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Abstract: The prediction of the bus passenger flow is crucial for efficient resource allocation, frequency
setting, and route optimization in bus transit systems. However, it remains challenging for a single
model to simultaneously capture the time-series data of the bus passenger flow with periodicity,
correlation, and nonlinearity. Aiming at the complex volatility possessed by the time-series data
of the bus passenger flow, a new hybrid-strategy bus-passenger-flow prediction model based on
wavelet packet decomposition, an attention mechanism, and bidirectional long–short-term memory
is proposed to improve the accuracy of bus-passenger-flow prediction. The differences between this
study and the existing studies are as follows: Firstly, this model combines decomposition strategies
and deep learning. Wavelet packet decomposition can decompose the original data into a series
of smoother data components, allowing the model to be more adequate in capturing the temporal
characteristics of passenger-flow data. And the model can consider the information after the predicted
moment via backward computation. In addition, the model is equipped with the ability to focus
on important features by incorporating an attention mechanism to minimize the interference of
irrelevant information. Bus-passenger-flow prediction experiments are conducted using the Harbin
bus-passenger-flow dataset as an example. The experimental results show that the model proposed
in this paper can obtain more accurate bus-passenger-flow prediction results than the five baseline
models can obtain.

Keywords: urban traffic; public transit; deep learning; decomposition; hybrid model

1. Introduction

Public transportation is a crucial constituent of the transportation system, which can
alleviate urban traffic congestion and mitigate CO2 emissions. Improving the quality
of public transportation services can elevate the usage rate of public transportation and
gradually make ecofriendly public transportation the main mode of urban travel. However,
it is arduous to provide the general public with high-quality public transportation for
many cities in developing nations [1]. For example, unreliable bus services, such as those
involving irregular departure schedules or bus crowding [2], can discourage the public
from choosing bus travel. In addition, with the proliferation of on-demand transportation
services like Uber and Lyft, bus traffic has been flatlining in recent years [3]. Bus services’
effective operation has been adopted to enhance the quality of service in the bus system,
which is an effective means to increase bus ridership.

The accurate and proactive prediction of the bus passenger flow facilitates transit agen-
cies to implement dynamic control strategies, making them more effective and responsive
to passengers’ travel needs, which improves the service level of daily bus operations and
attracts more urban travelers to choose bus transit as a mode of travel. In addition, the
timely and reliable prediction of the passenger flow can help transit agencies optimize their
bus schedules and reduce their operating costs [4–6].

Essentially, the prediction of the bus passenger flow is a time-series problem. Statistics-
based prediction methods are the classical methods often applied to time-series prediction,
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but these methods are difficult to utilize when dealing with the complex nonlinear rela-
tionships that bus-passenger-flow time series possess [7–9]. Machine learning and deep
learning methods have a wide range of application prospects in traffic data prediction,
and these methods can effectively deal with the nonlinear relationships of the data with a
high prediction accuracy [10,11]. The bidirectional long–short-term memory model in the
deep learning approach is able to capture both the forward and backward time-series data
features of the traffic-flow data and is able to provide good prediction results [12].

The above methods have made some positive progress in the predicting performance,
but there is still room for improvement in the accuracy of the bus-passenger-flow prediction
methods. There are numerous variables that affect the bus passenger flow, such as the
time of day, the traffic conditions, and the weather, which make the bus passenger flow
nonstationary and unpredictable [13]. In the case of time-series bus-passenger-flow data
containing a mix of linear and nonlinear information, neither traditional statistical models
nor deep learning models can accomplish satisfactory prediction results by themselves.
Thus, considering the complexity of the problem of predicting time-series data, many
researchers have chosen to incorporate a decomposition strategy when making predictions.
They argue that the extraction of the complex features of traffic time-series data is facilitated
by decomposing the raw data using data decomposition methods [14,15].

It is worth considering whether the performance of the bus-passenger-flow predic-
tion model can be further enhanced by introducing a decomposition strategy in order
to obtain more accurate and realistic prediction results. Therefore, this paper proposes
a bus-passenger-flow prediction model based on wavelet packet decomposition (WPD),
an attention mechanism (ATT), and bidirectional long–short-term memory (Bi-LSTM).
WPD can decompose the original transit-passenger-flow time-series data into a series of
smoother components, which helps the model to better extract the features of time-series
data. In particular, the model also combines an attention mechanism with Bi-LSTM. The
Bi-LSTM model is able to capture the correlation of time-series data in both the forward
and backward directions, while an attention mechanism can help the Bi-LSTM model focus
on important feature information. Based on the above ideas, this paper constructs the
WPD-ATT-BiLSTM model to capture the changing patterns of the time-series data of the
bus passenger flow and to make predictions.

The main contributions of this paper are as follows:

• A new hybrid-strategy bus-passenger-flow prediction model, the WPD-ATT-BiLSTM
model, is proposed in this paper. Processing bus-passenger-flow time-series data
with obvious fluctuation characteristics through WPD can make the data loaded into
the Bi-LSTM model smoother, which helps the model to better perform data feature
capturing in both directions. The inclusion of an attention mechanism allows the
model to focus on the impact of the important features of the data on the prediction
results.

• To address the fluctuating characteristics of the bus-passenger-flow data, WPD is used
to decompose them into smoother components. For the nonlinearity and periodicity
of the bus-passenger-flow data, combining the Bi-LSTM model with an attention
mechanism enhances the ability of the model to capture the changing pattern of the
passenger flow.

• The effectiveness of the proposed model is validated using the Harbin transit-passenger-
flow dataset. The results show that the accuracy of the results of the WPD-ATT-BiLSTM
model is higher than that of the results of either of the benchmark models in both
single-step and multistep prediction. The use of decomposition strategies and attention
mechanisms significantly improves the prediction performance of the model.

This study is organized as follows: Section 2 provides a review of the existing time-
series forecasting methods in the field of transport. Section 3 details the framework of the
model proposed in this paper and the principles of the mathematical model used. Section 4
describes the dataset used for model validation, conducts prediction experiments, and
provides detailed experimental results. Section 5 analyzes the experimental results and
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explains the reasons for the excellent performance of the model proposed in this paper.
Section 6 concludes the paper.

2. Literature Review

With the rapid adoption of sensors and the internet in practice, abundant spatial-
temporal traffic data can be recorded [16]. There has been a great amount of interest in
learning how to mine the space–time rules of big data to improve the prediction of traffic
time-series data. The existing common methods for traffic data prediction can be classified
into two categories, namely, statistic methods and machine learning methods. Statistics-
based prediction methods are the classical methods commonly used for passenger-flow
prediction, which mainly include regression analysis, the moving average, and the Kalman
filter. Zheng et al. (2020) [17] presented a model based on sparse regression for predicting
the traffic flow. Cai et al. (2019) [18] found that real traffic data contain non-Gaussian
noises and thus used a Kalman filter model along with the maximum correlation entropy
to predict the traffic flow. Moving average models are useful for time-series analysis,
and they identify patterns and predict future trends by separating the long-term changes
and seasonal cycles in historical data [19]. The autoregressive integrated moving average
(ARIMA) model is the basis for most moving average models [7]. Shahriari et al. (2020) [20]
presented bringing together bootstrapping with the conventional parametric ARIMA model
to create an ensemble of ARIMA models for predicting the traffic flow.

Machine learning prediction methods are widely used due to the nonlinear character-
istics of multiple types of traffic data, such as traffic-flow data and passenger-flow data,
because they are better able to fit such complicated data [21,22]. Chen et al. (2020) [23]
introduced artificial neural networks (ANNs) to predict the traffic flow over different time
spans. Wang et al. (2019) [24] proposed a regression framework for short-term traffic-flow
prediction that utilizes support vector regression (SVR) and can perform automatic pa-
rameter tuning. Liu et al. (2019) [25] developed a random forest (RF) model to predict the
passenger flow and evaluated the impact of different input feature combinations on the
prediction accuracy. Sun et al. (2021) [26] and Lu et al. (2023) [27] used extreme gradient
boosting (XGBoost) to predict the traffic volume on the highway.

In recent years, the emergence and widespread adoption of deep learning models
using machine learning have caused a significant stir in the transportation industry [28,29].
In addition, a growing corpus of research employs models of deep learning to predict the
passenger flow. For example, Lin et al. (2019) [30] proposed an end-to-end deep-learning-
based model to improve the accuracy and stability of air-traffic-flow prediction. Chen et al.
(2021) [31] designed a framework for predicting the traffic flow in urban road networks
using deep learning. Nagaraj et al. (2022) [32] developed a method based on deep learning
with long–short-term memory (LSTM), recurrent neural networks (RNNs), and greedy
hierarchical algorithms for predicting the bus passenger flow. Du et al. (2020) [33] designed
an LSTM network model for predicting how people move through urban traffic. Han et al.
(2019) [34] created a hybrid optimization of the LSTM model to predict the flow of bus
passengers. The current corpus of research indicates that the LSTM model, within the
domain of deep learning, is particularly adept at processing time-series data exhibiting
long-term correlation and, consequently, has been widely adopted for traffic time-series
prediction [35].

Bi-LSTM was proposed based on a single LSTM model and has been applied to traffic
time-series data prediction. Abduljabbar et al. (2021) [36] used the Bi-LSTM model for
short-term traffic prediction on three different highways. Zhai et al. (2022) [37] utilized the
Bi-LSTM model to predict the short-term traffic flow on urban roads, and the prediction
experimental results showed that the prediction accuracy of the Bi-LSTM model is higher
than that of the single LSTM model. The Bi-LSTM model extracts the forward and backward
features of time-series data at the same time, which causes the model to have better
prediction results than the traditional LSTM model when dealing with strongly periodic
time-series data [38].
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To address the limitations of a single model and to capitalize on the strengths of
various models, some researchers are integrating single models into hybrid models to
enhance the prediction accuracy [39]. Glisovic et al. (2016) [40] demonstrated a compos-
ite passenger prediction model utilizing the genetic algorithm (GA) and artificial neural
networks (ANNs). Xu et al. (2017) [41] presented a road-traffic-flow prediction method
based on the ARIMA and the Kalman filter. Lin et al. (2021) [42] designed a short-term
traffic-flow prediction model combining the ARIMA model and the generalized autore-
gressive conditional heteroskedasticity (GARCH) model. Li et al. (2023) [43] combined
empirical mode decomposition (EMD), the sample entropy (SE), and the kernel extreme
learning machine (KELM) to predict the short-term bus passenger flow. In addition, some
studies have considered the integration of an attention mechanism and the LSTM model
to predict traffic time-series data. The experimental results show that adding an attention
mechanism module to the LSTM model can effectively improve the prediction performance
of the model [44]. Incorporating an attention mechanism into the prediction model can
help the model better capture the nonlinear features of traffic time-series data. Attention
mechanisms work by calculating the importance of the input features of traffic time-series
data at different moments. The weight values of the input features are determined accord-
ing to the importance of the input features so that the model focuses on important feature
information and reduces the interference of irrelevant information [45].

Common decomposition methods for traffic data include the wavelet transform (WT),
empirical mode decomposition, seasonal adjustment, variational mode decomposition, and
intrinsic time-scale decomposition. Currently, the WT has received significant attention [46].
The WT decomposes the signal into its high-frequency and low-frequency components,
transforming it from nonstationary to stationary and causing the subsequent analysis to
be less complicated. Khandelwal et al. (2015) [47] have demonstrated that the WT can
improve the accuracy of time-series forecasts. Diao et al. (2019) [48] used the discrete
wavelet transform (DWT) to decompose the traffic volume sequence into an allocation
component and a number of detailed components and then predicted them using a tracking
model and a Gaussian process model, respectively. Zhu et al. (2021) [49] developed a
short-term traffic-flow prediction method based on the WT and a multidimensional Taylor
network (MTN), where the WT was used to decompose the traffic flow to improve the
prediction accuracy.

The WT method can decompose a signal profile into a series of profiles of different
frequencies. WPD was developed based on the WT, and it is a more refined decomposition
method compared to the WT [50]. Bus-passenger-flow time-series data can be considered
to be fluctuating nonlinear signals. The use of WPD enables the information of the different
frequency bands contained in passenger-flow time-series data to be effectively extracted
and enables a detailed analysis to be performed based on the information characteristics of
the different frequency bands.

3. Methods
3.1. The Entire Process of the Proposed Model

Passenger-flow prediction is essentially a time-series prediction problem. To make
the prediction model better at extracting feature information from the time-series data,
WPD was used to decompose the original transit-passenger-flow data. WPD is able to
take raw bus-passenger-flow data, which is volatile and complex, and decompose it into
a series of smoother components. Specifically, after the WPD decomposition process,
the raw bus-passenger-flow data was decomposed into two types of components: an
approximate component at low frequency and a detailed component at high frequency.
Prediction models are better able to extract features and capture patterns of time-series
data when dealing with smooth components. In addition, the proposed model combined
an attention mechanism with the Bi-LSTM model. The Bi-LSTM model extracts the features
of bus-passenger-flow data components in both the forward and backward directions
simultaneously. And adding the attention mechanism can make the Bi-LSTM model pay



Sustainability 2023, 15, 14889 5 of 20

more attention to important time-series data features in expectation of achieving better
prediction accuracy. The framework of the model constructed in this paper is shown in
Figure 1.
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3.2. Wavelet Packet Decomposition

The wavelet method adopts low-pass and high-pass filters to decompose time series,
which is an effective and widely used method to analyze time-series data in both time
and frequency domains. Low-pass filter decomposition yields approximation components
attributed to low frequency, while high-pass filter decomposition yields detail components
attributed to high frequency [51]. WPD is a more advanced decomposition strategy based
on wavelet methods developed from WT, and it allows for a more detailed decomposition of
data. Whereas traditional WT can only decompose the approximation components of each
layer, WPD can decompose both the approximation components and detail components.
As an example, 3-layer decomposition was used to compare the structures of WT and WPD,
as shown in Figure 2.
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Compared with WT, WPD can decompose the time-series data of bus passenger flow
in a more detailed way. Before loading the raw bus-passenger-flow data into the Bi-LSTM
model, we used WPD to decompose the bus-passenger-flow time-series data with complex
volatility into a series of different frequency components to extract the feature information
of the different frequency components. The use of this feature information to train the
bus-passenger-flow prediction model helped the model to better capture the changing
patterns of the data trends, and it was expected to achieve more accurate passenger-flow
prediction. WPD, like the WT, contains continuous and discrete transforms, which are
implemented as follows:

First, determine the number of decomposition layers for wavelet packet decomposition.
Different levels of decomposition of data can be performed using WPD; however, existing
studies have shown that 3-level decomposition is usually used to produce the optimal
accuracy of time-series prediction [50].

Next, choose the type of wavelet function; the general wavelet functions include Haar
wavelet, Daubechies (dbN) wavelet, Meyer wavelet, etc.

Then, the discrete transform or continuous transform should be chosen according to
the type of original data. Notably, time-series data are discrete, and discrete transform
should be utilized. The continuous transform can capture more information in the original
data than the discrete transform, but it can have problems of information redundancy and
high computational complexity.

The original data are, finally, decomposed layer by layer according to the wavelet
packet decomposition parameters set above. In Figure 2, Y represents the raw data; Y(1.0)
and Y(1.1) represent the approximation component and detail component from the first layer
of decomposition, respectively. WPD continues decomposing both components until the
original data is mapped into 2m wavelet subspaces, where m is the number of decomposition
layers. The frequency of each subspace increases from left to right. Generally, the first
50% of the higher-frequency components are categorized as detail components, and the
remaining 50% are categorized as approximation components.

3.3. Bidirectional Long–Short-Term Memory Model

The key to performing bus-passenger-flow prediction is to learn the regularity and
periodicity of historical data. The time-series data components of bus passenger flow
after WPD decomposition were loaded into the Bi-LSTM model. During the training
process, the model learned and captured complex patterns and trends of the time-series
data by simultaneously processing forward and backward information from the input
series. The Bi-LSTM model was developed from the LSTM model, which was derived
from RNNs’ architecture and is specialized in processing time-series data. Standard RNN
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models are commonly used in time-series prediction studies, though they may suffer from
some problems, such as gradient disappearance, gradient explosion, and limited long-term
memory capacity. The LSTM model addresses above problems through its unique memory
and gate structures, allowing it to better capture the correlated characteristics inherent in
time-series data [52]. This makes it a more effective solution for time-series prediction than
standard RNN models. The overall structure and internal unit structure of the LSTM model
are shown in Figure 3.
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The LSTM network differs from traditional RNNs in that memory is rewritten at every
time step. The LSTM mechanism is designed to capture and store acquired significant
features into long-term memory. It then employs a selective process to either maintain,
modify, or discard previously stored long-term memory, which is contingent upon the
learning conditions. Through successive iterations, the neural network assigns lower
weights to certain features, effectively treating them as ephemeral information that is
eventually discarded from its memory. This mechanism enables the transmission of crucial
characteristic information over time during iteration, thereby endowing the network with
superior performance in classification tasks with long sample dependencies [53].

The LSTM model is composed of a forget gate, an input gate, and an output gate
in each basic unit, as shown in Figure 3b. The forget gate at time t is determined by the
input Xt, the state memory unit ct−1 from the previous time step, and the output state ht−1
from the previous time step, collectively contributing to the forgetting mechanism of the
fundamental unit. The retention vector in the state memory unit is determined through the
joint effect of the variation in the sigmoid and tanh functions on Xt in the input gate. The
intermediate result, denoted as ht, is determined in conjunction with the updated value of
ct and the output value of ot. The LSTM structure formulations can be expressed as (1)–(6):

ft = σ
(

W f xXt + W f hht−1 + b f

)
(1)

it = σ(WixXt + Wihht−1 + bi) (2)

gt = φ
(

WgxXt + Wghht−1 + bg

)
(3)

ot = σ(WoxXt + Wohht−1 + bo) (4)

ct = gtit + ct−1 ft (5)

ht = φ(ct)ot (6)
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where ft, it, and ot represent real numbers ranging from 0 to 1. Specifically, ft denotes the
proportion of forgotten long-term memory, it denotes the proportion of current information
input into long-term memory ct, and ot denotes the proportion of long-term memory ct
output into the current state ht; Wfx, Wfh, Wix, Wih, Wgx, Wgh, Wox, and Woh are the matrix
weights of the multiplication of the input Xt at time t and the output state ht−1 at the
previous time corresponding to the corresponding gate; bf, bi, bg, and bo are the bias terms
of the corresponding gate; σ denotes the alteration in the sigmoid function; and φ denotes
the change in tanh function.

The traditional LSTM model can only obtain historical information from forward to
backward to predict the bus passenger flow in the future moment when dealing with bus-
passenger-flow data. The information available in the time-series data of bus passenger flow
after the forecast moment is not taken into account. And in the process of bus-passenger-
flow time-series prediction, it is considered that a greater number of more effective features
from bus-passenger-flow time-series data can be extracted by simultaneously considering
the information patterns available in the data before and after the predicted moment.
Therefore, in order to extract more information from the bus-passenger-flow time-series
data to help improve the prediction accuracy, Bi-LSTM recurrent neural network was
selected as the prediction model for bus-passenger-flow time-series data in this paper.

The Bi-LSTM model was formed via the superposition of two layers of LSTM networks.
The first layer processes bus-passenger-flow time-series data from the left side, which is
forward computation, to extract time-series data features. The second layer processes the
bus-passenger-flow time-series data from the right side, which is the backward calculation,
to obtain the time-series data features after the prediction moment. Bi-LSTM combines
the information of bus-passenger-flow time-series data features from both directions. The
structure of the Bi-LSTM network model is shown in Figure 4; h f

t is the time-series data
information of bus passenger flow at time t and before time t for the forward-computed
LSTM network. hb

t is the time-series data information of bus passenger flow at time t and
after time t for the backward-computed LSTM network. During training, the model makes
predictions in both directions simultaneously and, finally, fuses the predictions in both
directions to obtain the final output, ht.
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3.4. Attention Mechanism

After using the Bi-LSTM model to capture the features of the time-series component
data of transit passenger flow that were decomposed via WPD, the hidden-layer output
vector containing forward and backward data timing information can be obtained. An
attention mechanism, on the other hand, can explore the impact of each data feature in
the hidden layer on the predicted value of transit ridership by assigning weights to the
features captured by the Bi-LSTM model according to the importance of different features.

At any given time during bus-operating hours, there are bus vehicles operating on
the route, and the bus route passenger flow in each period is highly correlated with the
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bus route passenger flows in the previous time periods. And both weekday and week-
end bus route patronage have periodically similar fluctuations. Meanwhile, an attention
mechanism can enhance the ability of the Bi-LSTM model to capture the features of transit-
passenger-flow time-series data with long-term dependencies. And it helps to minimize
the information loss that accompanies the network during the training process. Therefore,
in this paper, an attention mechanism was combined with the Bi-LSTM model, and the
attention mechanism was utilized to compute the importance of the input features of bus
passenger flow at different moments. By giving different weights to the input features, the
influence of the key features on bus-passenger-flow prediction was highlighted in order to
improve the prediction accuracy.

The attention mechanism treated the input data as a combination of key pairs of keys
and values and to assign Query to each element. Then, the similarity between Query
and key was calculated to determine the value of the weight coefficient corresponding to
each key, and, finally, the final weight of each feature was obtained via weighting. This
included weighting and summing all the elements in the original data of length Lx and
then determining the weights of the corresponding features based on Query and key. The
calculation formula is as follows:

A(Query, Source) = ∑Lx
i=1Similarity(Query, key i) ∗ Value (7)

4. Experiment

In order to verify the effectiveness of the WPD-ATT-BiLSTM model proposed in this
paper, the following experiments were conducted and are presented in this section: Using
the WPD-ATT-BiLSTM model and the baseline model, single-step and multistep predictions
were made for the passenger flow of bus route 363 and bus route 68 in Harbin City. Then, the
prediction results of the WPD-ATT-BiLSTM model and the baseline model were visualized,
and the accuracy metrics were calculated to evaluate the prediction performance of the
different models.

4.1. Dataset Source and Processing

The data for the training and testing models presented in this paper came from a
public transportation dataset in Harbin, China. Located in Northeast China, Harbin is
the political, economic, and cultural center of the region. The bus transit system is the
most important part of the urban public transportation system in Harbin City. The 500 m
coverage rate of the bus stops in the main urban area of Harbin has reached 99%, providing
urban residents with convenient and green bus travel services. The data were collected
from the bus integrated circuit (IC) card system in Harbin, which collects the boarding
information of each trip, such as the bus route, bus number, card number, card type, and
boarding time. The IC card usage rate on buses is typically very high, and the current bus
IC card usage rate of Harbin City has exceeded 75%. This means the IC card data capture
most bus trips and passenger flows. The high coverage of the IC card data ensures their
representativeness of the total bus patronage.

Two bus lines, bus 363 and bus 68, were randomly selected, and the IC card swipe data
from March to October 2021 were extracted from the dataset. The swipe data obtained via
extraction show a relatively high level of bus patronage on bus route 363 and a relatively
low level of bus patronage on bus route 68. The data were also filtered and retained for
the period of 5:30 to 19:45, when traffic is more concentrated at the station. A total of
870,000 swipes from the bus line IC card swipe records was processed using the MySQL
8.0 software, and the bus line swipe records were counted every 15 min to obtain the
boarding flow of the bus line at that time. After the clustering process, the total amount
of data available for the model in this paper was found to be about 30,000. To validate
the effectiveness of the model proposed in this paper, the last 5 days of data in the dataset
were used as a test set. And referring to other studies on deep learning training and
hyperparameter tuning, the remaining 90% of the data were used as the training set, and
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10% were used as the validation set. After clustering the bus card swipe records of every
15 min period, the statistical weekly passenger-flow characteristics of bus 363 and bus 68
are shown in Figures 5 and 6. In the figure, it can be seen that the bus passenger flow on
weekdays has a bimodal character (morning–evening rush hours), and there is significant
volatility in the data.
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4.2. Wavelet Packet Decomposition

It is critical to determine the number of decomposition layers and to choose the
wavelet functions in the data decomposition process of WPD. Too few decomposition
layers cannot fully explore the internal feature information of the original data, whereas
too many decomposition layers may destroy the integrity of the original data. For bus-
passenger-flow time-series data, WPD is generally employs three-layer decomposition to
consider the decomposition effect and the complexity of the prediction model [50].

For wavelet function selection, the existing studies have shown that wavelet functions
of the Daubechies type are used to provide a high accuracy for time-series data with
periodicity [54]. Based on this, the most frequently used wavelet, Daubechies 3 (db3), was
adopted as the mother wavelet in this study. The discrete wavelet transform was used
to decompose the original bus-passenger-flow data of bus route 363 and bus route 68 via
three-layer decomposition, and the decomposition results are shown in Figures 7 and 8.



Sustainability 2023, 15, 14889 11 of 20

Sustainability 2023, 15, 14889 11 of 20 
 

periodicity [54]. Based on this, the most frequently used wavelet, Daubechies 3 (db3), was 

adopted as the mother wavelet in this study. The discrete wavelet transform was used to 

decompose the original bus-passenger-flow data of bus route 363 and bus route 68 via 

three-layer decomposition, and the decomposition results are shown in Figures 7 and 8. 

 

Figure 7. Decomposition results of bus route 363's passenger flow. 

 

Figure 8. Decomposition results of bus route 68’s passenger flow. 

Figure 7. Decomposition results of bus route 363’s passenger flow.

Sustainability 2023, 15, 14889 11 of 20 
 

periodicity [54]. Based on this, the most frequently used wavelet, Daubechies 3 (db3), was 

adopted as the mother wavelet in this study. The discrete wavelet transform was used to 

decompose the original bus-passenger-flow data of bus route 363 and bus route 68 via 

three-layer decomposition, and the decomposition results are shown in Figures 7 and 8. 

 

Figure 7. Decomposition results of bus route 363's passenger flow. 

 

Figure 8. Decomposition results of bus route 68’s passenger flow. Figure 8. Decomposition results of bus route 68’s passenger flow.



Sustainability 2023, 15, 14889 12 of 20

4.3. Bi-LSTM Model Parameter Selection

The hyperparameters of Bi-LSTM were selected based on the root mean square error
estimation index for the prediction accuracy. A smaller value of the index denotes a tighter
match between the expected and actual values. Each experimental scenario for hyperpa-
rameter selection was run multiple times to take into consideration the variability brought
on by the random initial conditions of the Bi-LSTM neural network. The determination
of the hyperparameters, including the quantity of hidden units and the number of model
iterations (epochs), should be achieved through a comparative analysis.

The data components after WPD processing were divided into training, validation,
and testing sets, and all the data were normalized to improve the training efficiency of
the model. The model presented in this paper was coded in Python 3.9 and uses Keras
and TensorFlow as its deep learning frameworks. The experiments were all run on an
NVIDIA RTX 3050 GPU platform. Through the parameter-tuning experiments, the number
of neurons was set to 128, the epochs were set to 300 and 400, and the batch sizes were set
to 16 and 32 when the model showed the optimal prediction performance. The optimizer
of the model was set to Adam, and the loss function was based on the mean square error.

4.4. Precision-Estimating Indicators

In order to measure the prediction effectiveness of the passenger-flow prediction model
proposed in this paper, the error of the model was evaluated using the mean absolute error
(MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE),
which are calculated as shown in (8)–(10):

MAE =

K
∑

k=1

∣∣yk − ŷk

∣∣
K

(8)

MAPE =
1
n

K

∑
k=1

∣∣∣∣yk − ŷk

ŷk

∣∣∣∣ (9)

RMSE =

√√√√√ K
∑

k=1

(
yk − ŷk

)2

K
(10)

where ŷk represents the prediction values, yk represents the actual values, and K is the
number of prediction values.

In addition, to compare the difference in the performance between the two prediction
models, the following three percentage error indicators were also used in this study: the
improvement percentages of the mean absolute error (PMAE), the improvement percentages
of the mean absolute percentage error (PMAPE), and the improvement percentages of the
root mean square error (PRMSE). They are calculated as follows:

PMAE =

∣∣∣∣MAE1 − MAE2

MAE1

∣∣∣∣ (11)

PMAPE =

∣∣∣∣MAPE1 − MAPE2

MAPE1

∣∣∣∣ (12)

PRMSE =

∣∣∣∣RMSE1 − RMSE2

RMSE1

∣∣∣∣ (13)

4.5. Model Prediction Results and Comparison

In this section, the experimental data are visualized, and the results of the prediction
experiments are shown in detail. Aiming to verify the effectiveness of the WPD-ATT-
BiLSTM model proposed in this paper, the XGBoost model, SVR model, LSTM model,
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Bi-LSTM model, Bi-LSTM with attention mechanism (ATT-BiLSTM) model, and Bi-LSTM
with wavelet packet decomposition (WPD-BiLSTM) model were used as the benchmark
models, and the accuracy estimation metrics of the prediction results of each model were
calculated.

After loading a series of decomposition data into the prediction model to obtain the
predicted value of each decomposition sequence, the predicted value of each sequence
was fused to obtain the final bus-flow prediction results. The formula for fusing the
decomposition components is shown below:

y =
2m−1

∑
n=0

y(m,n) (14)

where y is the final prediction, y(m,n) is the prediction value of the different frequency
components, m is the number of decomposition layers, and n is the amount of data decom-
position.

Figure 5 shows scatter density plots of the predicted transit ridership. The scatter
density plots combine scatter plots and kernel density estimation plots to show the distri-
bution of the data points and to help us visualize and compare the predictive performance
of each model with respect to the bus patronage on bus route 363. The straight line in the
graphs represents the true values, and the dots represent the predicted values. The more
concentrated the points are near a straight line, the better the predictive performance of the
model. In addition, the color of the scatter density plots also reflects the density distribution
of the data points. The RMSE values corresponding to the predictions of each prediction
model are also labeled in the upper left corner of the figure.

As can be seen in Figure 9, the WPD-ATT-BiLSTM model has the best prediction
performance. The reasons for this are that the points of the scatter density plot of the model
are most concentrated around the straight line and that the model has the smallest RMSE
value for its predicted values.
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In order to further validate the effectiveness of the WPD-ATT-BiLSTM model proposed
in this paper with respect to prediction, on the basis of adding the multistep prediction
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experiments of the bus passenger flow, the bus-passenger-flow dataset of bus route 68 was
also added for model training and testing.

The multistep prediction of the bus passenger flow over multiple time spans allows for
a wider range of applications in prediction. To assess the multistep predictive capability of
the model proposed in this study, the variability of the prediction accuracy was examined
over three different time horizons: 15 min (one-step horizon), 30 min (two-step horizon),
and 45 min (three-step horizon). In addition, the single-step and multistep prediction
results were compared and analyzed with those of the XGBoost model, SVR model, Bi-
LSTM model, ATT-BiLSTM model, and WPD-BiLSTM model.

Figures 10 and 11 illustrate the predictive performance of the various models on the
test set over the one-step, two-step, and three-step horizons, respectively. Furthermore, the
calculation results of the predictive precision indexes of the WPD-ATT-BiLSTM model and
the other prediction models that utilized the same dataset are shown in Tables 1 and 2.
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Table 1. Precision estimation indicator values of multistep prediction results of each model for bus
passenger flow on bus route 363.

Prediction Models MAE MAPE (%) RMSE

1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps

WPD-ATT-BiLSTM 0.582 1.162 1.670 2.283 4.621 8.547 0.795 1.586 2.102
WPD-BiLSTM 1.046 1.325 1.723 7.951 7.231 9.690 1.335 1.882 2.352
ATT-BiLSTM 12.111 12.545 13.219 25.387 24.303 26.031 15.569 15.956 16.686
Bi-LSTM 13.001 13.324 13.593 25.996 26.070 28.623 16.642 16.748 17.474
XGBOOST 14.070 14.047 14.062 30.749 30.780 29.659 18.067 17.944 17.917
SVR 13.927 14.165 14.375 33.197 31.279 30.943 18.125 18.270 18.368

Table 2. Precision estimation indicator values of multistep prediction results of each model for bus
passenger flow on bus route 68.

Prediction Models MAE MAPE (%) RMSE

1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps

WPD-ATT-BiLSTM 0.235 0.376 0.584 2.740 4.130 4.357 0.275 0.507 0.792
WPD-BiLSTM 0.266 0.412 0.617 2.982 4.796 6.840 0.331 0.590 0.885
ATT-BiLSTM 5.026 5.276 5.370 33.346 36.472 35.578 6.786 7.016 7.115
Bi-LSTM 5.136 5.451 5.506 38.047 36.662 38.319 6.826 7.057 7.123
XGBOOST 5.341 5.483 5.642 37.926 39.587 45.041 7.168 7.369 7.742
SVR 5.264 5.473 6.511 41.709 40.602 50.234 7.266 7.394 8.629
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In order to conduct a thorough comparison of the predictive capabilities of the model
presented in this paper and the other benchmark models, three percentage error indicators
were computed. These criteria serve to effectively measure the variance in performance
between the two prediction models, namely, PMAE, PMAPE, and PRMSE, respectively. The
results are shown in Tables 3 and 4.

Table 3. Percentage performance improvement indicators of the WPD-ATT-BiLSTM model compared
to the other models in predicting bus passenger flow on bus route 363.

Comparison Models PMAE (%) PMAPE (%) PRMSE (%)

1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps

WPD-BiLSTM 44.359 12.302 3.076 71.287 36.095 11.796 40.449 15.728 10.629
ATT-BiLSTM 95.194 90.737 87.367 91.007 80.986 67.166 94.894 90.060 87.403
Bi-LSTM 95.523 91.279 87.714 91.218 82.275 70.139 95.223 90.530 87.971
XGBOOST 95.864 91.728 88.124 92.575 84.987 71.182 95.600 91.161 88.268
SVR 95.821 91.797 88.383 93.123 85.227 72.378 95.614 91.319 88.556

Table 4. Percentage performance improvement indicators of the WPD-ATT-BiLSTM model compared
to the other models in predicting bus passenger flow on bus route 68.

Comparison Models PMAE (%) PMAPE (%) PRMSE (%)

1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps 1 Step 2 Steps 3 Steps

WPD-BiLSTM 11.654 8.738 5.348 8.115 13.887 36.301 16.918 14.068 10.508
ATT-BiLSTM 95.324 92.873 89.378 91.783 88.676 87.761 95.948 92.774 88.983
Bi-LSTM 95.424 93.102 89.496 92.798 88.735 87.716 95.971 92.816 89.113
XGBOOST 95.600 93.142 89.649 92.775 89.567 90.327 96.164 93.120 89.770
SVR 95.536 93.130 91.031 93.431 89.828 91.327 96.215 93.143 90.822

5. Discussion

Based on the prediction experiment results in the previous section, it can be seen that
the WPD-ATT-BiLSTM model proposed in this paper exhibits a satisfactory prediction
performance for the different passenger-flow datasets of the bus routes. This indicates that
the model does not only perform well on the passenger-flow data of a particular route but
can also cope well with the problem of predicting the time-series data of the passenger flow
of different bus routes. As can be seen in Tables 1 and 2, among all the prediction models,
the proposed model has the smallest values for the estimated indexes of the prediction
accuracy over a single step and multiple steps, which proves the effectiveness of the model.
Figures 5 and 6 also visualize that the model’s fit of the predicted values to the actual values
is optimal.

The following is specifically shown in Tables 1–4:
Among the models involved in the prediction experiment, the WPD-ATT-BILSTM

model achieved the best predictive performance for one-step to three-step prediction on
the test set, which demonstrates the effectiveness of the hybrid prediction model for the
bus passenger flow proposed in this paper in improving the prediction accuracy.

The hybrid-strategy prediction model, WPD-ATT-BiLSTM, proposed in this paper,
obtained a better prediction result accuracy than those of the machine learning models
(SVR and XGBoost) and the deep learning model (Bi-LSTM) in the experiments. Taking
the prediction result data of the one-step prediction of route 363’s bus passenger flow as
an example, in comparison with SVR and XGBoost, the model improved the prediction
performance of the MAE indicator by 95.821% and 95.864%, the prediction performance of
the MAPE indicator by 92.575% and 93.123%, and the prediction performance of the RMSE
indicator by 92.575% and 93.123%. It can be seen that the bus-passenger-flow prediction
model proposed in this paper, which combines a decomposition strategy and an attention
mechanism, has an excellent prediction performance that is significantly better than those
of the traditional machine learning models and the deep learning model. This indicates
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that the mixed-strategy prediction model proposed in this paper, which combines WPD,
an attention mechanism, and the Bi-LSTM model, fully utilizes the advantages of the
decomposition strategy, the attention mechanism, and the deep learning model to better
and adequately capture the features of the time series, which leads to a great improvement
in the prediction performance.

WPD-ATT-BiLSTM and ATT-BiLSTM are the prediction models with the addition of an
attention mechanism, and WPD-BiLSTM and BiLSTM are the prediction models without an
attention mechanism; by comparing the prediction results of these two groups, the positive
effect of the attention mechanism on the improvement in the prediction performance was
verified. Taking the prediction result data of the one-step prediction of route 363’s bus
passenger flow as an example, the WPD-ATT-BiLSTM model and ATT-BiLSTM model
improved the prediction performance of the MAE indicator by 44.359% and 6.846% over
the WPD-BiLSTM model and the BiLSTM model; the prediction performance of the MAPE
indicator improved by 71.287% and 2.343%, and the prediction performance of the RMSE
metrics improved by 40.449% and 6.448%.

WPD-ATT-BiLSTM and WPD-BiLSTM are the prediction models using the WPD de-
composition strategy, and ATT-BiLSTM and Bi-LSTM are the prediction models without
the decomposition strategy; the positive effect of the decomposition strategy on the predic-
tion performance enhancement’s was verified by comparing these two groups of models.
Still taking the prediction result data of the one-step prediction of the bus passenger flow
on route 363 as an example, the WPD-ATT-BiLSTM model and the WPD-BiLSTM model
improved the prediction performance of the MAE metrics by 95.194% and 91.954% over
the ATT-BiLSTM model and the Bi-LSTM model; the prediction performance of the MAPE
metrics improved by 91.007% and 69.415%, and the prediction performance of the RMSE
metrics improved by 94.894% and 91.978%.

6. Conclusions

Extracting the key features in time-series data and capturing the changing patterns
of the data are necessary for accurate bus-passenger-flow prediction. However, affected
by various factors, bus-passenger-flow data have obvious volatility and nonlinearity. It
is challenging to directly extract features from the original bus-passenger-flow data with
complex information, resulting in the unsatisfactory prediction accuracy of many models.
In this paper, a new mixed-strategy prediction model, the WPD-ATT-BiLSTM model, is
proposed. The model is based on the deep learning Bi-LSTM model, and it addresses the
problem of the difficulty for a single deep learning model to fully capture the characteristics
of bus-passenger-flow time-series data. To this end, it innovatively introduces a decom-
position strategy and an attention mechanism to improve the ability of the deep learning
model to fit complex time-series data.

The Bi-LSTM model was employed to learn the time-series data features of the bus
passenger flow from both directions. Additionally, the WPD data decomposition method
was introduced to convert the raw and fluctuating bus-passenger-flow data into a series
of smoother data components. This addresses the issue that models may struggle to
fully capture the features of nonsmooth raw data during the training process. Moreover,
the model also incorporates an attention mechanism, which assigns weights to the input
features based on their importance. This further enhances the data feature extraction ability
of the model and reduces the interference of irrelevant information.

The model proposed in this paper demonstrated a satisfactory prediction performance
in the experiments, validating its effectiveness for bus-passenger-flow prediction. This
model can be applied to the practical dynamic prediction of the bus passenger flow. It
provides an effective reference foundation for the dynamic scheduling of buses while also
assisting bus operating companies in the rational allocation of their capacity resources and
in reducing their operating costs. The main findings of this paper are as follows:

• Compared with machine learning models (SVR and XGBoost) and deep learning mod-
els (Bi-LSTM), the WPD-ATT-BILSTM model proposed in this paper has a significant
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advantage in extracting the temporal features of the bus passenger flow. On the basis
of the Bi-LSTM model’s bidirectional learning of the bus-passenger-flow time-series
data features, the model’s prediction performance was greatly improved by adding a
data decomposition layer and an attention mechanism layer.

• It was demonstrated that weighting the input features using an attention mechanism
can have a positive effect on the model prediction performance’s improvement by
comparing the WPD-ATT-BiLSTM and ATT-BiLSTM prediction models with the addi-
tion of an attention mechanism to the WPD-BiLSTM and BiLSTM prediction models
without an attention mechanism. The WPD-ATT-BiLSTM and WPD-BiLSTM predic-
tion models with the addition of the WPD decomposition strategy were compared
with the ATT-BiLSTM and Bi-LSTM models without the decomposition strategy, and
it was demonstrated that the use of the decomposition strategy to convert the fluctuat-
ing raw data into smoother data components can effectively improve the prediction
performance of the models.

• Single-step and multistep prediction experiments of the model were carried out using
the passenger-flow data of two bus routes in Harbin City; the experimental data were
visualized, the prediction accuracy assessment index was calculated, and the results
showed that the prediction performance of the WPD-ATT-BiLSTM model proposed in
this paper is the optimal and most stable prediction performance compared to those
of the benchmark models.

In summary, this paper proposes a new bus-passenger-flow prediction model based
on WPD, an attention mechanism, and Bi-LSTM, which provide strong support for buses’
dynamic scheduling. Thus, it can better satisfy the passengers’ demands for bus travel, and
the attraction of buses can be improved. The bus passenger flow has complex fluctuation
characteristics and is affected by numerous factors. In future research, in addition to
exploring the time-series correlation of the bus passenger flow, the correlation of the bus
passenger flow over a spatial distribution should also be considered. Therefore, there is a
scope to further improve the predictive accuracy and effectiveness of the model.
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