
Citation: Sun, Y.; Yang, Y.; Liu, S.; Li,

Q. Research on Transportation

Carbon Emission Peak Prediction

and Judgment System in China.

Sustainability 2023, 15, 14880.

https://doi.org/10.3390/

su152014880

Academic Editor: Roberto Mancinelli

Received: 29 August 2023

Revised: 28 September 2023

Accepted: 10 October 2023

Published: 15 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Research on Transportation Carbon Emission Peak Prediction
and Judgment System in China
Yanming Sun 1,2,*, Yile Yang 1 , Shixian Liu 1 and Qingli Li 2

1 College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China;
18098861539@163.com (Y.Y.)

2 International Cooperation Center of National Development and Reform Commission, Beijing 100038, China;
icclql@126.com

* Correspondence: sunyanming@sdust.edu.cn or sun3311@126.com; Tel.: +86-198-5421-6269

Abstract: The transportation sector is a major contributor to carbon emissions, and managing its
carbon peak is essential for China to reach the 2030 carbon peak target. This paper uses the autoregres-
sive integrated moving average model (ARIMA) to design baseline scenarios and “double carbon”
scenarios (carbon peak and carbon neutrality) based on the accounting of transportation carbon
emissions in 30 provinces and cities in China to facilitate regional differentiation and forecast the
development trend of transportation carbon emissions. Using the fuzzy comprehensive evaluation
method, a comprehensive transportation carbon emission research and judgment system has been
developed based on the forecast results. The research indicates a substantial increase in carbon
dioxide (CO2) emissions from transport in China over the past 15 years, with an average growth rate
of 5.9%, from 387.42 mt in 2005 to 917.00 mt in 2019. In the scenario prediction analysis, the overall
carbon emission of the “two-carbon” scenario exhibits varying levels of reduction compared with
the baseline scenario. According to the comprehensive research and judgment system, when the
comprehensive evaluation index corresponding to the turning point year of transportation carbon
emissions is greater than 0.85, and the index remains above 0.85 after the turning point, it can be
judged that a region has achieved the peak of transportation carbon dioxide emissions under 95%
possibility. It shows that China’s policies and strategies for carbon and emission reduction have
played a significant role in transportation, but the low-carbon transformation and development still
face great challenges.

Keywords: transportation carbon emissions; peak prediction; scenario analysis; autoregressive
integrated moving average model (ARIMA); comprehensive research and judgment system

1. Introduction

Climate change caused by greenhouse gas emissions has become the focus of global
attention. China attaches great importance to climate change [1]. On 27 October 2021,
China issued a white paper entitled “Chinese Policies and Actions to Address Climate
Change”, which introduced China’s progress in addressing climate change, shared practices
and experience in handling climate change, and helped the Paris Agreement achieve
stability. Its primary contents include that it is a significant decision of China to achieve
carbon peaking and carbon neutrality and that, at the same time, China faces the severe
challenge of emission reduction to achieve peak carbon at a lower peak value and achieve
carbon neutrality within the specified time. Transportation is one of the crucial sources
of carbon emissions. The International Road Federation (IRF) estimates that by 2050, the
energy consumption related to transportation will increase by 21 percent to 25 percent
compared with 2016. The carbon peaking and carbon neutrality goal has pressured the
transportation field tremendously. Still, it can promote the “high-quality” development of
the economy, enhance the voice of global environmental issues, and have economic and
political significance for China [2].
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Carbon emission reduction (CER) in transportation means “decoupling” transporta-
tion development from carbon emissions [3]. Transportation is one of the critical industries
of energy consumption and direct carbon emissions. From the perspective of the current
law of economic and social development, the development of transportation has a signifi-
cantly positive correlation with the modernization process and the improvement of living
standards. Regions with the highest TCE are developed economies and some emerging
economies. China is in the process of rapid industrialization, urbanization, and motoriza-
tion. In the future, the resource occupation and total CO2 emissions in the transportation
field will show a gradual increase. It is also a great challenge to achieve comprehensive
“decoupling”. Accelerating the carbon peaking and carbon neutralization from intensity
to the total amount and conducting carbon emission measurement analysis and emission
reduction path research have important practical significance for building a low-carbon
economic system.

Publicity and Education Center of the Ministry of Ecology and Environment, School
of Applied Economics at the Renmin University of China, and Didi Development Research
Institute jointly released the “Digital Travel Helps Carbon Neutrality” research report.
The report says that compared with other industries, it is more challenging to achieve
the carbon peaking and carbon neutrality goals in the transportation industry [4]. Con-
tinuous breakthroughs should be made in the top-level design, road space layout, slow
traffic system construction, automobile electrification transformation, green low-carbon
technology, etc. In addition, promoting the realization of the carbon peaking and carbon
neutrality goal is the “main theme” in the transportation field during the 14th Five Year
Plan period. Different from developed countries, China’s realization of the carbon peaking
and carbon neutrality goal refers to effective emission reduction in the context of ensuring
sustainable economic and social development, helping to achieve the transition from the
“high growth” model to the “high quality” model. In transportation, the realization of a
“carbon peak” means that the development of transportation is not restricted, but the task
of reaching the peak within the specified time and keeping the “low peak” as far as possible
is completed. The carbon peaking and carbon neutrality goal is an essential challenge for
industry development, and China has implemented a series of strategies, measures, and
actions in this regard.

The transportation field holds immense promise in terms of reducing carbon emissions
and emissions [5]. Accurately grasping the trend of carbon peaking in China’s transporta-
tion, constructing a quantified comprehensive judgment system for carbon peaking, and
determining the research and judgment standards for carbon peaking are vital to the next
low-carbon development planning of China’s transportation industry and the adjustment
and formulation of carbon peaking strategies. Simultaneously, it would serve as a bench-
mark and roadmap for numerous nations that have yet to reach the peak transport carbon,
further propelling the attainment of the worldwide carbon dioxide emissions peak and
establishing the groundwork for the accomplishment of the global carbon-neutral objective.

2. Literature Review
2.1. Research on Carbon Peaking

In the face of increasingly severe global climate and environmental change, research on
carbon emission peak path, time, and future climate simulation has become a focus in low-
carbon economics. Many studies estimate national and regional CO2 emissions, providing
a scientific perspective for future sustainable development strategies. Prasad and Raturi [6]
use the LEAP model to study the greenhouse gas emissions of Fiji’s road transport from
2016 to 2040. Selvakkumaran and Limmeechokchai [7] have built an AIM/Enduse model to
study the carbon emissions of Thailand’s transportation industry. Gao and Pan [8] studied
the carbon peak by establishing a dynamic model of economy-energy-carbon emission
in Shanghai. Zhang and Luo [9] used the LEAP model to predict peak carbon emissions.
Capros et al. [10] used the PRIMES model to assess decarbonization in the EU in 2030 under
the “Clean Energy for All Europeans” package.
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2.2. Research on Transportation Carbon Emission Prediction

The most widely used carbon emission prediction is scenario prediction of the future
trend of carbon emissions. Liimatainen et al. [11] have created six scenarios based on
the forecast of seven indicators of CO2 emissions from Finnish freight transport, and the
results show that the average annual emission reduction in 2030 will be more than 26%.
Dhar et al. [12] have used the ANSWER MARKAL model to compare and analyze four
possible transport (passenger and freight) carbon emission scenarios for India spanning
till 2050. Wang et al. [13] have quantitatively simulated the emission reduction effects of
different policy measures under different scenarios, such as optimization of transportation
structure, application of energy-saving and emission-reduction technologies, and new
energy vehicles. AlSabbagh et al. [14] analyze the CO2 emission scenario of Bahrain’s road
passenger transport sector. Wang et al. [15] analyze China’s road transport industry’s CO2
emission reduction scenario.

Scholars have also used many other methods to predict carbon emissions. Gao and
Sun [16] use the grey relational analysis model to investigate the evolutionary relationship
of TCE and relevant factors in Jilin Province. Wu et al. [17] combine the Logarithmic Mean
Divisia Index (LMDI) model with the Tapio decoupling model, predict and analyze the
time, path, and quality of carbon peaking in the transportation industry in China and its
eastern, central, and western regions. Byers et al. [18] have studied and analyzed the low-
carbon development measures of the UK transport system from 2010 to 2050 by building a
practical energy analysis framework for future transport routes. By creating a C3IAM/NET
transport model, Tang et al. [19] have simulated the CER potential of intercity passenger
transport by adjusting the transport structure, improving energy efficiency, and promoting
alternative fuels. They predicted that China’s intercity passenger transport would peak in
2030. Fernández-Dacosta et al. [20] compare the potential of carbon intensity reduction of
different alternative fuels. Zhou et al. [21] have studied the CO2 emission performance of
the transportation field in 30 administrative regions of China using the output-oriented
data envelopment analysis model with different returns to scale.

2.3. Research on Influencing Factors of Transportation Carbon Emission

Identifying the influencing factors of transportation carbon emissions is the basic
work of formulating policies and measures for the development of low-carbon transporta-
tion. Wang et al. [3] have used the generalized division index method (GDIM) to analyze
influencing factors and decoupling Elasticity of Chinese TCE. Talbi [22] uses the vector au-
toregression (VAR) model to analyze the influencing factors of the change of CO2 emissions
in Tunisia’s transport sector from 1980 to 2014, including economic growth, urbanization
rate, energy intensity, and other factors. Mattioli [23] has studied the development of
low-carbon transportation from the social equity perspective. Fan and Lei [24] studied the
effects of energy structure, energy intensity, output value per unit traffic turnover, traffic
intensity, economic growth, and population size on carbon emissions in Beijing’s trans-
portation sector between 1995 and 2012, taking into account the extended Kaya identity. Xu
and Lin [25] contend that urbanization has a considerable effect on CO2 emissions in the
transportation industry. Tsita and Pilavachi [26] used long-term range energy alternatives
planning (LEAP) to forecast CO2 emissions from the Greek transport sector for 2010–2050
based on various scenarios utilizing alternative technologies. The evidence suggests that ad-
vances in technology are essential for preserving energy and decreasing emissions. Zhang
et al. [27] hold the belief that the construction of infrastructure is crucial in the reduction
of carbon. Chen et al. [28] used GDIM, Tapio, and scenario-based dynamic forecasting
methods to study the drivers of carbon emissions change in China’s transportation from
2005–2019 and concluded that investment is the main driver of carbon emissions growth
in the transportation industry. Wang et al. [29] analyzed the factors affecting the carbon
emissions of the railway transportation industry in BRIC nations and determined that the
economic output effect factors contributed positively to the increase of carbon emissions in
all the identified countries.
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After reviewing both domestic and international research, it is evident that when it
comes to transportation, academics concentrate on forecasting and evaluating the factors
that contribute to carbon emission, and the scenario analysis model has become a popular
tool in the transportation sector. Despite this, further research is needed to explore the
prevalence of carbon peaking between provinces and cities, with the majority of studies
concentrating on large or densely populated areas such as countries or megacities. Subse-
quently, there is still a dearth of studies that take into account the viewpoint of provinces
and cities that have successfully reached carbon peaking, particularly in the absence of
research on the process of carbon peaking. The current research does not have a benchmark
to determine if carbon dioxide emissions have reached their highest point in forecasting
or analysis.

Therefore, the innovation of this paper lies in its utilization of a fuzzy comprehensive
evaluation approach to build a thorough assessment system for quantified carbon emission
peaks, assess the carbon peak condition of Chinese provinces and cities, and create a
comprehensive evaluation system for carbon emission peak that is appropriate for China
and other provinces and cities. This research rectifies the deficiencies of existing studies
in the area of carbon dioxide emission peak assessment and furnishes effective policy
recommendations for achieving China’s carbon peak.

3. Methodology and Data
3.1. Methodology
3.1.1. ARIMA Model

TCE data are a non-stationary series, also known as weak stationarity, characterized by
dependence, i.e., the value of a specific time in the future depends on its past information.
The ARIMA model is a time series and prediction method [30]. Its basic principle is
first to use the d-order difference to stabilize the non-stationary time series and then
use Autoregressive AR(p), Moving Average MA(q), Autocorrelation Function (ACF), and
Partial Correlation Coefficient (PCF) to identify the model for the stabilized time series.
This model is often used for time series analysis.

First, the primary variables involved in the formula are described. Xt is a time series,
xt represents the t-th point in the time series (t is an integer from 1 to N), and N represents
the length of the series. In this model, relevant variables are shown in Table 1.

Table 1. Variable name and corresponding formula.

Variable Name Corresponding Formula S/N

Mean value µ = E(Xt) (1)
Variance σ2 = D(Xt) = E(Xt − µ)2 (2)

Standard deviation σ = 2
√

D(Xt) (3)
Autocovariance (Unbiased) ck = 1

N−k ∑N
t=k−1(xt − µ)(xt−k − µ) (4)

Autocovariance (Biased) ĉk = E((Xt − µ)(Xt−k − µ)) = 1
N ∑N

t=k−1(xt − µ)(xt−k − µ) (5)

Secondly, the stationarity of the time series Xt is tested. Generally, ACF and PACF
functions are used to judge the type. For ACF, the calculation formula is as follows.

The correlation coefficient ACF (unbiased) is as follows:

acf(k) = rk =
ck
c0

=
N

N − k
× ∑N

t=k+1 (xt − µ)(xt−k − µ)

∑N
t=1(xt − µ)2 (6)

The correlation coefficient ACF (biased) is as follows:

acf(k) = rk =
ck
c0

=
N

N − k
× ∑N

t=k+1 (xt − µ)(xt−k − µ)

∑N
t=1(xt − µ)2 (7)
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For PACF, the calculation process is more complex, and the following assumptions are
generally made first:

xi+1 = ∅1xi + ∅2xi−1 + · · ·+ ∅kxi−k+1 + δi+1 (8)

In this formula, ∅j (j is an integer from 1 to K) is the linear correlation coefficient, δi+1
is noise, i.e., we assume that the point xi+1 is linearly related to the first k points, as follows
xi−k−1, xi−k+2,· · · , xi. PACF represents the correlation between xi and xi−k. Therefore, the
PACF formula of the sequence is as follows:

pacf(k) = ∅k (9)

The solution process of ∅k is omitted here, which can be determined by programming.
If the time series Xt fails to pass the stationarity test, the original data must be stabilized

and transformed into a weakly stationary series by difference. In practical application, d is
usually equal to 1 or 2, and the determination method is that the data pass the stationarity
test after d-order difference. ARMA(p, q) model has many identification methods, but it is
generally identified by autocorrelation coefficient (ACF) and partial correlation coefficient
(PCF). If the d-order difference of Xt is a stable ARIMA process, it is called the autoregressive
moving average summation model. The solution formula of d is as follows:

Wt = (1− B)dXt (10)

If Wt follows ARMA(p, q) model, Xt is said to be an ARIMA(p, d, q) process.
ARIMA includes three components: autoregressive, differential, and moving average.

p, d, and q represent autoregressive order (Lags of time series data used in the prediction
model, also called AR/Auto Recursive term.), difference number (How many orders of
real-time data need to be differentiated to obtain stable data, also called Integrated term.),
and moving average order (Lags of prediction error used in the prediction model, also
called MA/Moving Average.), respectively, and the Bayesian Information Criterion (BIC)
can be used to calculate the BIC value to select p value and q value.

Bayesian decision theory is a part of BIC. It means that under incomplete reporting,
some unknown states are estimated with subjective probability, and then the occurrence
probability is modified with the Bayesian formula. Finally, the expected value and the
modified possibility are used to make the optimal decision, with the formula as follows:

BIC = ln(N)h− 2ln(L) (11)

where h is the number of model parameters, and h = 5 is taken in this paper. L is the
likelihood function and ln(N)h is the penalty term. When the dimension is too large, and
the training sample data are small, dimension disaster can be effectively avoided. The
order of the optimal ARIMA(p, d, q) model is the p-value, and q-value that minimizes the
BIC value.

For the time series that have passed the stationarity test, the stationary process Wt can
be used to replace the position of the unstable Xt in the ARIMA model, namely:

Wt = c + φ1Wt−1 + · · ·+ φpWt−p + εt + θtεt−1 + · · · θqεt−q (12)

Represented by the lag operator:

Φ(B)Wt = c + Θ(B)εt (13)

where, {εt} is a white noise process,

Φ(B) = 1− φ1B− φ2B2 − · · · − φqBq (14)
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Θ(B) = 1 + θ1B + θ2B2 + · · ·+ θqBq (15)

ARMA(p, q) model after the d-order difference change is called ARIMA(p, d, q) model.
Equation (15) is equivalent to the following equation:

Φ(B)(1− B)dXt = c + Θ(B)εt (16)

Finally, the ARIMA(p, d, q) that has been established is used to predict the changes of
subsequent index values, and the final prediction results are obtained. ARIMA model is
suitable for short-term prediction. In this paper, an adaptive method is proposed to predict
carbon emissions in the field of transportation by using JupyterLab 3.0 software.

3.1.2. Fuzzy Comprehensive Evaluation Method

The concept of fuzzy set theory was put forward by the American automatic control
expert Zadeh in 1965 to express the uncertainty of things, which is an important part
of fuzzy mathematics and the theoretical source of fuzzy comprehensive evaluation and
analysis [31].

The fuzzy comprehensive evaluation method blurs all aspects and factors of the eval-
uation object and then gets the final evaluation result through the fuzzy comprehensive
operation. The basic steps of the fuzzy comprehensive evaluation method include estab-
lishing a factor set for a comprehensive evaluation, establishing an evaluation set for a
comprehensive evaluation, determining the fuzzy comprehensive evaluation matrix, deter-
mining the weights of each factor, and calculating the comprehensive evaluation index.

Step 1: Establish a comprehensive evaluation factor set.

A factor set is a general set, usually represented by U, composed of various factors
that affect the evaluation object, and these factors have varying degrees of ambiguity.
Establishing a comprehensive evaluation factor set is the foundation of fuzzy comprehen-
sive evaluation. Due to the different degrees of correlation between different factors and
evaluation objects, the selection of indicators will also affect the final evaluation results.

U = {u1, u2, u3, . . . , ui, . . . , um} (17)

where ui represents the factors that affect the evaluation object, and m is the number of
evaluation indicators.

Step 2: Establish an evaluation set of a comprehensive evaluation.

In the factor set, each factor influences the evaluation results differently. To this end,
give the weighing ai for each factor ui, and the fuzzy set of the weight collection of each
factor, which is represented by A.

A = {a1, a2, a3, . . . , ai, . . . , an} (18)

where a represents the elements of assessment; n represents the number of evaluation
concentration elements, which is determined by the nature of the evaluation object and the
evaluation process. The specific evaluation level is determined by the appropriate language
the evaluation object uses, such as “strong, medium, weak” language.

Step 3: Determine the fuzzy comprehensive appraisal matrix.

If the membership grade of the first element in the factors u in the evaluation set A is
R11, the results of the bullies of the first element single factor evaluation are represented
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as Ri = {ri1, ri2, . . . , rim}. The matrix Rn×m is composed of m single-factor evaluation sets
{R1, R2, . . . , Ri, . . . , Rn}, which is called a fuzzy comprehensive evaluation matrix.

Rn×m =


r11 r12
r21 r22

· · · r1n
· · · r2n

...
...

rm1 rm2

. . .
...

· · · rmn

 (19)

Step 4: Determine the weight of each factor.

In the evaluation process, the importance of various factors will be different. Therefore,
give the factors ui a weight ωi, and the weight collection of each factor is represented by E:

E = (ω1, ω2, . . . , ωm) (20)

The weight has an important impact on the results of the final model. Therefore,
the determination of weight directly affects the rationality of the evaluation model. Dif-
ferent weights will lead to different research results, so the weight-determining method
is significant. There are many ways to determine weights, such as the Delphi (expert
investigation method), the weighted average method, the analytic hierarchy process (AHP),
and the evaluation method. When data are available, the entropy method is usually used
to calculate the weight.

Step 5: Calculate the comprehensive evaluation index.

Perform the matrix synthesis operation to get matrix C.

C = E·R = [ω1, ω2, · · · , ωn]


r11 r12
r21 r22

· · · r1n
· · · r2n

...
...

rm1 rm2

. . .
...

· · · rmn

 = [C1, C2, · · · , Cm] (21)

Finally, compare and sort the evaluation results of multiple evaluation objects and
calculate the comprehensive evaluation index of each indicator.

3.2. Data

Considering the computability and accuracy of the data, a “top-down” method is
chosen to calculate the TCE of different provinces in China [32]. The estimation scope of
TCE mainly includes the carbon emissions generated by the direct energy consumption
of urban road transport and the energy consumption from the railway, water transport,
aviation, pipeline, and multimodal transport agents. The researchers studied transport
carbon emissions in 30 Chinese provinces and cities to determine if China could reach
carbon peaking and carbon neutrality. Affected by the COVID-19 epidemic, the data
fluctuates greatly, which affects the accuracy of the prediction model. Therefore, the time
range of this study is from 2005 to 2019. The data come from the China Energy Statistics
Yearbook, without excluding the statistics of warehousing and postal industry. According
to the IPCC Guidelines for National Greenhouse Gas Inventories, the carbon emission
factors of various energies are calculated as follows:

TCE = ∑6
i=1 Ei·Ki = ∑9

i=1 Ei × ALHi × 10−9 × AHCi × Ri × 103 × 44
12

(22)

where TCE represents the total amount of regional TCE, and i represents the type of energy
required by the transportation field (Referring to the Guidelines for the Preparation of
Provincial Greenhouse Gas Inventory, the terminal consumption of various transportation
modes mainly includes raw coal, gasoline, kerosene, diesel, fuel oil, liquefied petroleum
gas, and natural gas), Ei is the consumption of the i-th energy, ALHi represents the average
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low calorific value of the i-th energy, AHCi is the carbon content per unit calorific value
of the i-th energy, Ri is the carbon oxidation rate of the i-th energy, and Ki represents
the carbon emission factor of the i-th energy. Table 2 shows the statistical description of
energy carbon emission factors. The data come from General Principles for Calculation of
Comprehensive Energy Consumption (GB/T2589-2020) [33] and 2006 IPCC Guidelines for
National Greenhouse Gas Inventories [34].

Table 2. Statistical description of energy carbon emission factors.

Energy Average Low Calorific
Value

Carbon Content per
Unit Calorific Value

Carbon Oxidation
Rate

Carbon Emission
Factor

Unit kJ/kg or kJ/m3 t-c or TJ kg-CO2 or kg

raw coal 20,934 27.37 0.94 1.975
gasoline 43,124 18.9 0.98 2.929
kerosene 43,124 19.5 0.98 3.022
diesel 42,705 20.2 0.98 3.010
fuel oil 41,868 21.1 0.98 3.174
liquefied petroleum gas 50,242 17.2 0.98 3.105
natural gas 32,238 15.32 0.99 1.793

Electric power is widely used in Chinese railways, highways, waterways, and air
transportation, especially in new energy trams and buses. With the development of the
transportation industry, electric power is also used to supply energy for ships and aircraft
when parked, changing the power supply and heating from self-combustion of gas. Power
consumption has been incorporated into the scope of carbon emission measurement to
capture carbon emissions in the transportation sector comprehensively. The carbon emis-
sion coefficient of power refers to the Accounting and Reporting Requirements for Carbon
Dioxide Emissions Electric Power Generation Industry (DB11/T 1785-2020) [35], which
varies according to different regions, as is shown in Table 3.

Table 3. China’s regional electricity carbon emission coefficient.

Region Covering Provinces, Districts, and Cities
CO2 Emission

Coefficient
(kg/KW·h)

North China Beijing, Tianjin, Hebei, Shaanxi, Shandong, Western
Inner Mongolia 1.246

Northeast Region Liaoning, Jilin, Heilongjiang, Eastern Inner Mongolia 1.096
East China Shanghai, Jiangsu, Zhejiang, Anhui, Fujian 0.928

Central China Henan, Hubei, Hunan, Jiangxi, Sichuan 0.801
Northwest Region Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang 0.977
Southern region Guangdong, Guangxi, Yunnan, Guizhou 0.714

Other areas Hainan 0.917
Note: Considering the data statistics, the eastern and western regions of Inner Mongolia are uniformly calculated
according to North China’s CO2 emission coefficient.

It can be seen from the calculation results that in the past 15 years, the total TCE has
shown an overall upward trend, from 387.4287 mt (million tons) in 2005 to 916.9992 mt
in 2019, with an average growth rate of 5.9%. In Figure 1, the total TCEs of the provinces
represented by Guangdong, Shandong, and Shanghai, with considerable economic pop-
ulations, have always been at a high level, but their annual growth rates are lower than
the national average, and the growth rate of Shandong is only 3.2%. The total TCEs of
Hainan, Ningxia, Qinghai, and other provinces have been at a low level yet rising rapidly.
The annual growth rate of Qinghai is up to 12.8%, whose dynamic change trend cannot be
ignored. Carbon emissions in other regions have also doubled in the past 15 years.
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Figure 1. Statistics of TCE in some provinces from 2005 to 2019.

The research on the influencing factors of traffic carbon emissions includes Gross
Domestic Product (GDP), GDP of tertiary industry, population, length of railway and
highway transportation lines, total freight transport volume, freight transport volume of
highways and railways, and the number of civilian cars, all of which are from the public
data released by the National Bureau of Statistics of China. By reading the China Statistical
Yearbook and regional statistical yearbooks, the relevant data of 30 provinces and cities
from 2005 to 2019 are counted, and finally, the panel data are analyzed and processed.

4. Empirical Analysis
4.1. Carbon Peak Scenario Setting

The demand for TCE is positively related to the scale of economic development and
technological progress, but when it reaches a certain level, the carbon emissions tend to
stabilize and continue to decline [36]. The scenario prediction method is based on the
energy consumption in the transportation field of China with different influencing factors
in recent years to determine the baseline scenario and the carbon peaking and carbon
neutralization scenario.

The high carbon scenario is unlikely to occur under the current pressure of Chinese
emission reduction and national emission reduction efforts. Under each scenario, the
growth rate of each energy consumption data set involved in the transportation field
is set, and the future development trend of carbon emissions and intensity in China’s
transportation field is predicted based on Formula (15).

The baseline scenario refers to the scenario state obtained from the historical develop-
ment of decision objects and decision-driving factors, which is the benchmark set for all
scenarios. The carbon peaking and carbon neutralization scenario refers to the perspective
of forward push and backtracking scenarios. This study establishes the energy consump-
tion growth rate with regional specificity, considering the spatial clustering differences
in the transportation sector and China’s carbon peaking and carbon neutralization target.
Through this analytical approach, short-term and long-term correlations, as well as trends,
are assessed and examined.

Based on the results of TCE accounting data, the average growth rates of provinces
in China from 2005 to 2010 and from 2015 to 2020 are calculated (Table 4). The calculation
results show that the average growth rate of provinces and cities from 2005 to 2010 is higher
than that from 2015 to 2020, showing an apparent downward trend. Beijing has the largest
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decline, and the growth rate of TCE has decreased from 16.3% to 4%. The average growth
rate of some provinces from 2015 to 2020 is negative. In recent years, national, provincial,
and municipal CER actions in transportation have achieved some results. The carbon
peaking and carbon neutrality goal brings more excellent opportunities and challenges to
provincial and municipal transportation planning, operation, and management. Taking
into account the characteristics of the ARIMA model [37], this paper sets the source of
the carbon peaking and carbon neutralization scenario as the average growth rate of each
province and city in the past five years decreased by 50% compared with the benchmark
scenario (In the context of the carbon peak and carbon neutrality goals, all provinces and
cities in China have formulated action plans, and the impact of the COVID-19 epidemic on
transportation will reduce the growth rate of carbon emissions to varying degrees. Adopt a
compromise plan and take the average growth rate of all provinces and cities in the past
five years as 50%). In addition, the ARIMA model is more accurate in short-term prediction.
The prediction time range of this paper is 2030.

Table 4. Average growth rate of TCE in China’s provinces.

Provinces 2005–2010
Growth Rate

2015–2020
Growth Rate

Carbon
Peaking and
Carbon Neu-

tralization
Growth Rate

Provinces 2005–2010
Growth Rate

2015–2020
Growth Rate

Carbon
Peaking And
Carbon Neu-

tralization
Growth Rate

Beijing 0.163393 0.039929 0.019964 Henan 0.089542 0.086504 0.043252
Tianjin 0.077817 0.032453 0.016226 Hubei 0.062533 0.071907 0.035953
Hebei 0.064459 0.048132 0.024066 Hunan 0.085229 0.048496 0.024248
Shanxi 0.132255 0.020896 0.010448 Guangdong 0.0743 0.0423 0.02115

IM 0.156804 −0.045 0.090007 Guangxi 0.103671 0.031571 0.015785
Liaoning 0.057878 0.011297 0.005648 Hainan 0.184606 0.010589 0.005294

Jilin 0.115844 −0.02529 −0.05058 Chongqing 0.109648 0.095315 0.047658
Heilongjiang 0.026716 −0.02624 −0.05247 Sichuan 0.112668 0.097086 0.048543

Shanghai 0.083376 0.045146 0.022573 Guizhou 0.157019 0.028792 0.014396
Jiangsu 0.097621 0.045483 0.022742 Yunnan 0.092279 0.060289 0.030144

Zhejiang 0.094741 0.00794 0.00397 Shaanxi 0.145902 0.018894 0.009447
Anhui 0.12326 0.028159 0.014079 Gansu 0.078081 0.011127 0.005564
Fujian 0.142639 0.059667 0.029834 Qinghai 0.232711 0.078224 0.039112
Jiangxi 0.07533 0.053902 0.026951 Ningxia 0.059488 −0.00463 −0.00927

Shandong 0.088311 0.042559 0.02128 Xinjiang 0.044788 0.02955 0.014775
Total 0.094699 0.038416 0.01920

Note: IM stands for Inner Mongolia.

4.2. Prediction Result Analysis

The future prediction of TCE is mainly based on scenario analysis, and the ARIMA
prediction method is applied. Considering that the existing research focuses on the carbon
emission and emission reduction potential of the mid-long-term time nodes in 2030, 2040,
and 2050, this paper sets the research node as 2030 and analyzes the changing trend of
China’s provincial TCE.

The ARIMA prediction model of each province and city is constructed based on the
data analysis results. It can be concluded from the forecast results that with strong policy
support, the growth of carbon emissions in China’s future transportation sector can be
effectively controlled, and the total carbon emissions in the “two-carbon” scenario will be
reduced to different degrees compared with the baseline scenario. As is shown in Figure 2,
there are 12 provinces and cities with a downward trend in the forecast of transportation
carbon emissions, including Beijing, Shanxi, Inner Mongolia, Jilin, Heilongjiang, Zhejiang,
Anhui, Shandong, Hainan, Gansu, Ningxia, and Xinjiang. Many regions actively adopt
relevant CER policies [38]. For example, Beijing actively promotes the carbon-inclusive
action of green travel; Shanxi makes great efforts to develop clean energy such as solar
energy, wind energy, and hydropower to produce “green electricity” and improve the
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utilization rate of clean energy; Beijing and Inner Mongolia start cross-regional carbon
emission trading to reduce atmospheric pollutants effectively.

Figure 2. Statistical Chart of Carbon TCE Forecast in a Downward Trend.

4.3. Comprehensive Evaluation

Based on the results of scenario prediction and original data, the 11 provinces and
cities that have reached the peak of carbon emission in transportation are summarized as
the research objects, and a comprehensive judgment system of transport carbon peaking
CO2 emissions is constructed. The peak years of CO2 emissions in the 11 provinces and
cities in peak CO2 emissions are shown in Table 5. For the comprehensive judgment system,
the index data is the system’s input.

Table 5. Annual statistics of CO2 peak in provinces and cities with traffic carbon peak.

Peak
Province Shanxi Inner

Mongolia Liaoning Jilin Heilongjiang Zhejiang Anhui Guangxi Ningxia Shandong Hainan

Peak time 2017 2012 2017 2015 2016 2017 2018 2018 2017 2019 2019

SPSS calculates the data in Table 6, the weight calculation result of the entropy weight
method. According to the results, the weight of each index is analyzed, and it is essential to
note that the weight is calculated according to the behavior unit because the index of fuzzy
comprehensive evaluation refers to the line, so the weight of the line is needed.



Sustainability 2023, 15, 14880 12 of 17

Table 6. Initial weight statistics.

Entropy Method

Term Shannon Entropy (e) Information Utility (d) Weight (%)

Shanxi 0.701 0.299 7.989
Inner Mongolia 0.697 0.303 8.113

Liaoning 0.657 0.343 9.186
Jilin 0.675 0.325 8.701

Heilongjiang 0.635 0.365 9.778
Zhejiang 0.663 0.337 9.03

Anhui 0.596 0.404 10.823
Guangxi 0.641 0.359 9.61
Ningxia 0.671 0.329 8.813

Shandong 0.695 0.305 8.154
Hainan 0.634 0.366 9.802

As can be seen from Table 6, 11 indicators (Shanxi, Inner Mongolia, Liaoning, Jilin,
Heilongjiang, Zhejiang, Anhui, Guangxi, Ningxia, Shandong, Hainan) and nine comments
summarized according to the previous literature (GDP, GDP of the tertiary industry, popu-
lation, railway transport line length, highway transport line length, total freight volume,
railway freight volume, highway freight volume, and civil automobile-owned) are eval-
uated by fuzzy comprehensive evaluation. The weighted averaging operator M(*,+) is
used. It can comprehensively use index weight and input data information, suitable for the
situation with many factors, and can avoid information loss to the greatest extent.

Firstly, from the evaluation index weight vector A (which can be obtained by the
entropy weight method), the weight judgment matrix R of 11 × 9 is constructed. Finally,
the membership degrees of nine comment sets are obtained by analysis, which are 0.1132,
0.1295, 0.0751, 0.0526, 0.0515, 0.1044, 0.2321, 0.1083, and 0, respectively.

It can be seen from Table 7 that based on the set maximum membership rule, the
general result with the highest weight in the nine comment sets is “railway freight volume”.
The comprehensive evaluation index corresponding to the nine indexes in the peak year is
calculated based on the previously computed index weights and other data. In Figure 3, the
evaluation indexes of 10 provinces and cities are all greater than 0.85, with a probability of
90%, and the average index of each corresponding index reaches 0.8944. Among them, the
average values of each index are GDP (0.0764), tertiary industry GDP (0.0892), population
(0.0801), railway transportation line length (0.0843), highway transportation line length
(0.0875), total freight volume (0.0736), railway freight volume (0.0840), road freight volume
(0.0697), and civilian vehicle ownership (0.0871). According to the calculated index results,
in addition to the corresponding indicators that reflect the scale of economic development,
such as the GDP of the tertiary industry, the indicators that reflect the traffic structure, such
as the length of highway transportation lines, railway freight volume and the number of
civil cars, are also more significant.

We use the Monte Carlo analysis method to analyze the uncertainty of the provinces’
and cities’ fuzzy evaluation results that have reached the peak traffic carbon. By estimating
the probability distribution of object variables, this method further carries out a risk
assessment and sensitivity analysis of the experimental process. A Crystal ball was used
to conduct a Monte Carlo analysis simulation in the test process. Generally, when the
certainty of simulation results is greater than 0.85, it indicates robustness. In addition, the
Monte Carlo model can find the main influencing factors from many indicators, analyze
their sensitivity, and then judge the risk tolerance.

The Monte Carlo simulation results are shown in Figures 4 and 5, which deal with the
comprehensive judgment system’s uncertainty analysis of the transport carbon peaking
CO2 emissions. Various indexes of traffic carbon emission in different provinces and
cities were calculated, and 10,000 random sampling experiments were carried out. The
experimental results show that the number of effective presentations is 9956 times, while
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the results of the probability distribution diagram show that the probability that the result
index is greater than 0.85 is greater than 95%, which indicates that the results are relatively
stable and feasible under the comprehensive judgment system of transportation carbon
emissions, which can well explain the judgment of transport carbon peaking CO2 emissions.
The sensitivity analysis chart of each index shows the sensitivity of the nine influencing
factors: railway freight volume (RFV), total freight volume (CVO), road freight volume
(HFV), GDP, population (P), tertiary industry GDP (3GDP), road transport line length
(LHTL) and railway transport line length (LRTL) in descending order. Among them, the
indicators representing the freight volume of railways and highways and the total freight
volume are particularly significant, while other indicators have high uncertainty.

Table 7. Calculation results of the membership matrix.

Index Item Membership Degree
Normalization of

Membership Degree
(Weight)

GDP 0.058464345 0.113249657
GDP of the tertiary industry 0.028897378 0.129508773

Population 0.009890318 0.075106036
Railway transport line length 0.011364705 0.052662112

Highway transport line Length 0.333312678 0.051549757
Total freight volume 0.427762786 0.104439486

Railway freight volume 0.046064872 0.232147967
Highway freight volume 0.314856355 0.108263984
Civil automobile-owned 0.001368723 0.13307223

Figure 3. Comprehensive evaluation index corresponding to 9 indicators in the peak year.
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Figure 4. System uncertainty analysis diagram.

Figure 5. System sensitivity analysis diagram.

5. Conclusions, Actions, and Recommendations
5.1. Conclusions

Through the comprehensive autoregressive moving average model, an ARIMA pre-
diction model considering data endogeneity is built for 30 provinces and cities, and two
dynamic scenarios are set up, namely, the baseline scenario and the carbon peak and carbon
neutralization scenario, to simulate the peak path of Chinese future carbon emissions and
the changing trend of carbon emissions in each province and city.
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Research findings: Firstly, the TCE sector’s expansion in the future can be effectively
managed with robust policy backing [39]. The total carbon emissions in the carbon peak
and carbon neutralization scenario are decreased to different extents when compared to the
baseline scenario. Secondly, the comprehensive evaluation index for the peak year is higher
than 0.85, and the output score continues to be higher than 0.85 even after the peak year.
Provided that a province fulfills the aforementioned fundamental prerequisites, except for
any potential exceptional circumstances, it is initially ascertained that the region possesses
a 95% likelihood of having attained the pinnacle of transportation carbon dioxide emissions.
Thirdly, the sensitivity of nine indicators in the comprehensive research and judgment
system for carbon peak in transportation is as follows: large to small: railway freight
volume, total freight volume, road freight volume, GDP, population, tertiary industry GDP,
road transport line length, and railway transport line length.

5.2. Actions and Recommendations

According to ITF Transport Outlook 2021, through policy guidance, TCE can be re-
duced by nearly 70% from 2015 to 2050. Achieving the carbon peaking and carbon neutrality
goal will require implementing a series of emission reduction measures. Specific directions
mainly include formulating a regionally differentiated emission reduction development
strategy; developing public transport and active transport; increasing financial invest-
ment, especially science and technology expenditure [40]; improving energy utilization
efficiency in the transportation field through technological progress; building a transporta-
tion network structure with the characteristics of each province, city, and region under
the background of the development of the Internet of Vehicles and the Internet of Things
technology [41]; and reducing the consumption of “connotation energy”.

It is essential to explore the action plan for transportation carbon reduction and
emission reduction strategies in line with the different development backgrounds of various
provinces and cities in China and carry out relevant research [42]. Based on the analysis of
pertinent results of this paper, for cities that have reached the peak or are standing in the
platform period, action plans for total CER should be established; for cities that have not yet
reached the peak, the goal of reaching the peak and peak year should be clearly defined, the
promotion plan for carbon emission peak action should be established, and the peak should
be reached as early as possible; for cities in the transition period of traditional industries,
low carbon potential cities, and resource-based cities, it is necessary to distinguish the
situation and make the best use of each individual case to establish an action plan toward
its carbon peak as soon as possible, to reduce carbon emissions and enter the carbon peak
stage as soon as possible.

5.3. Study Limitations

This paper’s carbon-peaking comprehensive research and judgment system has a
certain level of stability. If the economy and society are subject to unforeseen or uncontrol-
lable circumstances that result in drastic shifts beyond the scope of expected possibility,
the system may struggle to carry out judgment. Despite taking into account the histori-
cal development situation and future planning, in order to reach the state transportation
carbon peak in China’s provinces and cities in the future, certain uncertainties need to
be addressed.
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