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Abstract: In order to reduce the negative impact of the large-scale grid connection of residential
photovoltaic (PV) equipment on the distribution network, it is of great significance to realize the
real-time accurate identification of the grid connection state and its switching of residential PV
equipment from the distribution network side. This paper introduces a non-intrusive method for
identifying residential PV systems using transient features, leveraging the temporal convolutional
network (TCN) model with attention mechanisms. Firstly, the discrimination and redundancy of
transient features for residential PV devices are measured using a feature selection method based on
the semi-Fisher score and maximal information coefficient (MIC). This enables the construction of a
subset of identification features that best characterize the PV devices. Subsequently, a sliding window
two-sided cumulative sum (CUSUM) event detection algorithm, incorporating a time threshold, is
proposed for the real-time capturing of PV state switching and grid connection behavioral events.
This algorithm effectively filters out disturbances caused by the on/off cycles of low-power residential
devices and captures the transient time windows of PV behaviors accurately. On this basis, a TCN
model with attention mechanisms is proposed to match the discerned event features by assigning
varying weights to different types of characteristics, thereby facilitating the precise recognition of
a PV grid connection and state-switching events. Finally, the proposed method is validated on a
custom-designed non-intrusive experimental platform, demonstrating its precision and real-time
efficiency in practical applications.

Keywords: non-intrusive interactive energy monitoring; transient feature selection; event detection;
deep learning

1. Introduction

With the long-term sustainable development goals proposed by the Paris Agreement,
the installed capacity of renewable energy sources, represented by PV, has been rapidly
increasing, with the proportion of distributed new energy sources increasing year by
year [1,2]. However, the large-scale integration of distributed PVs into the grid fundamen-
tally disrupts the traditional one-way, deterministic, and closed structure and operation of
the power grid, increasing the complexity and operational management difficulty of the
distribution network [3]. To address the negative impacts of the random characteristics of
distributed energy-source integration and operation on distribution-network operation,
various effective control methods have been proposed in voltage control, load forecasting,
and other aspects [4,5]. However, for a certain scale of residential PV devices in the distri-
bution network, it is difficult to implement reasonable control measures due to the lack of
separate metering devices or the timely reporting of installation information. Therefore,
improving observability of residential PV devices is of positive significance for enhancing
the operation quality of the distribution network.
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Non-intrusive load monitoring (NILM) can infer the operating status of individual
electrical appliances based on aggregated electric meter data [6]. The results of NILM can
be used for energy efficiency management and load forecasting, among other applications.
The main steps of NILM include event detection, feature selection, and load identification.
Event detection methods capture switch events and state changes of electrical devices using
detection algorithms, and device classification is achieved using feature-based classification
algorithms. Probability-based detection algorithms commonly used include the general-
ized likelihood ratio test (GLRT) [7], goodness-of-fit (GOF) [8] chi-squared test, Bayesian
information criterion (BIC) [9], cumulative sum charts (CUSUM) [10], and others [11].
In terms of feature selection, initially, only the on–off states of high-power independent
appliances were monitored based on steady-state power. Later, more transient features
were introduced [12], including active and reactive power changes [13], V-I trajectory [14],
current harmonic characteristics [15], and phase noise [16]. Regarding load monitoring
algorithms, they can be categorized into combinatorial optimization [17] and pattern recog-
nition [18], including algorithms such as support vector machine (SVM) [19], random
forest (RF) [20], K-nearest neighbors (KNN) [21], hidden Markov models (HMM) [22], deep
learning [23,24], and others. With the advancement of NILM technology, its applications
have expanded from residential homes to commercial buildings [25,26], data centers [27],
and smart homes with energy storage, PVs, and electric vehicles [28]. Therefore, using
NILM methods to perceive and obtain the operating status of residential PV devices is a
feasible and economical solution.

Reference [28] focuses on homes with rooftop PVs and utilizes the Karhunen Loéve
expansion (KLE) method to construct electrical features. It classifies different operating
modes of multi-state devices, including those with PVs, based on steady-state power fea-
tures and spectral clustering. Reference [29] proposes an NILM classification model based
on SVM and statistical features of electrical measurements, identifying the switch states
of rooftop PVs. Reference [30] uses three intelligent algorithms, namely RF, KNN, and an
artificial neural network (ANN), for the classification and power decomposition of electric
vehicles and PV systems. Reference [31] utilizes a sequence-to-subsequence Deep Neural
Network (DNN) with a conditional Generative Adversarial Network (GAN) approach for
the low-frequency non-intrusive monitoring of electric vehicles in dwellings containing
photovoltaic devices; reference [32] proposes a novel non-intrusive load monitoring method
based on a ResNet-seq2seq network to decompose the power of household appliances
and with distributed energy resources in residential areas. All of these methods utilize
steady-state power as a feature for identification based on PV grid disconnection behavior
and steady-state power characteristics. Reference [33] proposes a method for estimating
the installed capacity of PV devices by combining solar irradiance data with long-term his-
torical load forecast data. This method, which is more accurate than power decomposition
methods, relies on solar irradiance data, which may be difficult to obtain for rooftop PVs,
and the accuracy of load forecast data may be limited for individual homes. Reference [34]
took the non-intrusive identification of self-sustaining energy systems containing multiple
forms of energy as the object of study, and the non-intrusive monitoring of multiple forms
of energy, such as wind energy storage, was realized through joint sliding and gradient
separation, and the methodology, likewise, required the use of environmental information
on renewable energy sources.

In summary, the existing research on PV identification has the following limitations:
(1) most studies focus on the power decomposition of PV systems, obtaining information
about PVs when their presence is known, and lacking the perception of PV grid connection
and state switching action.; (2) the above methods all rely on the steady-state power data
of PVs for classification or identification, limiting accuracy without utilizing environmental
information such as solar irradiance; and (3) the power characteristics of PV systems have
time uncertainty, continuous numerical variation, and insignificant switching characteris-
tics. This makes it challenging to achieve accurate identification using only a single power
feature, and existing studies have not considered incorporating various transient features
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of PVs as combined inputs for improved identification performance. In response to the
aforementioned challenges, this paper makes the following main contributions:

(1) By using a feature selection method based on the semi-Fisher score and MIC, the
discrimination and redundancy of nine types of transient features of PV systems were
analyzed. The features were ranked, and a subset of PV device features with the
highest classification accuracy was extracted.

(2) To address the issue that current event detection algorithms are not suitable for de-
tecting the power characteristics of PV devices, which have long rise times and large
fluctuations, a sliding-window two-sided CUSUM event detection algorithm consid-
ering the time threshold was proposed. The Gaussian function, sigmoid function, and
volatility criteria were utilized to accurately obtain real-time behavior time windows
of PVs, enabling the real-time and accurate judgment of PV events.

(3) A TCN model with attention mechanisms was proposed. Feature combination and
balance weights were employed to accurately perceive and identify the behavior of
residential PV systems. The effectiveness and superiority of the proposed method
were validated using a custom-designed non-intrusive platform.

2. Non-Intrusive Residential PV Recognition Process

Figure 1 illustrates the overall process of the non-intrusive residential PV identifica-
tion method proposed in this paper. It mainly includes four parts: high-frequency data
acquisition, a transient feature selection method using the semi-Fisher score and MIC,
event detection using a sliding window two-sided CUSUM algorithm considering the time
threshold, and PV identification using the TCN model with attention mechanisms.
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Firstly, focusing on the monitoring objective of the residential PV grid connection and
control state switching, the discrimination and redundancy of different transient features in
various devices are analyzed using the feature selection algorithm based on the semi-Fisher
score and MIC, and the features are sorted accordingly. Secondly, the high-frequency active
power data are used as input to the sliding-window two-sided CUSUM event detection
algorithm considering the time threshold to accurately locate the occurrence and end
time of various electrical events and extract the transient time windows of the original
feature set of various devices. Then, the features are sequentially added to the feature
subset based on the sorting results, and their transient time windows are the input to the
TCN model with attention mechanisms. The network assigns weights to each feature and
performs classification and identification. Finally, the proposed method is verified through
multi-scene analysis on a custom-designed non-intrusive experimental platform.

3. Feature Selection and Ranking of PV Devices
3.1. Feature Analysis of PV Devices

With a wide variety of residential load types, residential PV devices exhibit unique
characteristic quantities due to differences in their components, working principles, and
operational modes. In this paper, the residential two-stage PV off-grid and control state
switching was taken as the monitoring target, and its features were selected and analyzed.
The PV system adopted a series–parallel structure for its centralized PV inverter, mainly
including a single-phase PV inverter and a three-phase PV inverter two cases, and its
structure and control block diagram are shown in Figures 2 and 3 below. The PV was
grid-connected with a unit power factor and was controlled by Maximum Power Point
Tracking (MPPT) [35]; Perturbation and Observation (P&O), as a widely used MPPT control
method, was adopted in this paper to realize maximum photovoltaic efficiency conversion,
as shown in Figure 4. The PV array consisted of n PV cell modules in series and m PV
cell modules in parallel, in order to improve the output capability of the modules under
localized shading conditions; the cell units were grouped in parallel with bypass diodes, as
shown in Figure 2. The power–voltage characteristics of a PV array will have multiple peaks
when it is shaded by localized shadows, and heuristic algorithms or reconfigurable circuits
and other methods have often been used in the literature to achieve global MPPT [36].
Although the traditional MPPT algorithms based on P&O in this paper may fall into the
local optimum and, thus, reduce the PV output, the different MPPT algorithms have no
effect on the feature selection and identification results in this paper.
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This paper selected the nine types of transient process features as the initial feature set,
as shown in Table 1, during grid connection and state switching (the transient characteristics
described in this paper are eigenvalues calculated from the sampling points during the
transient). It is important to note that using a larger number of feature types does not
necessarily improve recognition. Features with low discrimination can interfere with
recognition, and feature sets with high redundancy increase computational costs without
improving recognition accuracy. Therefore, it is necessary to select a subset of features
with high discrimination and low redundancy as the basis for discrimination. Thus, this
paper adopts a transient feature selection method based on semi-Fisher score and MIC to
calculate and rank the discriminatory and redundancy of various transient features across
different devices.

Table 1. Number and name of features.

Feature ID Feature Name

A1 Active power
A2 Reactive power
A3 Current Amplitude
A4 Current Total Harmonic Distortion
A5 Current 3rd harmonic amplitude
A6 Current 5th harmonic amplitude
A7 Current 7th harmonic amplitude
A8 Current Pulse Peak
A9 Voltage amplitude

3.2. Semi-Fisher Score Method

The Fisher score is an effective criterion for evaluating the features of a given sample.
Its main objective is to find a subset of features in the feature space that maximizes the
distance between data points of different classes, while minimizing the distance between
data points of the same class [37]. However, it should be noted that the standard Fisher
score is applicable only when samples have complete and labeled classifications, making
it a supervised feature selection method. In this paper, we focused on the identification
of residential PV samples. These samples are were from the user’s residential wiring and
included samples from various devices. However, only the samples belonging to the user’s
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PV device had accurate labels, resulting in a scenario of semi-supervised learning. In order
to overcome this limitation, the concept of the semi-Fisher score was introduced [38]. It
incorporates the exploration and utilization of both the global distribution information and
the local structural information in the dataset. The formulation of the semi-Fisher score for
semi-supervised feature selection can be stated as

Fr
s =

c
∑

i=1
ni(µ

i
r − µr)2 + δVr

c
∑

i=1
ni(σi

r)
2
+ λ× J( fr)

(1)

where n is the number of samples in the sample set, c is the number of categories in the
samples, and m is the dimensionality of the sample features. c is the category index. ni
denotes the quantity of samples in the i-th class. µr is the mean value of all samples on
the r-th feature. µi

r, (σi
r)

2 are the mean and variance of the r-th feature for samples in
the i-th class. δ (where δ ≥ 0) and λ (where λ ≥ 0) are two control parameters. Vr is the
variance score of the r-th feature, which measures the ability of the feature to preserve
global distribution information. The definition of J(fr) is

J( fr) = ∑
i,j

( fri − frj)
2Wij (2)

where fri and frj represent the r-th feature of the i-th and j-th samples, respectively. W
is an n by n weight matrix. If the standard Euclidean distance between sample i and
sample j is less than the average distance among the PV device samples, then the element
Wij is set to 1; otherwise, it is set to 0. This measures the capability of preserving local
structural information. It can be observed that the semi-supervised Fisher score effectively
utilizes both local structural and global distribution information inherent in all labeled and
unlabeled samples, thereby evaluating features in the semi-supervised scenario.

3.3. MIC Method

The semi-Fisher score can assess the discrimination of features, but it cannot determine
the redundancy of a feature set. The MIC can measure the linear or nonlinear correlation
between two random variables, thereby quantifying the correlation between features [39].
A higher MIC value indicates a stronger correlation. In this study, the MIC method was
used to measure the redundancy between sample features. The calculation method is
as follows.

Given two sets of feature variables X = {xi, i = 1,2,. . .,n} and Y = {yi, i = 1,2,. . .,n},
where xi and yi represent the values of the x-th and y-th features of the i-th sample, and n
represents the number of samples, the redundancy between X and Y can be calculated as

MIC(X, Y) = max
|X||Y|<B

max(I(X, Y))
log2 min(|X|, |Y|)) (3)

where B is the upper limit value of the grid division of size X × Y; it is a growing function
related to the number of data samples, denoted as n. In reference [40], it is suggested to set
B(n) = n0.6 for better performance. I(X:Y) is the mutual information between X and Y, and
it is defined as

I(X, Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(4)

where p(x,y) is the joint probability density of variables X and Y, whereas p(x) and p(y) is
the marginal probability densities of X and Y, respectively.
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3.4. Methods for Feature Selection and Ranking

In this paper, the maximum discrimination and minimum redundancy of the selected
feature subset were taken as the objectives. In the first stage, the Fisher score value was
calculated for each feature using the semi-Fisher score algorithm, and feature importance
was ranked accordingly. In the second stage, the MIC was used to evaluate the redundancy
between features. The feature with the highest importance and the lowest redundancy with
the already-selected feature subset was sequentially chosen from the candidate features to
join the subset. The procedures are defined as follows.

The first selected feature F1 is

F1 = argmax
i

(αdi − (1− α)MICaverage(Fi ∪ Fm−i)) (5)

where di is the discrimination of the i-th feature, calculated using the aforementioned
Equation (1). MICaverage(Fi ∪ Fm−i) is the average redundancy of the i-th feature with all
other features, calculated using Equation (3); α is a weighting parameter.

The n-th selected feature Fn is

Fn = argmax
i

(αdi − (1− α)MICaverage(Fi ∪ Fs)) (6)

where Fs is the selected feature subset; MICaverage(Fi ∪ Fs) is the average redundancy of
the i-th feature with the features already selected in the subset.

4. Sliding-Window Two-Sided CUSUM Event Detection Algorithm Considering the
Time Threshold

This paper utilized event detection algorithms to temporally locate the grid connection
and state-switching behaviors of PV systems in order to extract their transient features. Due
to the large magnitude and variability of active power in high-frequency total electricity
data, this study employed active power as the detection signal. Based on the analysis of the
power characteristics of PV systems [41], after PV devices start, they do not immediately
enter a stable operating state. Instead, there is a prolonged and fluctuating climbing state
during the variation process of active power characteristics. Therefore, in addition to
accurately determining the timing of PV device connection and startup, it is necessary to
accurately identify when the PV device enters a steady state to avoid misjudgment. On
the other hand, as the steady-state power of PV devices is generally higher than that of
other devices, its operational fluctuations can easily impact the judgment of smaller-power
devices being connected. Therefore, this paper proposes a compound window two-sided
CUSUM event detection algorithm that considers a time threshold based on the traditional
two-sided CUSUM algorithm [10].

The traditional two-sided CUSUM algorithm involves setting two consecutive sliding
windows, namely the mean calculation window Wm and the transient detection window
Wd, for a random time series X = {x(k)} with k = 1,2,. . .. The window lengths are denoted
as Nm and Nn, respectively. The detection process is illustrated in Figure 5. The algo-
rithm calculates the power mean values, Mm and Md, within the two windows, using the
following formulas:

Mm =
1
m

k+Nm−1

∑
j=k

P(j) (7)

Md =
1
n

k+Nm+Nd−1

∑
j=k+Nm

P(j) (8)
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where k is the sampling points of the mean calculation window. The two-sided event
cumulative sums are defined as g+k and g−k , and their specific calculation formulas can be
obtained as {

g+0 = 0
g+k = max(0, g+k−1 + Xk − (Mm + β))

(9)

{
g−0 = 0
g−k = max(0, g−k−1 − Xk − (Mm − β))

(10)

where β is the externally introduced noise and d is the time delay factor; the initial values
are set to 0. The cumulative sum threshold for event occurrence is denoted as h. When
0 < g+k < h, let d = d + 1. If we calculate g+k until g+k > h, a positive event is determined
to have occurred, and the occurrence time is obtained using the inverse transformation
t = k − d. The calculation method for h is based on the principles illustrated in Figure 6,
which can be derived as

h = (∆min − β)Tmax (11)
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In the equation, Tmax = NmaxTs; Nmax is the maximum allowable delay in terms of
the number of sampling points, while Ts is the sampling interval, and β is associated with
measurement noise.

Due to the long response time and high noise level of PV systems, as well as the higher
power signal compared to other electrical devices, traditional two-sided CUSUM algorithms
may suffer from issues such as false alarms and inaccurate judgments in capturing the
PV action events. Therefore, this paper proposes a sliding window two-sided CUSUM
event detection algorithm considering the time threshold. The workflow is illustrated in
the following Figure 7.
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Firstly, a time difference threshold method is introduced, where two consecutive
events with a time difference within a certain time threshold are considered as a single
event. The second event is treated as a false alarm and removed to alleviate the issue of
false alarms, which can be derived as

Tw − Tw−1 = ∆t < Tth (12)

where ∆t is the time difference between two consecutive events, and Tth refers to the given
time threshold. This threshold is determined based on the transient characteristics of
various devices.
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Next, a Gaussian function is applied to the average value window, and an appropriate
σ value is selected to filter the data of the small-reference-value window before and after it
to a certain extent. The representation of weight values using the Gaussian function is

f (ui) =
1

σ
√

2π
e−

(ui−uc)
2σ2 (13)

where ui is each sampling point in the average value window, and uc is the position of
the sampling point in the middle of the window. Normalizing f (ui), we obtain the weight
value ϕ(ui)

ϕ(ui) =
f (ui)

k+Nm
∑

ui=k
f (ui)

(14)

The average value µgauss of the obtained Gaussian window is

µgauss =
k+Nm

∑
ui=k

ϕ(ui)Wm(ui) (15)

The detection window needs to consider both anti-noise characteristics and sensitivity
to transient events. In the detection process, the cumulative weight of the initial segment
of the detection window, which is easily affected by noise, is reduced, while the weight
of the sampling values that show a continuous increase in climbing events is gradually
increased. This can improve the detection accuracy, so an improved Sigmoid function is
used to modify the detection window, whose expression is

h(vi) =
1

1 + e−α(vi−ud)
(16)

where µd is the middle value of the maximum width of the detection window, and α is
the coefficient for backward offset of the detection window weight. Normalizing h(vi),
we obtain

ψ(vi) =
h(vi)

k+Nm+Nd
∑

vi=k+Nm

h(vi)/Nd

(17)

g+k , g−k are, respectively, represented as{
g+0 = 0
g+k = max(0, g+k−1 + ψ(vi)Md − (µguass + β))

(18)

{
g−0 = 0
g−k = max(0, g−k−1 − ψ(vi)Md + (µguass − β))

(19)

Md is represented as:

Md =
1

Nd

k+Nm+Nd

∑
vi=k+Nm

Wd(vi) (20)

For determining the moment of entering a steady state, if the cumulative sum of events
is greater than h, it indicates that an event has occurred. At this point, further assessment
is required.

gk+1 − gk ≤ ∆min (21)

If the above condition is met, it is judged that the system has entered a steady state.
The sliding window then reads the next data block. If the condition is not met, the process
continues in a loop until the condition is satisfied.
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Finally, as PVs are high-power devices, fluctuations in their operating power can easily
affect the normal operation of smaller-power devices when they connect or disconnect.
Therefore, a judging mechanism is set to determine whether there are similar-magnitude
power fluctuations before a sharp increase or decrease in power occurs, using the similarity
of fluctuations. The judging condition is expressed in the following equation:

u = gw+1 − gw (22)

|gw−i+1 − gw−i − u| ≤ eu i = 0, 1, 2, 3 (23)

where gw is the cumulative sum within a window, and e is the similarity coefficient. If the
above condition is not met, it indicates that there is no similar magnitude power fluctu-
ation detected before the observed power increase or decrease, implying that the power
fluctuation is not due to the operating fluctuations of the high-power device in operation.

5. Identification Model of TCN with Attention Mechanisms

Based on the feature selection method using the semi-Fisher score and MIC, as de-
scribed in Section 3.4, the discrimination and redundancy of different transient features in
various devices were computed and ranked. According to the ranking results, the features
were added to the feature subset in order, and then the transient time series of various types
of features were obtained as model inputs by using the event detection algorithm, to which
the paper introduced the attention mechanisms to measure various types of feature inputs,
and TCN neural network has strong feature extraction and fusion capabilities [42]. Based
on these considerations, this paper proposes the recognition model of the TCN model with
attention mechanisms.

5.1. Concatenated Attention Mechanism

The attention mechanism is a resource allocation mechanism proposed to simulate how
the human brain allocates attention to external information. It assigns different weights
to different input features to emphasize more important features, thereby improving
model accuracy without increasing computational and storage costs [43]. In this paper, the
attention mechanism is utilized to concatenate feature inputs of different characteristics [44].

For feature vectors
→
h i,
→
h j, firstly, a linear transformation is applied to them using the

weight matrix W. Then, perform self-attention on feature vectors—a shared attentional
mechanism

→
a computes attention coefficients. Finally, softmax normalization is employed

to compute the coefficient αij, as shown in the following equation. The computation process
is illustrated in Figure 8a.

αij =

exp(LeakyReLU(
→
a

T
[W
→
h i

∣∣∣∣∣∣∣∣W→h j]))

∑j∈Ni
exp(LeakyReLU(

→
a

T
[W
→
h i

∣∣∣∣∣∣∣∣W→h j]))

(24)

where T represents transposition and || is the concatenation operation. The attention
mechanism a is a single-layer feedforward neural network, parametrized by a weight vector
→
a ∈ R2F′ , and applying the LeakyReLU nonlinearity.

Then, the linear combination is performed between the corresponding features and
their attention coefficients. The resulting feature vectors are concatenated, and eventually
outputted, as shown in the following equation. The computation process is illustrated in
Figure 8b.

→
h
′
i = σ(

1
K

K

∑
k=1

∑
j∈Ni

ak
ijW

k
→
h j) (25)
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In the equation, σ is the non-linear coefficient, ak
ij are normalized attention coeffi-

cients computed by the k-th attention mechanism, Wk is the corresponding input linear
transformation’s weight matrix, and N is the number of feature values.
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5.2. Temporal Convolutional Network

TCN is an advanced variant of convolutional neural networks (CNNs) that incorpo-
rates dilated causal convolution (DCC) to capture long-term dependencies and effectively
model sequence data [42]. Furthermore, TCN employs residual blocks to alleviate the
issue of vanishing gradients and promote information flow within the network [45]. The
inclusion of residual blocks allows the network to bypass specific layers and propagate
residual information, effectively addressing the common problem of degradation in deep
neural networks.

(1) TCN Model

For a time series input x0, · · ·, xt, the corresponding predicted output is ŷ0, · · ·, ŷt. The
relationship between the input and output sequences can be described as

ŷ0, · · ·, ŷt = f (x0, · · ·, xt) (26)

This equation implies that elements in the output sequence can only depend on
elements that precede them in the input sequence. Causal convolution is a strict time-
constrained structure that is unidirectional rather than bidirectional. The objective of
sequence modeling is to find a network f that minimizes the expected loss between the
actual output and the predicted output.

(2) Dilated Causal Convolution

TCN is based on a 1D fully convolutional network and incorporates the advantages
of causal convolution’s non-recurrent structure, allowing for the parallel input of time
series data and a faster training speed. However, causal convolution increases the depth of
the network significantly when dealing with large-scale time series data. To address this
issue, TCN employs a series of dilated convolutions, as shown in Figure 9. By exponen-
tially increasing the dilation factor, denoted as d, TCN effectively increases the receptive
field of the network in proportion to its depth. For an input x and convolution kernel
size f : {0, 1, 2, . . . , k− 1}, the dilated convolution operation F for a time series s can be
represented as
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F(s) = (x ∗ fd)(s) =
k−1

∑
i=0

f (i)xs−d·i (27)

where K represents the specific value of the convolution kernel, and xs−d·i is the product of
the step lengths of all previous layers.
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(3) Residual Block

The residual block is another important component of the TCN model, which mitigates
the issues of gradient vanishing and degradation during deep learning training through
Skip Connection operations [42]. The output of the residual block depends on the input
and a series of transformations Ψ, and it is defined as follows:

Oblock = Activation(xblock + ψ(xblock)) (28)

where xblock represents the input value, F(x) represents the output value, Activation is the
Activation function, and Oblock is the output value of the residual block. The residual block
structure is shown in Figure 10. Overall, TCN combines the advantages of capturing
long-range dependencies with DCC and the characteristics of residual blocks to prevent
network degradation, thereby effectively improving the capability and robustness of feature
extraction in the model.

5.3. Framework of TCN Model with Attention Mechanisms

The proposed TCN model with the attention mechanism in this paper includes multi-
ple feature inputs, two attention layers, one TCN layer, fully connected layers, and output
classification values. The input feature vectors {x1, x2,. . ., xi} are first used in the first atten-
tion layer to calculate the weight vectors. The weight vectors are then concatenated with
the input vectors of the current layer to obtain new vectors {y1, y2, . . ., yi}. Next, the vectors
go through the TCN layer for convolutional processing, followed by the attention layer to
repeat the concatenation and weight calculation operations. Finally, the vectors are fed into
the fully connected layers to compute the classification values. The attention mechanism is
introduced before and after the TCN layer to improve the identification efficiency through
the weight assignment process. The attention-based TCN model is illustrated in Figure 11.
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6. Example Verification and Analysis
6.1. Hardware Environment and Experimental Platform

This paper implemented the above-mentioned model using the PyTorch deep learning
framework. The training and testing were performed on a computing platform with an
Intel Core i5-8265U CPU, Intel, Santa Clara, CA, USA, 8 GB of memory, and an NVIDIA
GeForce GTX 1080 GPU (Nvidia, Santa Clara, CA, USA) with 11 GB of memory.

6.2. Data Set Selection

Due to the lack of high-frequency electrical data for PV components in existing datasets,
we built a non-intrusive experimental platform for data collection, processing, and storage.
The data acquisition device synchronously collected high-frequency voltage and current
data at the residential entrance bus. The detailed information of residential appliances,
simulated for the experiment, is listed in Table 2. The platform was based on a three-layer
interfacing and data-acquisition device using the DSP TMS320F28335, Texas Instruments,
Dallas, TX, USA. The voltage sensor model was LV25-P/SP5, the current sensor model was
ZQM150LTBS, and the sampling frequency was set to 1000 Hz. Software tools such as Code
Composer Studio 6.0 were employed for high-frequency signal filtering and AD sampling.
The sampled dataset included time, three-phase voltage, current, current harmonics, active
power, and reactive power. The platform architecture is shown in Figure 12.
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Table 2. Information on equipment used for experimental sampling.

Equipment Type Brand Model Rated Power/kW

PV equipment CHINT CPS SCA36KTL-DO-480, Chint Power Systems
America, Richardson, TX, USA 5

Air conditioner Gree RF7.2WQ/NhA-N3JY01, Gree Electric, Zhuhai, China 2
Electric kettle PHILIPS HD9316, Philips, Amsterdam, The Netherlands 1.8
Microwaves GalanZ G80F23CN2P-B5(RO), Galanz, Foshan, China 1.5
Refrigerator Hisense BCD-183FH, Hisense, Qingdao, China 0.52

Lighting OPPLE, Suzhou, China 0.1
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Since this paper focused only on the identification of PV devices, in the data sampling
process, to maintain the platform under normal lighting conditions (including occasional
photovoltaic received localized shadow blocking during the conditions), all the types of
normal-access equipment, to confirm that the overall test system was operating normally,
recorded the grid-connected-containing single-phase and three-phase photovoltaic and
the control state of the switching of the time data, and these events were marked as PV
events. Other devices, considered as disturbances, were randomly switched on during the
sampling process without specific event labeling; their activation times were recorded. The
dataset consisted of nearly 1500 events and around 300 PV events, which were used to
evaluate the event detection and PV device identification methods. The entire dataset was
randomly partitioned into an 80% training dataset and a 20% testing dataset.

6.3. Evaluation Indicators

In order to evaluate the accuracy of the proposed identification approach for residen-
tial PV systems using transient features and TCN with attention mechanisms, as well as
the accuracy of the sliding-window two-sided CUSUM event detection algorithm, consid-
ering the time threshold for electrical-event detection and the precision of capturing the
event time window, several commonly used performance metrics in this type of problem
were selected.

Precision rate: this represents the proportion of correctly classified events among
all detected events. Recall indicates the proportion of all events that are detected. The
calculation formula is as follows:

Pprecision =
TP

TP + FP
(29)

Precall =
TP

TP + FN
(30)

In the formulas, TP represents true positive, which is the number of positive samples
correctly classified as positive; FP represents false positive, which is the number of negative
samples incorrectly classified as positive; and FN represents false negative, which is the
number of positive samples incorrectly classified as negative.
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The F1-score is the harmonic mean of precision and recall. The calculation formula is
as follows:

F1−score =
2× Pprecision × Precall

Pprecision + Precall
(31)

The time error mean indicates the precision of the event detection algorithm in calcu-
lating the time of occurrence of an event.

TMAE =
1
n

n

∑
i=1

∣∣ti − ti,real
∣∣ (32)

where n is the number of events detected, ti is the event occurrence time calculated by the
event detection algorithm, and ti,real is the real occurrence time of the event.

6.4. Validation of Event Detection Performance

To validate the proposed sliding window two-sided CUSUM event detection algo-
rithm considering the time threshold, the collected one-dimensional power series from the
electricity meter was used as the input. The algorithm was compared with BIC, Hotelling
T2, and the traditional CUSUM algorithm. The actual power series of the selected dataset
in this article is shown in Figure 13.
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According to the actual debugging situation, the relevant parameters were set as
follows: the window length for calculating the average value was Nm = 8, the window
length for transient process detection was Nd = 12, the noise parameter β was 50, the
threshold value h was 500, σ was 1.2, α was 1, and λ was 0.2. The specific results of various
event detection algorithms are shown in Table 3. Based on the above statistical results, it can
be concluded that the algorithm proposed in this paper, which utilizes the time threshold,
power fluctuation criterion, and weighted composite window, can improve the accuracy
of event detection compared to other algorithms, and accurately record the start and end
positions of transient events. Figures 14a and 14b, respectively, display the change in the
total power of the electricity meter and the cumulative sum of the corresponding event
detection algorithm during a certain grid-connected moment of the PV equipment, which
show the calculation process of the detection algorithm in detail.
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Table 3. Results of various event detection algorithms.

BIC Hotelling T2 CUSUM Improved
CUSUM

PR 0.889 0.729 0.946 0.976
Recall 0.891 0.965 0.912 0.985

F1 0.890 0.831 0.929 0.980
TMAE/s 0.328 0.456 0.147 0.029
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6.5. Validation of Feature Selection and Ranking Methods

According to the measurement results of the discrimination and redundancy of differ-
ent features from various devices using the semi-Fisher score and MIC feature selection
methods, the features were sorted according to Equation (9) with a parameter α of 0.5.
Based on the sorting results, the features were sequentially added to the feature subset.
Using the event detection algorithm mentioned earlier to record the start and end positions
of various events, the feature quantities of the feature subset were extracted around the
starting positions using a time window of length 200. The transient feature quantities in
each window were then input into a TCN with attention mechanisms. To demonstrate
the effectiveness of the feature selection method proposed in this paper, the test results
were compared with traditional mRMR and reliefF methods, as shown in Figure 15. The
accuracy of identification represents the proportion of correctly classified samples to the
total number of test samples.

In Figure 15a, the horizontal axis represents the importance order of nine features,
where the importance decreases from left to right. The vertical axis represents the identifi-
cation accuracy corresponding to adding the features in the horizontal axis sequentially
to the feature subset. It can be observed that as the number of features increases, the
accuracy of PV-device identification gradually improves. When the 4th feature is added,
the identification accuracy reaches its highest point. However, with the subsequent ad-
dition of features, the identification accuracy decreases, indicating that adding features
with lower importance actually leads to a decrease in identification accuracy. Among them,
the maximum identification correctness is 98.23% when four features, namely, the active
power, current amplitude, current crest factor, and current 7th harmonic amplitude, are
selected as feature subsets. Therefore, this feature subset represents the optimal subset
for identification.
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By comparing Figure 15a–c, it can be concluded that the feature selection method
proposed in this study not only improves the accuracy of identification but also greatly
reduces the dimensionality of the features. Compared to other methods, it offers the
advantage of lower computational complexity.

6.6. Validation of Classification Algorithms

To verify the effectiveness of the TCN model with attention mechanisms, it was
compared with a OneClass support vector machine (OCSVM), CNNs, long short-term
memory (LSTM), gated recurrent unit (GRU), and backpropagation (BP) neural network
algorithms. The comparative results are shown in Table 4.

Table 4. Comparison of recognition effect of different algorithms.

Algorithm Identification
Accuracy/% Number of Feature Subsets

TCN model with attention mechanisms 98.32 4
GRU 92.21 6
LSTM 93.06 6
CNNs 93.45 5

BP 91.83 5
OCSVM 86.23 6

From Table 4, it can be observed that the One-Class support vector machine (OCSVM)
algorithm had the lowest identification accuracy and required the highest number of
features, and the identification accuracy of other neural network algorithms was also not
high. The TCN algorithm with the attention mechanism outperformed other algorithms in
terms of identification accuracy and required fewer features for identification, reducing the
feature dimensionality and computational costs.

7. Conclusions

This paper introduced a non-intrusive method for identifying residential PV systems
using transient features, leveraging the TCN model with attention mechanisms, and the
method was validated using real measurement data. The results demonstrate that the
transient feature selection method of the semi-Fisher Score and MIC in this paper can
fully exploit the information of unlabeled samples and select the subset of features (active
power, current amplitude, current crest factor, and current 7th harmonic amplitude) with
the best identification effect compared with the traditional mRMR and reliefF feature
selection methods, effectively reducing the feature dimension and computational cost of
the identification. In addition, the TCN model with attention mechanisms gave different
weights to multi-input features through the attention mechanism to highlight the more
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critical features, which greatly improved the accuracy of the discrimination to 98.23%
compared with LSTM, GRU, CNNs, OCSVM, and BP. The sliding-window two-sided
CUSUM event detection algorithm considering the time threshold not only improves the
precision rate and recall rate of event detection, but also can accurately locate the PV grid
connection and state-switching behaviors in real time. The results show that the mean
error of the temporal localization of the algorithm was 0.029 s, which was a reduction of
0.2 s compared with the other algorithms, which further verifies the high efficiency of the
analytical methods and algorithms in this paper. Future research will focus on enhancing
the learning speed of the algorithms for practical applications. Additionally, factors such
as temperature, humidity, real-time electricity prices, and user habits will also be taken
into account to further improve the accuracy of the model. Meanwhile, the method of this
paper can also be generalized and applied to other special or abnormal load monitoring.
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Nomenclature

Acronyms Fn The n-th selected feature
PV Photovoltaic Fs The selected feature subset
TCN Temporal convolutional network Wm The mean calculation window
MIC maximal information coefficient Wd The transient detection window
CUSUM cumulative sum Nm, Nn Length of the two windows
NILM Non-intrusive load monitoring Mm, Md The power mean values of the two windows
GLRT Generalized likelihood ratio test g−k , g+k The two-sided event cumulative sums
GOF Goodness-of-fit β The externally introduced noise
BIC Bayesian information criterion d The time delay factor
SVM Support vector machine h The cumulative and threshold values
RF Random forest Nmax The maximum allowable delay in terms of the number of

sampling points
KNN K-nearest neighbors Ts The sampling interval
HMM Hidden Markov models ∆t The time difference between two consecutive events
KLE Karhunen Loeve expansion Tth The given time threshold.
ANN Artificial neural network ui The sampling point in the average value window
CNNs Convolutional neural networks uc The position of the sampling point in the middle of the window
DCC Dilated causal convolution ϕ(ui) The weight value
OCSVM OneClass support vector machine µgauss The average value of the obtained Gaussian window
LSTM Long short-term memory µd The middle value of the maximum width of the

detection window
GRU Gated recurrent unit vi The Position of each sampling point in the detection window
BP Backpropagation ψ(vi) The detection window weights
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Indices ∆min Cumulative and minimum thresholds
r Index for features gw The cumulative sum within a window
i Index for samples αij Concatenated Attention Mechanism coefficient

k Index for the sampling time
→
h i,
→
h j Two feature vectors

Paremeters || The concatenation operation
δ, λ Two control parameters

→
a The single-layer feedforward neural network, parametrized by

a weight vector
→
a ∈ R2F′

W An n by n weight matrix.
→
h
′
i Final output for each feature

σ The Gaussian coefficient N The number of feature values
α The coefficient for backward offset of the ak

ij The normalized attention coefficients computed by the
detection window weight k-th attention mechanism

e The similarity coefficient F(s) Dilated convolution operation for time series
Wk The corresponding input linear xs−d·i The product of the step lengths of all previous layers

transformation’s weight matrix
Variables K The specific value of the convolution kernel
n The number of samples in the sample set Oblock The output value of the residual block
c The number of categories in the samples xblock The input value in Residual Block
ni The quantity of samples in the i-th class Activation The Activation function
µr The mean value of all samples on the Pprecision The proportion of correctly classified events among all

r-th feature detected events

µi
r, (σi

r)
2

The mean and variance of the r-th feature Precall The proportion of all events that are detected.
for samples in the i-th class

Vr The variance score of the r-th feature TP The true positive
fri, frj The r-th feature of the i-th and j-th samples FP The false positive
X, Y Two sets of feature variables FN The false negative
xi, yi The x-th and y-th features of the i-th sample F1-score The harmonic mean of precision and recall
I(X:Y) The mutual information between X and Y ti,real The real occurrence time of the event
MIC(X, Y) The redundancy between X and Y TMAE The time error mean indicates the precision
p(x,y) The joint probability density of variables ti the event occurrence time calculated by the event

X and Y detection algorithm
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