligent agent and the environment can be described by
a Markov decision process (MDP), which consists of five variables (S, A, P, R, γ). S is the
state space of the system; st is the state of the system at moment t; A is the action space; at is
the action of the intelligent agent at moment t; P is the state transfer function; P(st+1 | st, at)
is the probability of transferring the action at after taking it from state st to state st+1; R is
the reward function; rt is the reward value obtained after taking action at in state st; and
γ is the discount factor (0 ≤ γ ≤ 1), which is used to weigh the effects of immediate and
future reward values on the decision-making process.

In this paper, the Q-learning algorithm is used to calculate the operation mode genera-
tion, while the State–Action value function concept is introduced and a Q-table is created,
which serves to record the reward value after performing action at on state st at moment t.
The state space st at moment t is defined as

st = [p1, p2, . . . , pm, q1, q2, . . . , qm, v1, v2, . . . , vn] (1)

where pi is the active power of the i-th generator; qi is the reactive power of the i-th
generator; vi is the value of the voltage at the i-th bus; m is the number of generators
(excluding the slack machine); and n is the total number of buses. The action space A is
discrete. Let the action space A = [1, 2, . . . , m] denote the corresponding number of the
generator. at = i indicates that generator i is switched on at time t. The algorithm adopts
an ε− greedy strategy to select the action. This entails random selection of an action with
the probability of ε to explore the environment, while opting for the action with the highest
Q-value in the current Q-table with the probability of 1− ε. After executing the chosen
action, the Q-table state is updated accordingly, and the specific state update formula is as
follows:

Qt+1(S, A) = Qt(S, A) + α(Rt+1 + γmaxQt+1(S, A)−Qt(S, A)) (2)

where Qt+1(S, A) is the updated value of the Q-table, Qt(S, A) is the current value of the
Q-table, α is the learning rate, Rt+1 is the reward function, γ is the discount factor, and
maxQt+1(S, A) is the maximum Qt+1(S, A) of the succeeding state St+1. The algorithm
iteratively updates the Q-table values and then determines what action to take in the
succeeding states based on the updated values.

From (2), it can be seen that the instantaneous reward Rt+1 affects the estimation result
Qt+1(S, A), and Qt+1(S, A) also affects the selection of the action At, which determines
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the adjustment direction of the power flow. Thus, a reasonable reward mechanism is the
key to gradually adjusting the power flow to the target interval. In this paper, we only
consider two indexes in the power flow convergence adjustment process: (a) power flow
convergence, which is denoted by conda.1, and (b) the limit of the slack machine output
power, which is denoted by conda.2. Therefore, the reward function is defined as follows:

Rt =

{
1, conda.1&conda.2

0, others
(3)

After the execution of action At, if the power flow calculation converges and the
output power of the slack machine does not exceed the limit, then Rt = 1. Otherwise,
Rt = 0; thus, the fewer the number of adjustment steps, the larger the cumulative reward
obtained under the action of this reward function.

2.2. Feature Extraction for Power Grid Operation Modes

There are many data dimensions of the operation mode and there is a nonlinear
correlation between different dimensions [30], which specifically manifests in a change
in the operation law of related electrical quantities such as the line power flow, generator
output, and node voltage phase angle. Thus, the generated operation mode is preprocessed
to initially compress redundant dimensions, thereby enhancing the operational efficiency
of subsequent algorithms. The original input feature set of each operation mode pi is
defined as

pi = [Gm, Vb, Pl , Ql , P, Q] (4)

where Gm is the switching status of all generation units (1 for power on, 0 for power off);
Vb is the bus voltage magnitude vector of all generation units; Pl is the active power vector
of all loads; Ql is the reactive power vector of all loads; P is the active power vector of the
slack machine; and Q is the reactive power vector of the slack machine.

In order to further explore and analyze the potential features in a series of generated
operation modes, the compressed and processed feature data are subjected to a cluster
analysis. Cluster analysis is an unsupervised learning method to group similar operation
modes into one category and reveal the relationships and commonalities between them.
Ultimately, the operation mode with the highest evaluation value among the clusters
obtained by clustering division is selected as the typical operation mode. The algorithms
for each segment are described in detail below.

2.2.1. Data Preprocessing

In data processing, as the individual electrical quantities have different scales, if
the value of a certain feature is large, the feature will have a large weight in the overall
error calculation; thus, features with smaller values will be ignored. Therefore, during
processing, the first choice is z-score standardized processing of the operation mode data,
that is, the data with different outlines are converted to the same measure for comparison.
The calculation formula is as follows:

x′ =
x− µ

σ
(5)

where x is the observed value of a characteristic in a certain operation mode, µ is the mean
value of the characteristic data, σ is the standard deviation of the characteristic data, and x′

is the normalized data value.
Then, Principal Component Analysis (PCA) [31] is used to compress the redundant

dimensions of the high-dimensional operation mode data, the basic principle of which is
to linearly transform the data and thus reduce the dimensionality under the condition of
maintaining features with the largest variance in the sample points. The processing flow is
as follows:



Sustainability 2023, 15, 14844 6 of 18

1. Center all operation modes vectors:

P = (p1 − p1 p2 − p2 . . . pM − pM) (6)

where P is a matrix consisting of M N-dimensional operation mode vectors, pi is the
i-th mode vector, and pi is the average of the i-th mode vectors;

2. Calculate the covariance matrix Cov = PPT/M to obtain the eigenvalue λ1, λ2, . . . , λN
and the corresponding eigenvectors h1, h2, . . . , hN , where λ1 ≥ λ2 ≥ . . . ≥ λN ;

3. Take the first K eigenvectors to form a new matrix H = (h1, h2, . . . , hK):

K = argminK

[(
K

∑
i=1

λi/
N

∑
i=1

λi

)
≥ (1− θ)

]
(7)

where θ is the compression factor and θ = 0 means uncompressed;
4. Perform a linear transformation to obtain operation mode data P′ = (p′1 p′2 · · · p′M):

P′ = HT P (8)

2.2.2. Operation Mode Clustering

In this paper, the density-based DBSCAN clustering algorithm is used; this algo-
rithm [32] avoids the necessity to predefine the quantity of clusters and possesses the
capability to discern any multitude and configuration of clusters within a dataset, even
one containing perturbing data. Only the radius of the neighborhood Epsilon and the
minimum number of neighboring points, MinPts, required for the core point need to be
determined. However, in a scenario based on operation modes generated by reinforcement
learning, it is difficult to rely on experience to select the appropriate Epsilon; therefore, in
this paper, a k-distance map (Figure 1) is drawn to determine the selection parameters by
judging the inflection point. This is executed as follows:

1. Calculate the distance from each data point xi(i = 1, 2, . . . , M) to the k-th nearest
neighbor, denoted as d(xi, k);

2. Incrementally sort and display the resulting k-distance sequence {d(xi, k) | i = 1, 2, . . . , M},
with data points on the horizontal axis xi and the incremental k-distance sequence on
the vertical axis;

3. Determine the location of the inflection point in the graph; the y-value of the inflection
point is Epsilon.
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After determining the neighborhood radius Epsilon and the minimum number of
neighborhood points, MinPts, required for the core point, the DBSCAN algorithm is used
to extract features from the preprocessed operation mode data P′. The specific steps are as
follows:

1. Arbitrarily select an operation mode p′ as the current point from the operation mode
data P′ and create a new cluster C for p′. The cluster count is initialized to 1.

2. Find all the operation modes in the neighborhood of the current operation mode p′. If
the number of all operation modes in the neighborhood is less than MinPts, mark the
current operation mode as noise; otherwise, mark the current operation mode as the
core point of cluster C.

3. Traverse each operation mode (new current point) in the neighborhood and repeat
step 2 until no new operation mode that can be marked as belonging to the current
cluster C is found.

4. Choose the subsequent unlabeled operation mode of the operation mode data p′ as
the current point and increase the cluster count by 1.

5. Repeat steps 2–4 until all the operation modes in p′ are labeled and the clustering
results obtained are the different operation modes.

2.3. Operation Mode Evaluation System and Index Calculation

The adjustment of the traditional operation mode mainly relies on the experience
of experts, and under the prerequisite of ensuring power flow convergence, stability
calculations have to be constantly carried out to ensure the safe operation boundary of the
power grid, while taking into account evaluation index optimization. However, with the
increase in the diversity of power grid evaluation indexes, not only does the computational
cost increase and the adjustment efficiency decrease, but it is also difficult to choose the
optimal one quickly when facing interrelated and mutually constrained indexes. Therefore,
in this section, an evaluation system and index calculation for the operation mode are
proposed, which integrate multi-dimensional indexes through the AHP-EWM to construct
a comprehensive operation mode evaluation model.

2.3.1. Indexes for the Comprehensive Evaluation of Operation Mode

The evaluation index system established in this paper includes steady security, tran-
sient security, and economy evaluation indexes, and each perspective includes 1–3 indexes
(Figure 2). The comprehensive operation mode evaluation indexes can be obtained through
the comprehensive calculation of the evaluation indexes from these three perspectives.
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The detailed definitions of the indexes are as follows:

(a) In the N − 1 verification inspection of the whole power grid, the percentage of times
that the power flow converges after removing any line and transformer in the system,
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where the voltage and frequency are not out of the limits, is defined as the grid-wide
N − 1 pass rate:

IN−1 =
AN−1,pass

AN−1
(9)

where AN−1 is the number of calibration tests and AN−1,pass is the number of calcula-
tion passes;

(b) The transmission section safety margin is a key parameter for inter-regional power
supply, where ATC is the transmission power of the selected section in the current
operation mode and ATTC is the power limit of the selected section:

ITC = 1− ATC
ATTC

(10)

(c) The voltage pass rate can reflect the voltage pass level of the nodes and show the
voltage quality of the current operation mode. The ratio of the number of nodes Nq
with a qualified voltage to the total number of nodes N in the whole grid is defined as
the voltage qualification rate:

IVQ =
Nq

N
(11)

(d) Power angle stability refers to the power angle swing of the generator caused by an
expected accident and its severity. It is calculated by taking the maximum power
angle offset |δmax| between generators:

ITAS =
360

◦ − |δmax|
360◦ + |δmax|

(12)

(e) Frequency stability refers to the degree of generator frequency shift caused by large
disturbances due to expected accidents. It is calculated by taking the maximum
frequency shift in the line fmax:

ITFS =
fmax

f
(13)

(f) The total power generation of the power grid Pgen minus the total load of the power
grid Pload is defined as the total network loss of the power grid. The ratio of total
network loss to total power generation defines the network loss rate:

Iloss =
Pgen − Pload

Pgen
(14)

2.3.2. Model for Calculating Index Weights

To assign and calculate weights, the subjective weighting method is mainly based on
the analytical judgment of decision makers, while the objective weighting method is mainly
based on the original index. However, the latter method is too dependent on the original
data; therefore, the AHP-EWM was chosen to integrate multi-dimensional operation mode
evaluation indexes. In the process of calculating the subjective and objective weights and in
the evaluation of the two evaluation models individually, the specific steps are as follows:

Step 1. Normalize the indexes using the ideal point approximation method to convert the
values of the indexes into the (0, 100) interval. The formula is as follows:

I′ =
I − I−

I+ − I−
× 100 (15)
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where I is an index; I+ is the positive ideal solution for the index; I− is the negative
ideal solution for the index; and I′ is the converted value of the index.

Step 2. Construct a judgment matrix A. In this paper, we use a nine-level numerical scale
layer to illustrate the relationship between indexes:

A =
[
aij
]

n×n =

 a11 · · · a1n
...

...
an1 · · · ann

 (16)

where aii = 1, aji = 1/aij, n is the number of indexes, and the scale aij indicates the
importance of the i-th index compared to the j-th index in the same operation mode.

Step 3. Compute the concatenated product of the elements of each row, take the nth root
Wi and the eigenvectors of the matrix A, normalize them, and check for consistency.

Wi = n

√
n
∏
j=1

aij i = 1, 2, · · · , n

w′ i = Wi/
n
∑

i=1
Wi

W ′ = (w′1, w′2, · · · , w′n)

(17)

Step 4. Calculate the objective weights and combine with the method used in [33] to obtain
the following formula: 

H(i) =
−

m
∑

k=1
I′ ik ln I′ ik

ln m
w′′i = 1−H(i)

n
∑

i=1
(1−H(i))

W ′′ =
(

w′′ 1, w′′ 2, · · · , w′′ n
) (18)

where I′ ik is the normalized data of the i-th index of the sample k, H(i) is the entropy
value of the i-th index, w′′i is the weight of the i-th index, W ′′ is the weight vector of
evaluation index based on the entropy weight method, and m is the number of data
samples.

Step 5. Combining the strengths of subjective prior knowledge and objective data analysis,
calculate the combined weights using the following formula:


wi =

w′iw
′′
i

n
∑

i=1
w′iw

′′

W = (w1, · · · , wi, · · ·wn)

(19)

In the overall evaluation process, the subjective and objective weights are first calcu-
lated layer by layer from the sub-index layer to the top layer and checked for consistency,
the comprehensive weights are then calculated, and finally a comprehensive operation
mode evaluation model is obtained.

2.4. Rapid Operation Mode Evaluation Model

DBN is a form of neural network characterized by its inclusion of multiple concealed
layers. It is composed of a series of restricted Boltzmann machines (RBMs) and backprop-
agation (BP) neural network layers superimposed on top of one another. The network
fine-tunes the inter-layer connection weights via a layer-by-layer greedy learning algorithm.
This approach optimizes the connection weights between individual layers, endowing the
network with a robust feature extraction capability and enabling successive layer-wise
feature extraction and representation.

The learning and training processes of DBN can be divided into two stages: unsuper-
vised pre-training and supervised parameter fine-tuning. During pre-training, adjacent
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layer pairs establish an RBM, and the output from the subsequent RBM layer serves as
input for the preceding RBM layer, facilitating incremental, layer-by-layer training that em-
ploys the greedy unsupervised algorithm to extract higher-level data features. The second
stage is the fine-tuning stage, where the parameters of the entire network are supervised
and fine-tuned using a BP neural network. This method of unsupervised pre-training
followed by supervised fine-tuning effectively reduces the parameter optimization search
space, overcomes the problem of neural networks being prone to fall into local optima, and
shortens the supervised training time.

The flow of the rapid operation mode evaluation model based on DBN proposed in
this paper is shown in Figure 3.
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The steps are as follows:

Step 1. Generation of operation modes. According to the historical operation data of
the power grid, operation mode generation is carried out according to the rein-
forcement learning algorithm proposed in this paper. Through data preprocessing
methods such as standardized processing, feature extraction, and feature dimension
reduction, the operation mode feature dataset for clustering and DBN training is
obtained.

Step 2. For the operation mode characterization data and DBSCAN clustering algorithm,
the operation modes are divided into different operation mode sets.

Step 3. According to the steady-state indexes, transient state indexes, and economy indexes,
operation mode evaluation is carried out, and then the respective weights from
these three perspectives are calculated using the AHP-EWM. The multi-dimensional
index values and weights are then integrated into a comprehensive value.

Step 4. All the operation modes are randomly divided into the training set and test set,
where the ratio of training set to test set is 8:2, and the model is trained according
to the forward unsupervised pre-training and reverse supervised parameter fine-
tuning method.
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Step 5. After the training is completed, the test set feature data are input into the DBN
model. The evaluation value of the operation mode is then obtained to obtain the
rapid operation mode evaluation model based on DBN.

3. Results

In order to substantiate the viability of the proposed intelligent generation of typical
operation modes, Power System Analysis Software Package (PSASP 7.3) from the China
Electric Power Research Institute (CEPRI) is used. Simulation examples are based on the
actual historical typical operation modes of the Northeast China Power Grid. The Northeast
China Power Grid comprises four provincial-level regions with 2128 nodes, 531 generators,
and 816 load buses. The number of 500 kV buses is 221, and the number of 220 kV buses
is 732. Sections 3.1 and 3.2 present results for three different load levels (low valley, flat
waist, peak scenario). It should be noticed that the load levels are increased by 5% on a
year-over-year basis to simulate future load growth trends, and the power grid structure
changes are not considered.

In Section 3.1, the figures illustrate the selected typical operation modes for each
operation mode set under the three load levels. In Section 3.2, the figures demonstrate
the clustering analysis of the generated operation modes based on their data characteris-
tics. Given the substantial number of generated operation modes and the relatively close
comprehensive evaluation values, Section 3.3 focuses on explaining operation modes with
significant differences in evaluation values. In Section 3.4, a total of 8695 operation modes
are generated as the data sample set based on historical operation modes.

3.1. Intelligent Generation of Operation Modes

During the operation mode generation process, the algorithm gradually adjusts the
power flow by controlling the start and stop of the generator to ensure power flow conver-
gence and constrain the slack machine power within a given interval. The slack machine’s
given output interval is 120–600 MW, and the hyper-parameters are set to the following: the
greedy coefficient is 0.8, the learning rate is 0.15, and the discount factor is 0.9. In this paper,
grid training is performed using the Q-learning and State Action Reward State Action
(SARSA) algorithms, with the resultant average cumulative reward value curve illustrated
in Figure 4. It is evident from Figure 4 that SARSA converges at 37 episodes with an average
cumulative reward value of 38, while Q-learning converges at 42 episodes with an average
cumulative reward value of 45. Q-learning is able to obtain higher reward values for more
similar episodes. The Q-learning algorithm outperforms the SARSA algorithm in terms of
overall effect.
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As shown in Figure 5, among the three groups of operation modes with different
load levels, each group includes one historical typical operation mode and multiple newly
generated typical operation modes, and it can be seen that the generator output of each
region in each mode increases. There is no situation where the new generator output of
a certain region is zero; only the on-load capacity of each region is different; for example,
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in the typical operation mode 1 with the flat waist level, the on-load capacity of region 1
is a little bit lower or close to the same level compared to the other two typical operation
modes, while the starting capacity of the other regions is lower than or close to the other
two typical operation modes. The figure illustrates that each newly generated typical
operation mode exhibits varying regions where the primary actions of generator units
occur. This variation arises because the algorithm interacts with the environment to identify
the optimal combination of generator actions specific to the current region. This approach
enables the coordinated operation of generators across multiple regions, resulting in typical
operation modes that can be applied in practical power grid scenarios.
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3.2. Distribution of Operation Mode Sets

In this section, the high-dimensional operation mode data intelligently generated
based on equivalent historical typical operation modes are first preprocessed, and then
the operation mode feature data obtained after preprocessing are clustered and analyzed
to obtain the state space distribution of the operation modes under the three load levels
(as shown in Figure 6). Each point represents an operation mode, and different colors
represent different sets of operation modes obtained by clustering. From the state space
distribution graph, it can be seen that the number of sets of operation modes decreases
as the load level increases from five operation mode sets at the low valley level and three
operation mode sets at the flat waist level to finally two sets at the peak scenario level. This
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indicates that at lower load levels, generator turn-on is low and the number of generators
that can be switched on and off while performing mode generation is high. As the load
side demand rises, generator turn-ons increase and the number of generators that can be
actuated decreases significantly. Even though the generator output values are the same in
each region for multiple operation modes, the number of generators that can be actuated is
not necessarily the same, which explains why the number of operation mode sets at the
low valley level is more than those of the other two load levels.
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3.3. Indexes and Analysis of Comprehensive Operation Mode Evaluation

In terms of weight calculation, subjective weights are first calculated to evaluate the
indexes based on scheduling experience, and then objective weights of steady-state security
indexes, transient state security indexes, and economy indexes are calculated based on
the operation mode data. Finally, the coupling calculation of the subjective and objective
weights according to (19) yields the comprehensive weights of the three perspectives, with
the results shown in Table 1.

Table 1. Results of weight calculation.

Weight Steady-State
Security Index

Transient State
Security Index Economy Index

Subjective weight 0.2973 0.5389 0.1638
Objective weight 0.4234 0.3219 0.2547

Comprehensive weight 0.3691 0.5086 0.1223

According to the index system constructed in this paper, simulation-generated opera-
tion modes are selected for the calibration test, and the comprehensive evaluation values
of the operation modes are further calculated by multiplying the index values obtained
through calibration with the corresponding weights. Observing the data in Table 2, it can
be seen that the transient state security index of each operation mode accounts for the
largest proportion, and the economy index accounts for the smallest proportion, which
corresponds to the comprehensive weighting value. The differences between the operation
modes are mainly reflected in the transient state security index, and the rest of the indexes
are closer in value.

Table 2. Calculation results of operation mode indexes.

Mode Number Steady-State
Security Index

Transient State
Security Index Economy Index Total Value

Basic mode 32.8604 46.5159 11.6732 91.0495
Mode 1 30.9461 45.9558 10.9218 87.8237
Mode 2 30.8144 43.7940 11.5482 86.1566
Mode 3 31.7483 46.6853 10.6337 89.0673
Mode 4 30.1596 44.6487 10.9485 85.7568

In order to verify the key role played by the transient state security index in the
evaluation of operation modes, the following will evaluate the above modes by considering
only the steady-state security index and economy index. The combined weights of the
steady-state security index and economy index are 0.7678 and 0.2322, respectively. As
shown in Table 3, the evaluation values of the modes decrease when not considering the
transient state security index compared with mode 1 and mode 3. Mode 2 has a lower
comprehensive evaluation value when considering the transient state security index, but
its comprehensive evaluation value is higher when it is not considered. The main reason
for this is that the transient index reflects the operation mode status after line faults occur,
while the steady-state index reflects the current operation mode status. The steady-state
index in most of the generated operation modes is relatively good, and the real-world
grid is also more related to the operation modes after a fault occurs. Thus, the transient
state security index proposed in this paper is more capable of checking the comprehensive
operation mode performance.
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Table 3. Comparison of calculation results of operation mode indexes.

Mode Number Steady-State
Security Index Economy Index Total Value

Basic mode 68.3560 22.1629 90.5189
Mode 1 64.3739 20.7362 85.1101
Mode 2 64.1000 21.9255 86.0255
Mode 3 66.0426 20.1893 86.2319
Mode 4 62.7379 20.7869 83.5248

3.4. Rapid Operation Mode Evaluation Model

The pre-processed operation mode feature data and the comprehensive evaluation
index values corresponding to each group of operation modes are input into the DBN
network, in which the number of implicit layers is set to 4; the number of nodes in each
implicit layer is 50, 30, 20, and 10, respectively; the learning rate is 0.1; the momentum
parameter is 0.5; and the number of iterations is 200. Due to the space limitation, in this
paper, we only present part of the results for the test set. As shown in Figure 7, it can be
seen that the DBN model has the ability to recognize the correlation relationships between
key feature data in the operation mode and result indexes and shows strong assessment
and prediction abilities.
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At the same time, KNN, SVR, and XGBoost algorithms were selected to carry out
a regression prediction of the comprehensive operation mode indexes in turn, and the
prediction results of each model are shown in Figure 8. It is observed that traditional
machine learning algorithms are unable to accurately find the correlation between the
characteristics of the operation mode and the evaluation index value, while the neural
network structure of deep learning can better capture the complex data patterns (Table 4).

Table 4. Error results of the rapid evaluation model for the multi-algorithm operation mode.

Algorithm RMSE MAPE

DBN 0.506 0.458
KNN 0.684 0.619
SVR 0.824 0.726

XGBoost 1.354 1.068
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In this paper, the mean absolute percentage error (MAPE) and root-mean-squared
error (RMSE) are used as quantitative indexes to evaluate the model with the following
formulas: 
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4. Discussion

The Q-learning algorithm proposed in this paper highlights a significant step forward
in power grid operation mode generation. Compared to the SARSA algorithm [34], which
first executes the action through the policy and then updates the value function according
to the executed action, the Q-learning algorithm first assumes that the next step is to pick
the action with the maximum reward, update the value function, and then select the action
through the strategy.

For the algorithm selection for the rapid operation mode evaluation model, KNN [35],
SVR [36], and XGBoost [37] algorithms are unable to exploit the correlation between the
operation mode characteristics and the comprehensive evaluation index values; the DBN-
based rapid operation mode evaluation model exhibits superior performance, and can
effectively predict the results of the comprehensive evaluation of the operation modes and
assist the system operator in preparing a typical operation mode based on the evaluation
results.

Although the typical power grid operation mode generation based on reinforcement
learning and DBN is innovative and effective, it should be noted that when the higher-
value operation modes are concentrated in the same set, only the highest values of this set
need to be paid attention to; if the higher-value operation modes are distributed across
different sets, it is necessary for the system operator to make judgments based on the
corresponding values and the actual situation. Future work involves the analysis of the
correlation constraints among the operation mode with the highest value in the different
operation mode sets to identify typical operation modes.

5. Conclusions

In order to realize efficient and accurate generation of typical power grid operation
modes, this paper proposes a method of rapid typical operation mode generation based
on reinforcement learning and DBN. In response to the intricate and complex process of
calculating operation modes in practical power grids, especially in cases with numerous
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combinations of generators, a proposal is put forth to intelligently and efficiently generate
power grid operation modes based on historical typical operation modes. Furthermore,
to address the challenge of a high number of generated operation modes, the DBSCAN
clustering method is employed to categorize these operation modes into different operation
mode sets based on their distinctive characteristics. In order to construct a rapid operation
mode evaluation model, key indexes are proposed from the three perspectives of steady
state, transient state, and the economy, and the weights of the multi-dimensional indexes
are integrated by the AHP-EWM. Finally, DBN is introduced to establish the relationship
between operation mode feature data and comprehensive values, enabling the rapid
evaluation of operation modes and the identification of typical operation modes within
different operation mode sets. The results demonstrate that the proposed method efficiently
supports the operation modes calculation, thereby enhancing the efficiency of operation
mode calculations and reducing the consumption of human and physical resources.
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