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Abstract: For warehouses to be more sustainable and cost-effective, it is essential to consider energy
consumption (EC) and order tardiness (OT) together in evaluating warehouse activities since improv-
ing both EC and OT at the same time is very demanding. While existing studies try to improve EC and
OT, the current studies consider only either a reserve area or a forward area between the two major
warehouse areas. Thus, this study proposes a simulation-based approach to assessing EC and OT
when reserve and forward areas are considered together in one framework for different configurations
of five important warehousing parameters: (i) number of forklifts, (ii) number of storage/retrieval
(S/R) machines, (iii) number of automated storage/retrieval systems (AS/RS) input/output (I/O)
points, (iv) order size, and (v) proportions of order flows through a reserve or forward area. In
particular, we use real forklift movement and energy data for our simulation models to provide a
more realistic analysis. By building the simulation model with the 25 full factorial experimental
design, we analyze the results with analysis of variance (ANOVA). The resulting Pareto-optimal
solutions show that less traffic flows through a reserve area can help improve both EC and OT while
other factors have smaller or limited effects on the two responses. Also, the order flow factor has
the largest effect on EC while order size has the largest effect on OT. The results from this study can
help warehouse operators make informed decisions in considering and finding a trade-off between
sustainability and customer satisfaction.

Keywords: energy consumption; order tardiness; simulation-based experiments

1. Introduction

Due to the recent expansion of e-commerce, fast warehousing and fulfillment are
catching more attention than before, and both customers and warehouse operators want to
avoid order tardiness (OT) and uncertainty as much as possible [1,2]. At the same time,
energy consumption (EC) becomes an important aspect of warehousing to consider as
sustainable aspects of warehousing are highlighted [2–4]. While EC and OT are worth
improving in warehouses, it is a challenging task to improve these targets simultaneously;
a reduction in EC can deteriorate OT whereas a decrease in OT is likely to increase EC and
relevant costs. Thus, EC and OT in warehouses need to be studied and improved in one
integrated framework.

Generally, a warehouse consists of two main functional areas: (i) a reserve area and
(ii) a forward area [5,6]. This fact suggests that these two major warehouse areas need
to be considered to make the best operational decisions for improving EC and OT. Most
current relevant studies, however, focus just on either a reserve area or a forward area,
implying that existing relevant studies are somehow insufficiently developed. Accordingly,
interactions among these two areas have not been thoroughly studied for EC and OT.
Thus, to identify significant warehouse operational factors and examine their individual or
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combined effects on EC and OT, a new study needs to be performed by integrating reserve
and forward areas so that we can consider most warehouse activities. For these purposes, a
simulation study is useful since we can test various configurations of warehouse factors
and parameters by checking the effects of the factors on OT and EC as well as the trade-off
of the two targets [7,8].

2. Literature Review

Warehousing is the process of temporarily storing stock-keeping units (SKUs) between
suppliers (manufacturers), and consumers; its main activities include retrieving, put-away,
replenishment, order picking, sortation, cross-docking, and shipping [6]. Receiving is
to unload SKUs at inbound decks, inspect the SKUs, and update the inventory records.
Put-away is to transfer the SKUs between different areas. Replenishment is to move the
SKUs from a reserve area to a forward area. Order picking is to retrieve distinct SKUs from
storage locations. Sortation is to group customer orders that have been picked in different
batches. Packing is to put the sorted customer orders into a container. Cross-docking is
to transfer SKUs directly from inbound to outbound decks. Shipping is to inspect the
packed customer orders, update the inventory records, and load the packed customer
orders at the outbound decks. All these activities can be classified into four flows [5,6]:
Flow 1 (receiving–cross-docking–shipping), Flow 2 (receiving–reserve area–shipping), Flow
3 (receiving–reserve area–forward area–shipping), and Flow 4 (receiving–forward area–
shipping). These warehouse areas, flows, and activities are also visually introduced in
Figure 1.
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Among various warehouse activities, order picking is the most expensive activity in
terms of EC and OT, and human- or automated machine-based order picking systems are
used in a warehouse [6,9]. Among a variety of order-picking systems, two typical order-
picking systems are (i) parts-to-picker and (ii) picker-to-parts systems. More specifically, an
automated storage/retrieval system (AS/RS) is typically used for a parts-to-picker system,
and forklifts can be used for all warehouse areas, including a picker-to-parts system. Thus,
we can focus on the activities of AS/RS and forklifts in picker-to-part and part-to-picker
systems to investigate EC and OT for warehouse operations.

A reserve area is usually occupied by parts-to-picker systems such as AS/RS. AS/RS
uses various computer-controlled systems to automatically store and retrieve unit loads
and can store and retrieve unit loads. The movement and travel time of the AS/RS crane
or storage and retrieval (S/R) machine and picking time can directly decide AS/RS EC
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and OT [10,11]. Different types of AS/RS show different energy effectiveness in warehouse
systems [12–15]. Various AS/RS types can be recognized in the warehouse industry
according to the S/R machines, handling, and rack properties in the system. Among
different types of AS/RS, autonomous vehicle storage and retrieval systems (AVS/RS) have
been broadly considered in the literature since these systems provide desirable flexibility
by changing the number of vehicles to deal with the fluctuation in warehouse demand [7].
Besides, different AVS/RS designs such as shuttle-based storage and retrieval systems
(SBS/RS) have been studied in the literature [8]. A basic AS/RS includes single-deep
stationary racks in which S/R machines can directly store or retrieve unit loads. In some
cases, a part of a unit load is considered for which a person can stand on an S/R machine
to retrieve the required number of SKUs from the rack storage location. AS/RS can also
bring the unit loads at the input/output (I/O) point by aisle-bound S/R machines, and
pickers take the required number of SKUs; then, unneeded SKUs are returned to the storage
location. A typical AS/RS handles one unit load (usually, in pallet size) at a time by a single
shuttle on one S/R machine; an S/R machine is not able to change its aisle (aisle-captive
type). For our study, this general type of AS/RS is considered since it is widely used.

Generally, a forward area is used for supporting order-picking activities and for
storing fast-moving items that do not require a large amount of space in racks or on a
floor [5,16]. Typically, a forward area is occupied by a picker-to-part system, where order
picking equipment or people drive or walk along the aisles to pick items. Activities of a
picker-to-part system can be classified into two types: low-level and high-level pickings.
For low-level pickings, order pickers pick items from storage racks and bins while picking
items from high storage racks for high-level pickings [6]. Since forklifts are typically used
for order-picking activities, studies of forklifts will play a key role in EC and OT analysis
in a warehouse forward area [17]. In addition, more than 60% of forklifts are powered by
electricity, and therefore, the research focus needs to be on electric forklifts rather than on
propane or diesel forklifts [9]. We also consider only electric forklifts in this study.

Forklifts and AS/RS are the most typical equipment and tools for warehouse forward
and reserve areas, and their performance in terms of EC and OT is not independent of
each other. This interdependency is observed when loads are handled by forklifts or other
material handling equipment at AS/RS I/O points from a reserve area to other warehouse
areas [18]. Flow 3 in Figure 1 shows this interdependency more specifically; Flow 3 accounts
for a large material proportion, and the unit loads are always needed to replenish the picker-
to-parts system in a forward area. This fact suggests that the parts-to-picker (reserve area)
and picker-to-parts (forward area) systems influence each other in affecting EC and OT.
For example, a delay in the parts-to-picker system can cause a subsequent delay in the
picker-to-parts system, and forklift issues in the picker-to-parts system can result in another
issue in the parts-to-picker system. Thus, a comprehensive analysis to identify significant
factors and their interactions in both parts-to-picker (reserve area) and picker-to-parts
systems (forward area) needs to be conducted.

Since interdependency between parts-to-picker and picker-to-parts systems can be
observed at AS/RS I/O points, it is necessary to analyze the direct effects of buffer capacity
(that is, the number of designed AS/RS I/O points) on EC and OT. A variety of factors
including order size and the number of forklifts and S/R machines are also crucial in
investigating EC and OT for both warehouse areas, simultaneously. Moreover, other
warehouse activities such as cross-docking, put-away, and replenishment under different
warehouse flows are also related to both picker-to-parts and parts-to-picker systems in
affecting EC and OT. Thus, warehouse flow rates, which reflect different proportions among
the four warehouse activities in Figure 1, are also required to be studied when we consider
EC and OT. Overall, we can consider the following five important factors: (i) the number
of forklifts, (ii) the number of S/R machines, (iii) the I/O buffer capacity of the AS/RS,
(iv) the order size, and (v) the warehouse flow rate.

The number of energy-aware warehouse studies has increased in the recent literature,
and energy saving of material handling equipment has been receiving as much attention
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as other energy-aware warehouse topics such as building, lighting, and HVAC [2,4]. A
comprehensive literature review of the EC of material handling equipment was provided
in a survey by the study in [19]. The analysis of this review shows that the analytical
and simulation methodologies have been considered much more than the methodologies
supported by empirical data [10]. In some cases, mathematical optimization models may
cause significant errors in interpreting the performance of warehouse systems since they
usually use a limited number of deterministic factors and assumptions; moreover, they
may not be able to handle a complex warehouse system and its changes over time. For
example, the forklift EC significantly depends on load weights, and the weights may vary
during forklift operations over time. Therefore, a simulation approach, which considers
the changes in warehouse effective factors over time, can represent a better warehouse
state for warehouse enterprises to make decisions in minimizing EC while responding to
customer orders on time. Most current studies, however, have focused on mathematical
models to determine the scheduling of forklift battery charging in making picker-to-parts
systems sustainable; conversely, only a few studies have considered the energy-aware
picker-to-parts systems by simulation as presented in Table 1. One example is the work
of [20], who designed a simulation model to compare electric and fuel forklifts in terms
of GHG for inbound warehouse activities. The results recommend using electric forklifts
instead of fuel forklifts for the low- to medium-weight SKUs. The study in [21] also
investigates replenishment and order-picking activities to minimize travel time and cost
by simulation and a mathematical model. The proposed simulation uses the Dijkstra
algorithm to address the forklift routing problem. The simulation analysis of the study also
shows that EC reduction is significantly affected by the warehouse layout, operations, and
material handling equipment. The advantages of simulation over mathematical models are
described for warehouses in Table 1; most studies have broadly taken the same advantages
in analyzing the parts-to-picker systems (AS/RS types). Table 1 shows that most simulation
studies have been conducted either in a parts-to-picker system or in a picker-to-part system.
We can also see that most parts-to-picker system studies focus on AS/RS or their variants.
These observations clearly show that there exists a lack of research investigating integrated
warehouses considering both forward and reserve areas, including those with AS/RS and
forklifts.

Table 1. Summary of the literature.

Reference
Forward Area

(Picker-to-Parts)
Reserve Area (Parts-to-Picker)

Performance Measure(s) Method(s) Used with
SimulationAS/RS AVS/RS SBS/RS

[22] 4 Cycle time and utilization Design of Experiments (DOE)
[23] 4 Cycle time and waiting time Analytical model
[24] 4 Cost and throughput DOE
[11] 4 Cycle time and EC -
[25] 4 GHG emissions -

[26] 4 Cycle time and EC Mathematical model and large
neighborhood search

[20] 4 GHG emissions -
[27] 4 Travel time and cycle time Analytical model
[28] 4 Cycle time and throughput DOE
[29] 4 Cycle time and throughput DOE

[21] 4 Travel time and cost Mathematical model and
Dijkstra algorithm

[30] 4 EC and energy recovering -
[31] 4 Throughput Analytical model
[32] 4 Travel time DOE
[33] 4 Travel time Analytical model

[8] 4
Cycle time, energy

regeneration, and EC DOE

AS/RS energy efficiency has become crucial in recent years for warehouses in order
for them to become sustainable in all design factors in recent years [34]. In other words,
a warehouse can be more sustainable by controlling AS/RS from an energy-aware per-
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spective [15]. In particular, warehouse sustainability can be guaranteed by considering the
relationships between inventory management, warehouse management, AS/RS EC, and
GHG emissions [25]. The authors of [25] propose an integrated simulation to investigate
the relationship between inventory management and warehouse GHG emissions. The
study shows that AS/RS GHG emissions are lower than the GHG emissions generated
by wide/narrow-aisle warehouses. The study in [11] also applies simulation to study the
picking time and EC when S/R machines of an AS/RS are in an idle state; the results
suggest that the movements of S/R machines cause a decrease in picking time and an
increase in EC when the storage assignment and replenishment are determined. The pro-
posed model in [26] considers the effects of AS/RS rack shapes on EC with a simulation
time-based model; the study presents hybrid constraint programming and a large neigh-
borhood search. The simulation is also designed particularly for storage assignment and
operation sequencing problems. The results of the study demonstrate that there is a notable
relationship between EC and rack height. Moreover, the authors of [33] examine different
I/O point policies for AS/RS in which conveyors are used for depth transportation. The
study formulates a travel time model which is verified by simulation. In terms of travel
time, the study results show that a mid-point elevation policy is more effective than other
policies.

Different types of AS/RS are categorized as complex systems with dynamic factors,
so most AS/RS studies have widely studied them with simulation approaches. Among
different types of AS/RS, the autonomous vehicle storage and retrieval system (AVS/RS)
has been broadly considered in the literature since this system provides desirable flexibility
by changing the number of vehicles to deal with the fluctuation of warehouse demand.
Moreover, different AVS/RS designs such as shuttle-based storage and retrieval systems
(SBS/RS) have been studied in the literature. For example, the study of [23] uses simulation
to verify an analytical model formulated based on an open queuing network approach for
an AVS/RS. The study formulates the model to examine the cycle time and waiting times
of tote movements with a captive-tier configuration. The results show that the average
cycle time and waiting time could be reduced by applying the proposed model. The
authors of [27] use an analytical model and simulation to study the travel time/distance
and cycle time for single- and dual-command cycles of an AVS/RS. The proposed model is
validated by simulation, and different layout configurations with multiple deep storage
lanes are considered for a real warehouse. The approach in [30] presents a simulation
model for the travel time and EC to examine and compare the energy balance and recovery
measurements of an AVS/RS. The results of the study indicate that around 28% of EC could
be recovered in the AVS/RS. The research in [31] applies simulation to verify a travel time
model formulated for a tier-to-tier SBS/RS under a dual command. The study investigates
the SBS/RS performance by alternative factors such as the physical configuration, vehicle
acceleration/deceleration (A/D) rate and velocity, and shuttle operational probability.

If a single S/R machine is considered for AS/RS, the basic physics laws to calculate
EC and power of S/R machines can be applied to forklifts and S/R machines. Then, the
power and EC of simulated S/R machines and forklifts can be measured by previous
studies [8,12,35–37]. For the travel time models, the study of [38] can be referred to. Also,
most existing studies do not utilize real data on EC and the movements of forklifts. To
address this lack of studies, we use (i) power data on forklift battery chargers collected
from experiments and (ii) forklift power and travel data provided by a forklift manufac-
turer [2,39]. From these datasets, this research can perform a more realistic EC and OT
analysis.

Design of experiments (DOE) is a robust method and has been extensively used for
simulation results in the literature to identify significant factors affecting the various mea-
sures of warehouse performance. Researchers have also applied this method to determine
the relationships between different warehouse factors over time from the simulation results
as shown in Table 1. The authors of [32] use a simulation-based experimental design
to address the effects of various physical designs, storage policies, and environmental
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factors on the travel time of a single-crane multi-aisle AS/RS with a single command
cycle. The study shows that the small number of aisles decreases the advantages of a
cross-aisle full-turnover storage policy while increasing the benefits of a random storage
policy. The study of [24] presents a simulation-based DOE to identify key factors between
AVS/RS tier-captive and tier-to-tier configurations. The proposed DOE examines the effects
of AVS/RS factors on different performance measures such as cost. The analysis of the
study also shows that the cost could be minimized by decreasing the number of aisles
and increasing the aisle length. The research in [22] uses a simulation-based DOE to find
significant factors affecting the performance of AVS/RS in terms of average storage and
retrieval cycle time, and the average utilization of lifts and vehicles. The study defines
different scenarios for lifts and vehicles with various arrival rates. The results show that
the combination of the highest factor levels could present the best scenario for the AVS/RS
system. The author of [8] also applies a simulation-based experimental design to recognize
significant factors influencing the pre-defined performance measures of a shuttle-based
storage and retrieval system (SBS/RS). The study uses a full factorial design to investigate
the effects of velocity, acceleration, and the number of bays and tiers on the average cycle
time, energy regeneration, and EC. The author of [28] proposes a DOE for an SBS/RS to
find an optimized scenario for single and dual command cycle times and throughput. The
factors considered in the study include the number of bays and tiers, shuttle A/D rate and
velocity, and elevator A/D rate and velocity. The results exhibit that the best scenarios
belong to the small number of bays and tiers. The study in [29] also applies a similar DOE
with the same performance measures and different design factors such as the number of
bays and minimum warehouse volume for an SBS/RS. The results of the study indicate that
the SBS/RS system operates more efficiently with high racks and a small number of tiers.

As shown previously, both warehouse forward and reserve areas need to be studied
together since they are interconnected in evaluating EC and OT. Thus, we designed an
energy-aware simulation model in SIMIO software (version 15) and integrated warehouse
forward and reserve areas by considering AS/RS, forklifts, and storage racks. In this
research, we also apply real power and movement data to support the proposed energy-
aware simulation of forklifts and S/R machines, and this endeavor will contribute to filling
the lack of real-power-based simulation studies in the literature. In order to consider
various warehouse activities such as cross-docking, replenishment, and put-away under
various warehouse flows, five factors are considered in DOE: (i) the number of forklifts,
(ii) the number of S/R machines, (iii) the I/O buffer capacity of the AS/RS, (iv) the order
size, and (v) the flow rate. The flow rate factor is defined based on the proportion of loads
on warehouse flows moving through forward and reserve areas. Factorial design is used for
DOE to identify the significant factor(s) influencing EC and OT from the simulation results.
DOE analyses will provide a comprehensive investigation for warehouse decision-makers
to improve EC and OT in the warehouse reserve and forward areas together. Thus, this
study will help industrial practitioners reduce and save EC and OT in warehouse operations.
The results from this study can also encourage and benefit relevant warehouse research
studies by providing real EC and movement data from forklifts and battery chargers. The
rest of this paper is organized as follows. Section 3 presents relevant models for warehouse
simulation as well as EC. DOE results are provided in Section 4, and we discuss the results
with potential future research work in Section 5.

3. Models for Simulating Warehouse Energy

To evaluate EC and OT during simulation runs, we need models for the computing
power and travel time of material handling equipment. Thus, in this section, we provide
models for estimating power and travel time to be used for forklifts and S/R machines in
simulation models. Then, the simulation model is also introduced.
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3.1. Travel Time Models for Forklifts and S/R Machines

EC is calculated as power used for a certain amount of time. When the EC for forklifts
and S/R machines is calculated, operational factors such as the A/D rate and velocity are
needed for evaluating the travel time. For that, the study in [38] can be applied, and the EC
of forklifts and S/R machines can be estimated based on real forklift power data provided
by [2,39]. Following the information and data by [2,39], relevant factors and parameters
are defined to explain the relationships among the forklift A/D rate, velocity, and travel
time: a = A/D rate (m/s2), vt = velocity at time t (m/s), vmax = maximum velocity (m/s),
tpeak = time duration needed to reach peak velocity (second), dpeak = travel distance needed
to reach vmax (meter), T = total travel time (second), and dT = total travel distance (meter).
The weight of the forklift or S/R machine is assumed to be 5971 kg.

Then, two possible travel scenarios can be considered. In the first scenario, a forklift
or S/R machine cannot move as far as dpeak or reach vmax while it can reach vmax in the
second scenario. Equations (1) and (3) calculate the forklift velocity vt at time t based on the
A/D rate a and vmax for the first and second scenarios, respectively. These two scenarios
are visually shown in Figure 2. Moreover, Equations (2) and (4) measure the total travel
distance dT according to vt for the first and second scenarios, respectively. Equation (5)
calculates dpeak based on vt.

vt =

 a·t t ∈
[
0, tpeak

]
−a·(t− T) t ∈

[
tpeak, T

] (1)

dT =
∫ T

0
vt·dt =

a
4
·T2 (2)

vt =


a·t t ∈

[
0, tpeak

]
vmax t ∈

[
tpeak, T − tpeak

]
−a·(t− T) t ∈

[
T − tpeak, T

] (3)

dT =
∫ T

0
vt·dt = vmax·T −

vmax
2

a
(4)

dpeak =
∫ T

0
vt·dt =

vmax
2

a
(5)
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𝑣௧ = ൞𝑎 ∙ 𝑡                      𝑡 ∈ ൣ0, 𝑡൧                  𝑣௫               𝑡 ∈ ൣ 𝑡, 𝑇 − 𝑡൧  −𝑎 ∙ (𝑡 − 𝑇)      𝑡 ∈ ൣ 𝑇 − 𝑡, 𝑇൧           (3)

𝑑் = න 𝑣௧ ∙ 𝑑𝑡்
 = 𝑣௫ ∙ 𝑇 − 𝑣௫ଶ𝑎  (4)

Figure 2. Two travel scenarios of forklifts and S/R machines.

For material handling equipment such as forklifts and S/R machines, horizontal and
vertical movements are assumed when they travel from SKU i to j. Then, the A/D rate,
velocity, and travel time of forklifts or S/R machines can be defined in various cases for
both horizontal and vertical movements. Figure 3 illustrates the combination of the travel
scenarios in the horizontal and vertical directions. According to Equations (2) and (4),
Equations (6) and (7) also calculate horizontal and vertical travel times, respectively, for
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which the following parameters are defined: ax = A/D rate in the horizontal direc-
tion (m/s2), ay = A/D rate in the vertical direction (m/s2), vx

max = maximum velocity
in the horizontal direction (m/s), vy

max = maximum velocity in the vertical direction
(m/s), dx

peak = travel distance needed to reach vx
max, dy

peak = travel distance needed to reach

vy
max, dx

i,j = travel distance between SKU i and j in the horizontal direction (meter), dy
i,j =

travel distance between SKU i and j in the vertical direction (meter), tx
i,j = travel time be-

tween SKU i and j in the horizontal direction (second), and ty
i,j = travel time between SKU i

and j in the vertical direction (second).

tx
i,j =


√

4·dx
i,j

ax 0 ≤ dx
i,j ≤ dx

peak
dx

i,j
vx

max
+ vx

max
ax dx

peak ≤ dx
i,j

(6)

ty
i,j =


√

4·dy
i,j

ay 0 ≤ dx
i,j ≤ dx

peak
dy

i,j

vy
max

+ vy
max
ay dx

peak ≤ dx
i,j

(7)
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From the available data, we can estimate the following parameters. As shown in
Figure 4, the average A/D rate for 8.73 s is ax = 0.409 m/s2, and from 8.74 to 15.41 s,
the maximum constant velocity of vx

max = 3.576 m/s can be observed with the horizontal
direction of a forklift. Then, tx

i,j can be evaluated with Equation (6) given ax, vx
max, and the

distance between SKUs i and j in the horizontal direction (dx
i,j).
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The vertical movement velocity and power of the forklift is presented in Figure 5. The
forklift lifts the load with the constant velocity of vy = 1.162 m/s by its carriage for tv = 4.97 s.



Sustainability 2023, 15, 14891 9 of 25

While we assume that the forklift has an A/D rate in the horizontal direction, it seems to
keep a constant velocity with no A/D rate in the vertical direction. Thus, ay = 0 m/s2, and
we cannot use Equation (7) to measure ty

i,j according to the distance between SKUs i and

j in the vertical direction (dy
i,j). Equation (8), which is formulated instead of Equation (7),

measures ty
i,j according to dy

i,j, tv = 4.97 s, and the two vertical constant velocities (vy = 1.162
m/s) [2].

ty
i,j =


dy

i,j

vy
1

0 ≤ dy
i,j ≤ vy

1·tv

tv +
dy

i,j−vy
1 ·tv

vy
2

vy
1·tv ≤ dy

i,j

(8)
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3.2. Power Models for Forklifts (S/R Machines) and Battery Chargers

We first model the power of forklifts and S/R machines for horizontal and vertical
movements, respectively, and then provide a model for the power of forklifts’ battery
chargers. These models will be used for simulation scenarios by varying movement times
and weights of loads in evaluating EC and OT.

3.2.1. Horizontal Movement Power Models

To model the power of forklifts or S/R machines in horizontal movement, we used
the power data of a forklift in the time resolution of 0.01 s provided by [39] (see Figure 4).
According to the available data, the power of forklifts in a horizontal movement can be
modeled in three stages. A forklift (S/R machine) accelerates in Stages 1 and 2 and remains
at a constant maximum velocity in Stage 3. Stage 1 of the model begins with the power of
p0 = 0 Watts and ends at a peak power p1 with the velocity of vp = 1.243 m/s; afterwards,
the power declines from p1 to a constant power p2 in Stage 2. Finally, the power remains
constant with the amount of p2 in Stage 3. Two linear power equations are applied to
model the power of Stages 1 and 2, and the constant power of p2 is considered for Stage 3.
Stages 1 and 2 take 1.73 and 7.01 s, respectively, and the rest of the movement time stays
at Stage 3. From these models, we can estimate power forklifts and S/R machines as a
function of movement time. Then, we apply the horizontal power model in [37] for the
simulation using the available data and estimate the relevant parameters as follows:

G = (m f + ml

)
·g (9)
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F =

{
G·µ1 +

G
g ·ap· k i f t = t1

G·µ2 i f t = t2
(10)

p1 =
F· vp

η
(11)

p2 =
F· vmax

η
(12)

ph =


p1
t1
· t i f t ≤ t1

p2−p1
t2−t1

·(t− t1) + p1 i f t1 ≤ t ≤ t2

p2 otherwise
(13)

where G = force of gravity (N = kg × m/s2), m f = forklift mass (kg), m1 = load
mass (kg), g = gravity acceleration ≈ 9.8 m/s2, F = traction force (N = kg × m/s2),
µ1 = coefficient of resistance including rolling and aerodynamics for forklifts with ac-
celeration in Stage 1 = 0.140, ap = acceleration at peak power = 0.64 m/s2, k = rotating
mass coefficient = 1.150, µ2 = coefficient of resistance including rolling and aerodynamics
for forklifts with constant velocity in Stage 3 = 0.019, p1 = peak power in Stage 1 (Watt),
vp = velocity at peak power = 1.243 m/sec, η = efficiency of mechanical systems (0.9 for
motors, pumps, etc.), p2 = constant power in Stage 3 (Watt), vmax = constant maximum
velocity in Stage 3 (m/s), ph = power for horizontal movement (Watts = kg × m2/s3),
t1 = start time of Stage 2 = 1.73 s, t = time passed in horizontal movement (s), and t2 = start
time of Stage 3 = 8.74 s.

Equations (9) and (10) calculate the gravity and traction forces, respectively.
Equations (11) and (12) measure the peak power and constant power for the horizon-
tal forklift movement, respectively. Equation (13) also calculates the forklift power in the
horizontal movement from Equations (11) and (12). To validate this model, we solved the
proposed model based on the maximum velocity (vmax = 3.576 m/s) and forklift weight
(m f + ml = 5971 kg) and observed that there was a 0.22% power difference between the
fitted model and the provided forklift energy data. Figure 4 also shows how the modeled
power closely fits the real (collected) power data. For simulation, ml values will be varied,
and power will be evaluated for each load/pallet.

3.2.2. Vertical Movement Power Models

According to the available forklift energy and movement data, the forklift uses a
carriage in the lifting operation/vertical movement. The data in Figure 5 show that the
velocity of the carriage movement is almost constant. Hence, we model the power in such a
way that each forklift spends the entire time of vertical movement with a constant velocity
(v). According to the available data [39] and a model proposed by [37], we formulated a
vertical power model as Equations (14) and (15); these equations measure the gravity force
and forklift power in a vertical movement, respectively.

G = (m c + ml)× g (14)

pv =
k× G× vv

η
(15)

where mc = carriage mass of the carriage (kg), ml = load mass (kg), g = gravity acceleration
≈ 9.8 m/s2, k = counterweight coefficient = 2.2 (=1 if the counterweight is not applied),
vv = constant vertical velocity (m/s), η = efficiency of mechanical systems (0.9 for motors,
pumps, etc.), G = force of gravity (N = kg × m/s2), and pv = power for vertical movement
(Watts = kg ×m2/s3).
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Since the proposed vertical model is formulated based on the data from the forklift
manufacturer, it is necessary to examine and compare the model results with the forklift
data [39]. We set v = 1.162 m/s according to the data and assume that mc + ml = 544.31 kg
as the input parameters of the model. The results show that the modeled power properly
fits the data, and there is a 2.08% difference between them as in Figure 5. For simulation,
ml values will be varied, and power will be evaluated for each load/pallet.

3.2.3. Battery Charger Power Model

To model the battery charging power, we collected real data from a charger used
for a lead-acid battery with 38 V, 1105 Ah, and 18 cells as in Figure 6. We studied this
battery type since the battery specifications are close to the forklift battery considered in
this research. The collected data show that this lead-acid battery is charged wiinth three
stages: in Stage 1, a constant-current charge provides the main part of the charge, in Stage 2,
a topping charge saturates the charge of the battery, and in Stage 3, a float charge is applied
to help the battery not to be self-discharged. According to the data, 2300 s and 6260 s out of
the charging time are assigned to Stages 1 and 2, respectively, and the remaining charging
time is dedicated to Stage 3. The amount of power during Stages 1 and 3 is also assumed to
be constant in the model. Thus, the averages of power in the relevant stages of the real data
are measured and used as the constant powers of the model. We also used the curve fitting
tool to model the power of Stage 2. The notations and power formulations are provided in
Equation (16).

pch =


p1 = 11099.21 i f t ≤ t1

10603− 1.559× (t− t1) + 0.000105× (t− t1)
2 i f t1 < t ≤ t2

p2 = 4821.68 otherwise
(16)

where t1 = start time of topping charge (Stage 2) = 2300 s, t2 = start time of float charge
(Stage 3) = 9680 s, t = time passed in charging (s), p1 = average of power in Stage 1 = 11,099 Watts,
p2 = average of power in Stage 3 = 4822 Watts, and pch = power of the charger (Watt).
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Equation (16) provides the estimated power of the charger. The results of the proposed
model show that there is a 0.01% difference between the power calculated from the model
and the real data. Also, Figure 6 illustrates that the modeled power closely fits the real
power data. The proposed model in Equation (16) will be used to model the power of
forklift battery chargers for simulations. Regarding the amounts of tx

i,j and ty
i,j, we can
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measure and calculate the forklift and S/R machine EC in the horizontal and vertical
directions from the available forklift data for simulation scenarios [39].

3.3. Simulation Models for Warehouses

There exist interactions between picker-to-parts (forward) and parts-to-picker (reserve)
systems in a warehouse, and these interactions have effects on EC and OT. Thus, we
built and simulated a warehouse that consists of the integrated picker-to-parts (forward)
and parts-to-picker system (reserve) by considering the movements of forklifts and S/R
machines to analyze EC and OT. This warehouse is 460 feet (≈140.2 m) long and 265 feet
(≈80.8) wide, and therefore, its area is 121,900 ft2 (≈11,325 m2) as illustrated in Figure 7.
This simulation model connects the AS/RS in a parts-to-picker system to the picker-to-parts
systems through AS/RS I/O points, where forklifts receive the unit-loads (pallets) from the
AS/RS to make shipments or replenish the picker-to-parts system in the forward area.
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The simulation of this integrated warehouse was modeled with SIMIO software
(version 15) to examine EC and OT. Table 2 lists the specifications of the picker-to-parts
system (forward area) and the part-to-picker system (AS/RS) designed in our simulation.

In the simulation, EC measurements of forklifts and battery chargers were performed
over time according to the power models presented in Sections 3.1 and 3.2. To apply these
models in the simulation model and generate outputs as Excel files, we used various logic
processes in SIMIO. More specifically, the outputs of the simulation from SIMIO are (i) the
location names of forklifts at the time, (ii) the description status of forklifts at the time,
(iii) the loading status of forklifts at the time (=1 of loaded; 0 otherwise), (iv) the load mass
of forklifts at the time (kg), (v) the location X–coordinate of forklifts at the time (meters),
(vi) the location Y–coordinate of forklifts at the time (meters), (vii) the location Z–coordinate
of forklifts at the time (meters), (viii) the current time, (ix) the power of forklifts and forklift
battery chargers at the time (Watt), and (x) the EC of forklifts and forklift battery chargers
(Watt·sec). Then, we imported the outputs of SIMIO (Excel files) in MATLAB to generate
the power time series of forklifts, S/R machines, and forklift battery chargers. For the
simulation processes for generating time series, the study in [40] can be referred to.

We assume that each forklift or S/R machine is capable of picking a maximum of
45 SKUs (C f = 45) with similar dimensions in each tour [41]. Also, the mass capacity of
forklifts or S/R machines is considered as 1360 kg. The average time of a battery fast
charging (θ) is assumed to be 20 min [42]. We collected real power data for 20 min from a
charger of a lead-acid battery with 38 V and 1105 Ah, and 18 cells as shown in Section 3.2;
accordingly, we assumed that the maximum EC of forklift between two consecutive fast
chargings ECmax is 3.73 kWh.



Sustainability 2023, 15, 14891 13 of 25

Table 2. Parameters of the simulated warehouse.

Area Equipment Specification

Forward Area
(Picker-to-Parts)

Length 243 ft (≈74.1 m)
Width 159 ft (≈48.5 m)
Height 18 ft (≈5.5 m)
Number of forklifts 1 or 5
Number of battery chargers 3
Number of storage locations 1296
Number of bays per rack 12
Number of tiers per rack 3
Number of racks 18
Length of rack 72 ft (≈21.9 m)
Width of rack 6 ft (≈1.8 m)
Height of rack 18 ft (≈5.5 m)
Number of aisles 18
Length of aisle 72 ft (≈21.9 m)
Width of aisle 15 ft (≈4.6 m)

Reserve Area
(Parts-to-Picker)

Length 168 ft (≈51.2 m)
Width 162 ft (≈49.4 m)
Height 36 ft (≈11.0 m)
Number of S/R machines 4 or 9
Number of I/O points 2 or 6
Number of storage locations 3000
Number of bays per rack 28
Number of tiers per rack 6
Number of racks 18
Length of rack 168 ft (≈51.2 m)
Width of rack 6 ft (≈1.8 m)
Height of rack 36 ft (≈11.0 m)
Number of aisles 4 or 9
Length of aisle 168 ft (≈51.2 m)
Width of aisle 6 ft

The following assumptions are considered for the DOE of the integrated picker-to-
parts and parts-to-picker system. We set the simulation run time (24 h) and the number of
orders (100 orders) as two criteria to terminate the simulations of EC and OT, respectively.
We ran each DOE scenario with three replications. A 4 h warm-up time was set for each
simulation run. Each S/R machine or forklift can process two types of transaction/task:
storage transactions (reach pallets to racks) and retrieval transactions (pick up pallets from
racks). S/R machines and forklifts process the transactions based on the first-in-first-out
(FIFO) rule and cannot be interrupted during a transaction. The closest forklift is assigned
to a transaction when needed; all other default settings are accepted for detailed operations
and routings of forklifts and S/R machines. S/R machines and forklifts stay at their current
locations in an idle state. S/R machines and forklifts move pallets to available storage
locations, randomly. The order size is assumed to be the number of pallets, and each
S/R machine or forklift can load/unload one pallet at a time. The interarrival time of
pallets from the inbound docks is exponentially distributed with an average of 0.01 h.
S/R machines and forklifts move/store pallets to available storage locations, randomly.
Pallet weight is randomly generated from the uniform distribution with U[500, 1500] in
kg. The storage time in AS/RS is randomly generated from the uniform distribution
of U[8, 16] h. The storage time in the picker-to-parts system is uniformly generated
as U[4, 8] h. The processing time of cross-docking is assumed to be one hour. Order
interarrival time is exponentially distributed with an average of 0.05 h. Order due dates
are randomly distributed from the uniform distribution U[4, 6] in hours. The load capacity
of all S/R machines and forklifts is 1500 kg. The acceleration and maximum velocity of
S/R machines and forklifts are assumed to be 0.64 m/s2 and 3.576 m/s, respectively, in
horizontal movements. The constant velocity of S/R machines and forklifts is assumed to
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be 1.162 m/s in vertical movements. The weight of an S/R machine (shuttle) or a forklift
carriage is assumed to be 544.31 kg. The weight of an AS/RS crane or a forklift is assumed
to be 4471 kg. The same battery capacity is assumed for all forklifts (≈25 kWh). An empty
forklift battery needs 12,715 s to be fully charged. Forklifts remain idle during battery
charging. The buffer capacity of AS/RS output points located between the reserve and the
forward areas is examined and controlled in DOE. Each aisle of AS/RS has a one-pallet
buffer capacity at its input point.

Figure 8 illustrates an example of the simulated power of forklifts, battery chargers,
and S/R machines over a 24 h run. More specifically, the warehouse simulation provides
the time series electrical loads of S/R machines, forklifts, and battery chargers. While the
forklift EC is measured to determine the battery charging scheduling, it does not contribute
to the total warehouse EC since the EC of forklifts is considered only through the EC of
forklift battery chargers.
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Figure 8. Simulated power of a warehouse, S/R machines, battery chargers, and forklifts for 24 h.

4. Results with Experimental Design

A 25 factorial design was conducted for EC and OT, separately, to examine the main
effects and interaction effects of five important factors: the number of forklifts (x1), the
number of S/R machines (x2), the I/O buffer capacity of the AS/RS (number of pallets)
(x3), the order size (number of pallendts) (x4), and the flow rate (x5). In DOE, x5 represents
the proportion of pallets that are moved through Flows 1, 2, 3, and 4 as presented in
Sections 1 and 2. In more detail, Table 3 provides the values of each factor with two
experimental levels. For example, the value of x3 is selected from the discrete uniform
distributions U{2, 4} and U{4, 6} with the low and high levels of the experiment, respectively.
In other words, either two or four pallets can be randomly selected with the same probability
as x3 with the low level, and four or six pallets can be randomly selected with the same
probability as x3 with the high level. Also, the low level of x5 in DOE is defined as the
proportions of 2, 1, 1, and 2 (33.3%, 16.5%, 16.5%, and 33.3%) for Flows 1, 2, 3, and 4,
respectively. The different configurations of x5 are designed with the high level, which is
the proportions of 1, 2, 2, and 1 (16.5%, 33.3%, 33.3%, and 16.5%) for Flows 1, 2, 3, and 4,
respectively.
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Table 3. DOE for integrated picker-to-parts and parts-to-picker systems.

Factors
Levels

Low Level (−1) High Level (1)

Number of forklifts (x1 ) 1 5
Number of S/R machines (x2 ) 4 9
I/O buffer capacity of AS/RS (number of pallets) (x3 ) Discrete U{2, 4} Discrete U{4, 6}
Order size (number of pallets) (x4 ) Discrete U{1, 2} Discrete U{2, 3}

Flow rate (x5 ) Flows 1 and 4 (67%) & Flows 2 and 3
(33%)

Flow 1 and 4 (33%) and Flows 2 and 3
(67%)

4.1. DOE for the EC of Integrated Energy-Aware Picker-to-Parts and Parts-to-Picker Systems

Simulation results for EC based on a 25 factorial design are reported in Table 4; three
replications are carried out for each treatment, and the average response is reported in the
table. The analysis of variance (ANOVA) results of the factorial design are also provided in
Table 5. Figure 9 shows the half-normal plot of effects on average EC.

Table 4. DOE results for the average EC of integrated picker-to-parts and parts-to-picker systems.

Scenarios
Factors and Levels Average

EC (kWh)x1 x2 x3 x4 x5

1 −1 −1 −1 1 1 246.21
2 −1 −1 −1 −1 −1 178.96
3 −1 −1 1 1 1 253.75
4 −1 1 1 1 1 288
5 −1 1 −1 1 1 284.52
6 −1 −1 1 −1 1 259.29
7 −1 1 −1 −1 1 286.06
8 −1 −1 −1 −1 1 257.08
9 −1 −1 1 1 −1 183.15

10 −1 −1 −1 1 −1 176.56
11 −1 1 1 −1 1 282.09
12 −1 −1 1 −1 −1 181.68
13 −1 1 1 1 −1 231.14
14 −1 1 1 −1 −1 231.48
15 −1 1 −1 −1 −1 226.9
16 −1 1 −1 1 −1 225.69
17 1 1 −1 −1 1 291.56
18 1 1 −1 1 −1 259.11
19 1 1 1 −1 −1 262.79
20 1 −1 −1 −1 1 275.46
21 1 −1 1 1 1 285.74
22 1 1 1 −1 1 312.42
23 1 −1 1 −1 1 284.55
24 1 −1 −1 −1 −1 203.25
25 1 1 −1 1 1 299.6
26 1 −1 −1 1 1 275.36
27 1 −1 1 −1 −1 209.14
28 1 −1 1 1 −1 205.06
29 1 −1 −1 1 −1 209.79
30 1 1 1 1 1 315.38
31 1 1 1 1 −1 274.42
32 1 1 −1 −1 −1 260.82
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Table 5. ANOVA for the average EC of integrated picker-to-parts and parts-to-picker systems.

Source DF Adj SS Adj MS F-Value p-Value

Model 31 153,282 4944.6 89.37 0
Linear 5 147,244 29,448.8 532.28 0
x1 1 17,488 17,488.5 316.1 0
x2 1 39,238 39,237.9 709.22 0
x3 1 997 997.5 18.03 0
x4 1 9 9.3 0.17 0.683
x5 1 89,511 89,510.7 1617.89 0
Two-way interactions 10 4891 489.1 8.84 0
x1·x2 1 7 6.9 0.12 0.726
x1·x3 1 198 197.9 3.58 0.063
x1·x4 1 143 142.5 2.58 0.113
x1·x5 1 405 405.2 7.32 0.009
x2·x3 1 53 53 0.96 0.331
x2·x4 1 132 132.2 2.39 0.127
x2·x5 1 3847 3846.9 69.53 0
x3·x4 1 25 25.4 0.46 0.5
x3·x5 1 71 71.4 1.29 0.26
x4·x5 1 9 9.1 0.16 0.686
Three-way interactions 10 871 87.1 1.57 0.135
x1·x2·x3 1 172 171.9 3.11 0.083
x1·x2·x4 1 1 0.7 0.01 0.909
x1·x2·x5 1 355 354.6 6.41 0.014
x1·x3·x4 1 32 32.4 0.59 0.447
x1·x3·x5 1 214 214 3.87 0.054
x1·x4·x5 1 8 8.1 0.15 0.704
x2·x3·x4 1 26 26.1 0.47 0.495
x2·x3·x5 1 9 9.2 0.17 0.684
x2·x4·x5 1 53 53.5 0.97 0.329
x3·x4·x5 1 0 0.2 0 0.951
Four-way interactions 5 159 31.8 0.57 0.72
x1·x2·x3·x4 1 32 31.9 0.58 0.45
x1·x2·x3·x5 1 14 13.6 0.25 0.622
x1·x2·x4·x5 1 34 33.7 0.61 0.438
x1·x3·x4·x5 1 20 19.8 0.36 0.551
x2·x3·x4·x5 1 60 59.7 1.08 0.303
Five-way interactions 1 118 117.9 2.13 0.149
x1·x2·x3·x4·x5 1 118 117.9 2.13 0.149
Error 64 3541 55.3
Total 95 156,823

Moreover, a multiple linear regression (MLR) is modeled to examine the main effects
of factors on EC in Table 6. Also, the residuals of MLR are normally distributed. Moreover,
R2 = 97.74% and R2 = 93.89% are obtained from ANOVA and MLR, respectively, verifying
that both models properly fit the simulation results.
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Table 6. Multiple linear regression (MLR) results for the average EC.

EC = b0 + b1·x1+b2·x2 + b3·x3 + b4·x4 + b5·x5 + b15·x1·x5 + b25·x2·x5 + b125·x1·x2·x5

Estimate Std Error t Ratio Prob > |t|

Intercept 250.5 0.759149 330.02 <0.0001
x1 13.5 0.759149 17.78 <0.0001
x2 20.2 0.759149 26.63 <0.0001
x3 3.2 0.759149 4.25 <0.0001
x4 0.3 0.759149 0.41 0.6826
x5 30.5 0.759149 40.22 <0.0001

x1·x5 −2.1 0.759149 −2.71 0.0087
x2·x5 −6.3 0.759149 −8.34 <0.0001

x1·x2·x5 −1.9 0.759149 −2.53 0.0138

The ANOVA and MLR results also show that the number of forklifts (x1), the number
of S/R machines (x2), the I/O buffer capacity of AS/RS (number of pallets) (x3), and the
flow rate (x5) are statistically significant in deciding EC (p-value < 0.05), as in Tables 5 and 6.
In particular, a switch from the DOE low level to the high level of x5 significantly raises the
with EC since it increases the proportion of pallets moving through Flows 2 and 3, with
a great deal of traffic from a warehouse reserve area (AS/RS) to the warehouse forward
area shown in Figure 7. Therefore, we observed more EC with the high-level x5 since
AS/RS is used more in comparison with the low-level x5. In this simulation, two types
of transactions are defined to be processed by forklifts and S/R machines: storage and
retrieval transactions. The retrieval transactions of AS/RS are controlled by x3 among
other factors. Larger x3 requests more retrieval transactions from S/R machines, which
significantly increases EC as shown in Tables 4 and 5; more S/R machines (x2) or forklifts
(x1) can process more storage or retrieval transactions, which also significantly requires
more EC at any given time moment. Table 5 suggests that order size (x4) is the only
insignificant factor for EC. This can be explained by the traffic-limiting effect of other
factors. First, AS/RS activities are constrained by AS/RS I/O points (x3), in which forklifts
handle pallets toward the forward area or outbound docks. In other words, more utilization
of AS/RS or S/R machines by more orders does not directly contribute to order deliveries
at outbound docks. Therefore, order size x4 is not likely to change AS/RS EC at a time due
to this traffic-limiting effect of x3. Second, orders need to be delivered at outbound docks
by forklifts from the cross-docking, reserve area, or forward area. Thus, the number of
forklifts available (x1) plays another traffic-limiting role in deciding EC even if x4 increases.
Overall, x4 turns out to affect EC insignificantly or indirectly.

To minimize EC, it is also important that the main effects of the factors are analyzed
with the interaction effects of factors. From the DOE results, x5 also makes significant
two-way and three-way interactions with x1 and x2 as in Table 6. For example, from all
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Table 4 scenarios with x2 and x5, the high-level x5 (more use of AS/RS) with the high-level
x2 (more S/R machines) would result in the highest increase in EC, as suggested by Table 6:
30.5 (x5 = 1) + 20.2 (x2 = 1) − 2.1 (x5·x2 = 1) = 48.6. Conversely, the minimum EC would be
obtained if we select the low level of the experiment for both x2 and x5. While an increase
in both x2 and x5 raises the EC, individually, the combined (two-way interaction) effect of
x2 and x5 is negative in this case. Figure 10 also provides the two-way interaction plot.
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Figure 10. Two-way interaction plot for the average EC.

4.2. DOE for the OT of Integrated Energy-Aware Picker-to-Parts and Parts-to-Picker Systems

The results of 25 scenarios of the factorial design of the average OT are listed in
Table 7. Also, the ANOVA and MLR results are presented in Tables 8 and 9, respectively.
We modeled the MLR to analyze the main effects of the factors on the average OT. The
normality assumption of model residuals is also met. Moreover, the ANOVA and MLR
models fit the simulation results very well with R2 = 91.78% and R2 = 83.60%, respectively.
Figure 11 shows the half-normal plot of effects on average OT.
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Table 7. DOE results for the average OT of the integrated picker-to-parts and parts-to-picker systems.

Scenarios
Factors and Levels Average

OT (Hours)x1 x2 x3 x4 x5

1 −1 −1 −1 1 1 3.87
2 −1 −1 −1 −1 −1 2.29
3 −1 −1 1 1 1 3.56
4 −1 1 1 1 1 4.20
5 −1 1 −1 1 1 4.64
6 −1 −1 1 −1 1 2.68
7 −1 1 −1 −1 1 3.36
8 −1 −1 −1 −1 1 3.04
9 −1 −1 1 1 −1 3.53

10 −1 −1 −1 1 −1 3.19
11 −1 1 1 −1 1 2.72
12 −1 −1 1 −1 −1 2.38
13 −1 1 1 1 −1 3.39
14 −1 1 1 −1 −1 1.81
15 −1 1 −1 −1 −1 2.03
16 −1 1 −1 1 −1 3.00
17 1 1 −1 −1 1 2.52
18 1 1 −1 1 −1 2.67
19 1 1 1 −1 −1 0.65
20 1 −1 −1 −1 1 1.72
21 1 −1 1 1 1 2.09
22 1 1 1 −1 1 1.77
23 1 −1 1 −1 1 1.29
24 1 −1 −1 −1 −1 1.00
25 1 1 −1 1 1 3.95
26 1 −1 −1 1 1 2.63
27 1 −1 1 −1 −1 1.00
28 1 −1 1 1 −1 2.49
29 1 −1 −1 1 −1 2.65
30 1 1 1 1 1 3.14
31 1 1 1 1 −1 2.12
32 1 1 −1 −1 −1 1.14

From the ANOVA and MLR results, all main effects were found to be statistically
significant. In terms of the order of absolute effect values, order size (x4) significantly
increases overdue orders and OT; larger x4 requires more pallets to be delivered per order
per given time as shown in Tables 8 and 9. In addition to x4, more forklifts (x1) significantly
decreased the OT by picking more orders in a shorter amount of time. Flow rate (x5) is
also a significant factor in a positive relationship with OT. If the low level of flow rate
(x5) switches to its high level in DOE, the proportion of pallets in a reserve area (AS/RS)
increases when compared with the proportions in other warehouse areas as presented in
Figure 7. This change results in more significant delays in delivering orders due to the
longer storage time in the AS/RS as in Tables 8 and 9. Also, larger I/O AS/RS buffers
(x3) enable more pallets to move from the AS/RS to shipment, and this helps deliver more
orders in a shorter time window and significantly reduces the OT according to the ANOVA
and MLR results in Tables 8 and 9.



Sustainability 2023, 15, 14891 20 of 25

Table 8. ANOVA for the average OT of the integrated picker-to-parts and parts-to-picker systems.

Source DF Adj SS Adj MS F-Value p-Value

Model 31 90.03 2.9042 17.08 0
Linear 5 79.832 15.9664 93.91 0
x1 1 26.695 26.6947 157.01 0
x2 1 1.288 1.2882 7.58 0.008
x3 1 2.228 2.2276 13.1 0.001
x4 1 36.499 36.4993 214.68 0
x5 1 13.122 13.1223 77.18 0
Two-way interactions 10 8.965 0.8965 5.27 0
x1·x2 1 0.564 0.5638 3.32 0.073
x1·x3 1 0.624 0.6237 3.67 0.06
x1·x4 1 0.237 0.2367 1.39 0.242
x1·x5 1 0.105 0.1051 0.62 0.435
x2·x3 1 0.426 0.4263 2.51 0.118
x2·x4 1 0.579 0.5785 3.4 0.07
x2·x5 1 4.804 4.8036 28.25 0
x3·x4 1 0.05 0.0501 0.29 0.589
x3·x5 1 1.284 1.284 7.55 0.008
x4·x5 1 0.293 0.2934 1.73 0.194
Three-way interactions 10 1.112 0.1112 0.65 0.762
x1·x2·x3 1 0.057 0.0573 0.34 0.563
x1·x2·x4 1 0.035 0.0347 0.2 0.653
x1·x2·x5 1 0.149 0.1493 0.88 0.352
x1·x3·x4 1 0.212 0.2119 1.25 0.268
x1·x3·x5 1 0.098 0.098 0.58 0.451
x1·x4·x5 1 0.203 0.2028 1.19 0.279
x2·x3·x4 1 0.039 0.0395 0.23 0.632
x2·x3·x5 1 0.001 0.0013 0.01 0.931
x2·x4·x5 1 0.29 0.2899 1.7 0.196
x3·x4·x5 1 0.028 0.0278 0.16 0.687
Four-way interactions 5 0.118 0.0236 0.14 0.983
x1·x2·x3·x4 1 0.012 0.0118 0.07 0.793
x1·x2·x3·x5 1 0.018 0.0181 0.11 0.745
x1·x2·x4·x5 1 0.042 0.0424 0.25 0.619
x1·x3·x4·x5 1 0.041 0.0411 0.24 0.624
x2·x3·x4·x5 1 0.005 0.0045 0.03 0.871
Five-way interactions 1 0.002 0.002 0.01 0.913
x1·x2·x3·x4·x5 1 0.002 0.002 0.01 0.913

Error 64 10.881 0.17
Total 95 100.911

Table 9. Multiple linear regression (MLR) results for the average OT.

OT=b0 + b1·x1 + b2·x2 + b3·x3 + b4·x4 + b5·x5 + b15·x1·x5 + b25·x2·x5

Estimate Std Error t Ratio Prob > |t|

Intercept 2.5772861 0.042083 61.24 <0.0001
x1 −0.527323 0.042083 −12.53 <0.0001
x2 0.1158388 0.042083 2.75 0.0077
x3 −0.152328 0.042083 −3.62 0.0006
x4 0.6166044 0.042083 14.65 <0.0001
x5 0.3697165 0.042083 8.79 <0.0001

x1·x5 0.2236912 0.042083 5.32 <0.0001
x2·x5 −0.115649 0.042083 −2.75 0.0078

We observed that the number of S/R machines (x2) is also a significant factor for OT
from the results above. The effect of x2 is positive as 0.1 is approximate, and this can be
explained as x2 is actually the number of S/R machines as well as the number of aisles
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of the AS/RS to be used. In other words, we control the number of AS/RS aisles to be
used by changing x2: when x2 = 1, the number of S/R machines (the same as the number
of AS/RS aisles to be used) is nine whereas the number is four with x2 = −1. Thus, we
can understand why a switch from −1 to +1 in x2 does not improve the OT and actually
increases the OT slightly since S/R machines or the number of AS/RS aisles available is
not a traffic-limiting factor but rather a more resource-utilizing factor. In fact, the constraint
of the I/O buffer capacity of the AS/RS (x3) does not allow x2 to contribute to OT. In other
words, the I/O points of the AS/RS located between the reserve area and the forward area
play bottleneck roles for the flow from the AS/RS to the forward area and shipment as in
Figures 1 and 7. Therefore, more/fewer x2 does not change the number of pallets from the
reserve area (AS/RS) to be delivered for orders directly since the traffic is mostly controlled
by x3. Also, x5 is an important factor in determining OT, and the interaction term between
x2 and x5 has a larger effect on the average OT than that of x2. Table 10 shows this point
very clearly; the effect of x2 is marginalized when x5 and x2·x5 are considered together
since the total effect from these three terms become negative only when x5 is negative.
Figure 12 visually presents other possible two-way interactions, including x2·x5.

Table 10. Effects of x2, x5, and x2·x5 on average OT.

Factor x2 x5 x2·x5
Sum of Effects

Effects 0.115839 0.369717 0.223691

Level

−1 1 −1 0.030187
1 −1 −1 −0.47757
−1 −1 1 −0.26186
1 1 1 0.709247

Sustainability 2023, 15, x FOR PEER REVIEW 22 of 26 
 

the AS/RS to be used. In other words, we control the number of AS/RS aisles to be used by 
changing 𝑥ଶ: when 𝑥ଶ = 1, the number of S/R machines (the same as the number of AS/RS 
aisles to be used) is nine whereas the number is four with 𝑥ଶ = −1. Thus, we can under-
stand why a switch from −1 to +1 in 𝑥ଶ does not improve the OT and actually increases 
the OT slightly since S/R machines or the number of AS/RS aisles available is not a traffic-
limiting factor but rather a more resource-utilizing factor. In fact, the constraint of the I/O 
buffer capacity of the AS/RS (𝑥ଷ) does not allow 𝑥ଶ to contribute to OT. In other words, 
the I/O points of the AS/RS located between the reserve area and the forward area play 
bottleneck roles for the flow from the AS/RS to the forward area and shipment as in Fig-
ures 1 and 7. Therefore, more/fewer 𝑥ଶ does not change the number of pallets from the 
reserve area (AS/RS) to be delivered for orders directly since the traffic is mostly controlled 
by 𝑥ଷ. Also, 𝑥ହ is an important factor in determining OT, and the interaction term be-
tween 𝑥ଶ and 𝑥ହ has a larger effect on the average OT than that of 𝑥ଶ. Table 10 shows 
this point very clearly; the effect of 𝑥ଶ is marginalized when 𝑥ହ and 𝑥ଶ ∙ 𝑥ହ are consid-
ered together since the total effect from these three terms become negative only when 𝑥ହ 
is negative. Figure 12 visually presents other possible two-way interactions, including 𝑥ଶ ∙𝑥ହ. 

Table 10. Effects of 𝑥ଶ, 𝑥ହ, and 𝑥ଶ ∙ 𝑥ହ on average OT 

Factor 𝒙𝟐 𝒙𝟓 𝒙𝟐 ∙ 𝒙𝟓 
Sum of Effects 

Effects 0.115839 0.369717 0.223691 

Level 

−1 1 −1 0.030187 
1 −1 −1 −0.47757 
−1 −1 1 −0.26186 
1 1 1 0.709247 

 
Figure 12. Two-way interaction plot for the average OT. 

4.3. Pareto-Optimal DOE Scenarios 
We used a Pareto-optimal front to analyze the results of 25 scenarios of two factorial 

designs conducted for EC and OT in one framework as in Figure 13. Thus, the Pareto-

Figure 12. Two-way interaction plot for the average OT.

4.3. Pareto-Optimal DOE Scenarios

We used a Pareto-optimal front to analyze the results of 25 scenarios of two factorial
designs conducted for EC and OT in one framework as in Figure 13. Thus, the Pareto-
optimal front can be drawn with four non-dominated scenarios better than other scenarios
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(dominated scenarios). No scenario represents a better quality than another in the Pareto-
optimal front. From Table 11, we find that the low level is selected for the factor of flow rate
(x5) for all non-dominated scenarios. In other words, all non-dominated scenarios include
a greater proportion of pallets through Flows 1 and 4 when compared with Flows 2 and 3,
as shown in Figures 1 and 7. While the low DOE level of x5 is designed to use AS/RS less
with lower EC and OT, the high level of x5 increases the use of AS/RS, resulting in more
EC and OT by more AS/RS EC and storage time.
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Table 11. Non-dominated DOE scenarios for the integrated picker-to-parts and parts-to-picker
system.

Scenarios
Factors and Levels Mean of Responses

x1 x2 x3 x4 x5 EC (kWh) OT (Hours)

2 −1 −1 −1 −1 −1 178.96 2.29
10 −1 −1 −1 1 −1 176.56 3.19
19 1 1 1 −1 −1 262.79 0.65
24 1 −1 −1 −1 −1 203.25 1.00

5. Conclusions

In modern warehousing systems, it is crucial to investigate the trade-off between EC
and OT while both reserve and forward areas are considered. For this, we analyzed five
different important factors (the number of forklifts, the number of S/R machines, the I/O
buffer capacity of the AS/RS, the order size, and the flow rate) affecting EC and OT to
consider the interdependency between warehouse reserve and forward areas. We used
simulation models to see how responses (EC and OT) act for different configurations of
the five factors. Then, a 25-factorial design was conducted for each EC and OT as DOE
responses using the simulation. The results show that all factors significantly affect EC
except the order size. Moreover, all factors were statistically significant in determining OT.
Finally, we drew a pareto-optimal front from the DOE results of EC and OT to provide
multiple optimal scenarios for warehouse decision-makers. The four Pareto-optimal sce-
narios suggest that less traffic flows through a reserve area is the most important factor for
Pareto-optimality.

These simulated results can be used by warehouse decision-makers to assess both
sustainability and performance for each warehouse setting or configuration. In particular,
this study presents that less traffic passing through a reserve area (Flows 1 and 4) can help
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improve EC and OT at the same time while either level (+1 or −1) of the other factors (the
number of forklifts, S/R machines, and AS/RS I/O points as well as order size) can impact
EC and OT positively or negatively. Thus, this research suggests that the amount of traffic
passing through a reserve area plays a significant role in improving both EC and OT.

While this study investigates the effects of warehouse factors on EC and OT, it has
some possible improvements. This study utilizes all factors as binary variables, but further
studies considering various factors as continuous variables deserve future research efforts.
Also, other factors affecting the performance of warehouses can be additionally considered.
For example, the dimensions of reserve and forward areas, including AS/RS size, can
be varied. x5 can be specified further in a future study. Currently, x5 desribes the flow
difference between two cases with Flows 1 and 4 (high/low) and Flows 2 and 3 (low/high).
Other possible combinations can be made and considered for x5.
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ANOVA Analysis of variance
AS/RS Automated storage/retrieval system
AVS/RS Vehicle storage and retrieval system
DOE Design of experiments
EC Energy consumption
I/O point Input/output point
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OT Order tardiness (average)
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SBS/RS Shuttle-based storage and retrieval systems
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