Field-Scale Constructed Floating Wetland Applied for Revitalization of a Subtropical Urban Stream in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. CFW Design Parameters
2.3. Macrophyte Growth
2.4. Meteorological and Hydrologic Data, Sampling Parameters and Statistical Analysis
3. Results
3.1. Macrophyte Growth
3.2. Hydrologic and Hydraulic Parameters
3.3. Water Quality Parameters
3.3.1. Pre-CFW Installation (From 1 October 2022 to 11 November 2023)
3.3.2. CFW Monitoring Period (From 12/11 to 30/04)
3.4. Resulting Loading Rates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Radcliffe, J.C. History of Water Sensitive Urban Design/Low Impact Development Adoption in Australia and Internationally; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128128435. [Google Scholar]
- Tasca, F.A.; Goerl, R.F.; Michel, G.P.; Leite, N.K.; Sérgio, D.Z.; Belizário, S.; Caprario, J.; Finotti, A.R. Application of Systems Thinking to the Assessment of an Institutional Development Project of River Restoration at a Campus University in Southern Brazil. Environ. Sci. Pollut. Res. 2019, 27, 14299–14317. [Google Scholar] [CrossRef] [PubMed]
- UNEP. A Snapshot of the World’s Water Quality: Towards a Global Assessment; UNEP: Nairobi, Kenya, 2016; 162p, ISBN 9789280735550. [Google Scholar]
- BRAZIL. Sewage Atlas: River Basin Clean-Up; ANA: Brasília, Brazil, 2021; 88p, ISBN 978-65-88101-13-1. [Google Scholar]
- Anawar, H.M.; Chowdhury, R. Remediation of Polluted River Water by Biological, Chemical, Ecological and Engineering Processes. Sustainability 2020, 12, 7017. [Google Scholar] [CrossRef]
- Findlay, S.J.; Taylor, M.P. Why Rehabilitate Urban River Systems? Area 2006, 38, 312–325. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and More—The Evolution and Application of Terminology Surrounding Urban Drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Caprario, J.; Rech, A.S.; Tasca, F.A.; Finotti, A.R. Influence of Drainage Network and Compensatory Techniques on Urban Flooding Susceptibility. Water Sci. Technol. 2019, 79, 1152–1163. [Google Scholar] [CrossRef]
- Qi, Y.; Chan, F.K.S.; Thorne, C.; O’Donnell, E.; Quagliolo, C.; Comino, E.; Pezzoli, A.; Li, L.; Griffiths, J.; Sang, Y.; et al. Addressing Challenges of Urban Water Management in Chinese Sponge Cities via Nature-Based Solutions. Water 2020, 12, 2788. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Perales-Momparler, S.; Andrés-Doménech, I.; Hernández-Crespo, C.; Vallés-Morán, F.; Martín, M.; Escuder-Bueno, I.; Andreu, J. The Role of Monitoring Sustainable Drainage Systems for Promoting Transition towards Regenerative Urban Built Environments: A Case Study in the Valencian Region, Spain. J. Clean. Prod. 2017, 163, S113–S124. [Google Scholar] [CrossRef]
- IUCN. Guidance for Using the IUCN Global Standard for Nature-Based Solutions: First Editions; IUCN: Gland, Switzerland, 2020. [Google Scholar] [CrossRef]
- Rigotti, J.A.; Pasqualini, J.P.; Rodrigues, L.R. Nature-Based Solutions for Managing the Urban Surface Runoff: An Application of a Constructed Floating Wetland. Limnetica 2020, 39, 441–454. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 2008; ISBN 9781566705264. [Google Scholar]
- Lucke, T.; Walker, C.; Beecham, S. Experimental Designs of Field-Based Constructed Floating Wetland Studies: A Review. Sci. Total Environ. 2019, 660, 199–208. [Google Scholar] [CrossRef]
- Pavlineri, N.; Skoulikidis, N.T.; Tsihrintzis, V.A. Constructed Floating Wetlands: A Review of Research, Design, Operation and Management Aspects, and Data Meta-Analysis. Chem. Eng. J. 2017, 308, 1120–1132. [Google Scholar] [CrossRef]
- Shahid, M.J.; AL-surhanee, A.A.; Kouadri, F.; Ali, S.; Nawaz, N.; Afzal, M.; Rizwan, M.; Ali, B.; Soliman, M.H. Role of Microorganisms in the Remediation of Wastewater in Floating Treatment Wetlands: A Review. Sustainability 2020, 12, 5559. [Google Scholar] [CrossRef]
- Peterson, E.W.; Nicodemus, P.; Spooner, E.; Heath, A. The Effectiveness of an Artificial Floating Wetland to Remove Nutrients in an Urban Stream: A Pilot-Study in the Chicago River, Chicago, IL USA. Hydrology 2021, 8, 115. [Google Scholar] [CrossRef]
- De Stefani, G.; Tocchetto, D.; Salvato, M.; Borin, M. Performance of a Floating Treatment Wetland for In-Stream Water Amelioration in NE Italy. Hydrobiologia 2011, 674, 157–167. [Google Scholar] [CrossRef]
- Bai, X.; Zhu, X.; Jiang, H.; Wang, Z.; He, C.; Sheng, L.; Zhuang, J. Purification Effect of Sequential Constructed Wetland for the Polluted Water in Urban River. Water 2020, 12, 1054. [Google Scholar] [CrossRef]
- Gabr, M.E.; Salem, M.; Mahanna, H.; Mossad, M. Floating Wetlands for Sustainable Drainage Wastewater Treatment. Sustainability 2022, 14, 6101. [Google Scholar] [CrossRef]
- Olguín, E.J.; Sánchez-Galván, G.; Melo, F.J.; Hernández, V.J.; González-Portela, R.E. Long-Term Assessment at Field Scale of Floating Treatment Wetlands for Improvement of Water Quality and Provision of Ecosystem Services in a Eutrophic Urban Pond. Sci. Total Environ. 2017, 584–585, 561–571. [Google Scholar] [CrossRef]
- Schwammberger, P.F.; Yule, C.M.; Tindale, N.W. Rapid Plant Responses Following Relocation of a Constructed Floating Wetland from a Construction Site into an Urban Stormwater Retention Pond. Sci. Total Environ. 2020, 699, 134372. [Google Scholar] [CrossRef]
- Pereima, M.F.R.; Chaffe, P.L.B.; de Amorim, P.B.; Rodrigues, R.R. A Systematic Analysis of Climate Model Precipitation in Southern Brazil. Int. J. Climatol. 2022, 42, 4240–4257. [Google Scholar] [CrossRef]
- Benvenuti, T.; Hamerski, F.; Giacobbo, A.; Bernardes, A.M.; Zoppas-Ferreira, J.; Rodrigues, M.A.S. Constructed Floating Wetland for the Treatment of Domestic Sewage: A Real-Scale Study. J. Environ. Chem. Eng. 2018, 6, 5706–5711. [Google Scholar] [CrossRef]
- Dell’Osbel, N.; Colares, G.S.; Oliveira, G.A.; Rodrigues, L.R.; da Silva, F.P.; Rodriguez, A.L.; López, D.A.R.; Lutterbeck, C.A.; Silveira, E.O.; Kist, L.T.; et al. Hybrid Constructed Wetlands for the Treatment of Urban Wastewaters: Increased Nutrient Removal and Landscape Potential. Ecol. Eng. 2020, 158, 106072. [Google Scholar] [CrossRef]
- Colares, G.S.; de Celente, G.S.; da Silva, F.P.; de Loreto, A.C.; Lutterbeck, C.A.; Kist, L.T.; Machado, E.L. Combined System for the Treatment and Reuse of Urban Wastewater: The Efficiency of Anaerobic Reactors Thorn Hybrid Constructed Wetlands plus Ozonation. Water Sci. Technol. 2019, 80, 254–264. [Google Scholar] [CrossRef]
- Di Luca, G.A.; Mufarrege, M.M.; Hadad, H.R.; Maine, M.A. Nitrogen and Phosphorus Removal and Typha Domingensis Tolerance in a Floating Treatment Wetland. Sci. Total Environ. 2019, 650, 233–240. [Google Scholar] [CrossRef]
- Pasqualini, J.P.; Rigotti, J.A.; Rodrigues, L.R. Performance of a Constructed Floating Wetland in Mesocosm Scale: Nutrient Removal under Shock Load and Water Level Oscillation. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Rigotti, J.A.; Paqualini, J.P.; Rodrigues, L.R. Root Growth and Nutrient Removal of Typha Domingensis and Schoenoplectus Californicus over the Period of Plant Establishment in a Constructed Floating Wetland. Environ. Sci. Pollut. Res. 2021, 28, 8927–8935. [Google Scholar] [CrossRef] [PubMed]
- Wrege, M.S.; Steinmetz, S.; Reisser, C., Jr.; Almeida, I.R. (Eds.) Atlas Climático da Região sul do Brasil: Estados do Paraná, Santa Catarina e Rio Grande do Sul, 2nd ed.; Embrapa Clima Temperado: Brasília, Brazil, 2012; Volume 58, ISBN 9788573835199. [Google Scholar]
- Von Sperling, M.; Sezerino, P.H. Dimensionamento de Wetlands Construídos No Brasil. Boletim Wetlands Brasil. 2018. Available online: http://gesad.ufsc.br/boletins/ (accessed on 2 May 2023).
- Walker, C.; Tondera, K.; Lucke, T. Stormwater Treatment Evaluation of a Constructed Floating Wetland after Two Years Operation in an Urban Catchment. Sustainability 2017, 9, 1687. [Google Scholar] [CrossRef]
- Wang, C.-Y.Y.; Sample, D.J. Assessment of the Nutrient Removal Effectiveness of Floating Treatment Wetlands Applied to Urban Retention Ponds. J. Environ. Manag. 2014, 137, 23–35. [Google Scholar] [CrossRef]
- Strosnider, W.H.; Schultz, S.E.; Strosnider, K.A.J.; Nairn, R.W. Effects on the Underlying Water Column by Extensive Floating Treatment Wetlands. J. Environ. Qual. 2017, 46, 201–209. [Google Scholar] [CrossRef]
- Rousso, B.Z.; Pelissari, C.; Dos Santos, M.O.; Sezerino, P.H. Hybrid Constructed Wetlands System with Intermittent Feeding Applied for Urban Wastewater Treatment in South Brazil. J. Water Sanit. Hyg. Dev. 2019, 9, 559–570. [Google Scholar] [CrossRef]
- Westlake, D.F. Comparisons of Plant Productivity. Biol. Rev. 1963, 38, 385–425. [Google Scholar] [CrossRef]
- CIRAM-EPAGRI. Agroconnect—Informações Agrometeorológicas Online. Available online: https://www.epagri.sc.gov.br/index.php/solucoes/tecnologias/tecnologias-em-destaque-agroconnect/ (accessed on 2 May 2023).
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers, 5th ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2010; ISBN 9780470053041. [Google Scholar]
- Thorp, J.H.; Covich, A.P. An Overview of Inland Aquatic Habitats. In Ecology and Classification of North American Freshwater Invertebrates; Elsevier: Amsterdam, The Netherlands, 2010; pp. 25–47. ISBN 9780123748553. [Google Scholar]
- de Sousa, D.N.R.; Mozeto, A.A.; Carneiro, R.L.; Fadini, P.S. Electrical Conductivity and Emerging Contaminant as Markers of Surface Freshwater Contamination by Wastewater. Sci. Total Environ. 2014, 484, 19–26. [Google Scholar] [CrossRef]
- Jang, J.; Hur, H.G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia Coli: Ecology and Public Health Implications—A Review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Tesoriero, A.J.; Puckett, L.J. O2 Reduction and Denitrification Rates in Shallow Aquifers. Water Resour. Res. 2011, 47, 1–17. [Google Scholar] [CrossRef]
- Tanner, C.C.; Headley, T.R. Components of Floating Emergent Macrophyte Treatment Wetlands Influencing Removal of Stormwater Pollutants. Ecol. Eng. 2011, 37, 474–486. [Google Scholar] [CrossRef]
- Von Sperling, M.; Verbyla, M.E.; Oliveira, S.M.A.C. Loading Rates Applied to Treatment Units. In Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners; IWA Publishing: London, UK, 2020; pp. 499–529. ISBN 9781780409320. [Google Scholar]
Group | Parameters | Unit | Methodology | Sampling Period | ||
---|---|---|---|---|---|---|
Pre-CFW Installation | Monitoring CFW | Total | ||||
Water Quality 1 (WQ1) | Potential of hydrogen (pH) | - | pHmeter | 19 | 32 | 51 |
Water temperature (WT) | °C | Thermometer | 24 | 31 | 55 | |
Electrical conductivity (EC) | μS·cm−1 | Electrical conductivity meter | 24 | 31 | 55 | |
Dissolved oxygen (DO) | mg·L−1 | Dissolved oxygen meter | 22 | 32 | 54 | |
Water Quality 2 WQ2 = WQ1 + follow parameters | Biological oxygen demand—BOD5,20 | mg·L−1 | Manometric method (APHA) | 2 | 19 | 21 |
Total phosphorus (TP) | mg·L−1 | Vanadomolybdophosphoric acid colorimetric method (APHA) | 1 | 20 | 21 | |
Turbidity (Turb.) | NTU | Nephelometric method (APHA) | 2 | 29 | 31 | |
Total solids (TS) | g·L−1 | Gravimetric method (APHA) | 2 | 20 | 22 | |
Ammonium nitrogen (N-NH4) | mg·L−1 | Nessler colorimetric method (APHA) | 2 | 20 | 22 | |
Nitrite (N-NO2) | mg·L−1 | Alpha-naphthylamine colorimetric method (APHA) | 2 | 20 | 22 | |
Nitrate (N-NO3) | mg·L−1 | Brucine colorimetric method (APHA) | 2 | 20 | 22 | |
Faecal coliforms (FC) | MPN·100 mL−1 | Enzyme substrate coliform test (APHA) | 2 | 18 | 20 | |
Total coliforms (TC) | MPN·100 mL−1 | Enzyme substrate coliform test (APHA) | 2 | 11 | 13 | |
Macrophytes parameters | Leaves height | cm | Average height | 2 | 3 | 5 |
Plant density | plants·m−2 | Counting all plants per crate | 2 | 3 | 5 | |
Dry and humid matter | g.m−2·day−1 | Weighting all pruned leaves above 60 cm. Dried at 60 °C for five days | 0 | 2 | 2 | |
Hydraulic parameters | Flow (q)—elevation head on the weir | L·s−1 | Francis’s equation with two contractions for rectangular weir | 16 | 35 | 51 |
HRT—hydraulic retention time | h | Volume.flow−1 (considering root length of 0.25 m) | 0 | 35 | 35 | |
Meteorolo-gical data | Air temperature | °C | Hourly average data, organized in daily mean, minimum and maximum | 41 | 169 | 210 |
Rainfall | mm | Hourly total data, organized in daily total P24h | 41 | 169 | 210 | |
Solar radiation | W·m−2 | Hourly average data, organized in daily mean and maximum | 41 | 169 | 210 |
Date of set up raft in water | 23/07 | 22/08 | 01/09 | 01/09 | 01/09 | 01/09 | 15/09 | 15/09 | 27/09 | 27/09 | 27/09 | 27/09 | 27/09 | 27/09 | 27/09 | 27/09 | ||
Period (days from start) | 0 | 30 | 40 | 40 | 40 | 40 | 54 | 54 | 66 | 66 | 66 | 66 | 66 | 66 | 66 | 66 | ||
Raft id Sample data | B16 | B15 | B13 | B12 | B11 | B10 | B9 | B5 | B8 | B7 | B6 | B14 | B4 | B3 | B2 | B1 | Avg. | |
Leaves height per raft (cm) | In 20/10 | 80 | 70 | 70 | 50 | 80 | 40 | 50 | 70 | 30 | 40 | 50 | 50 | 50 | 60 | 50 | 50 | 56 |
In 10/11 | 120 | 100 | 120 | 80 | 100 | 80 | 80 | 80 | 50 | 70 | 60 | 60 | 60 | 70 | 60 | 60 | 78 | |
In 13/12 | 120 | 120 | 100 | 80 | 80 | 80 | 80 | 80 | 80 | 70 | 80 | 70 | 60 | 60 | 60 | 60 | 80 | |
In 25/01 | 130 | 130 | 110 | 130 | 120 | 100 | 100 | 120 | 110 | 120 | 120 | 120 | 110 | 90 | 80 | 80 | 111 | |
In 15/03 | 120 | 120 | 120 | 105 | 100 | 110 | 110 | 120 | 120 | 100 | 130 | 120 | 100 | 90 | 90 | 80 | 108 | |
Avg. per raft | 114 | 108 | 104 | 89 | 96 | 82 | 84 | 94 | 78 | 80 | 88 | 84 | 76 | 74 | 68 | 66 | 87 | |
Growth (cm/day) | In 10/11 | 1.9 | 1.4 | 2.4 | 1.4 | 1.0 | 1.9 | 1.4 | 0.5 | 1.0 | 1.4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1.1 |
In 13/12 | 1.8 | 1.8 | 1.2 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 0.6 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | |
In 25/01 | 1.6 | 1.6 | 1.2 | 1.6 | 1.4 | 0.9 | 0.9 | 1.4 | 1.2 | 1.4 | 1.4 | 1.4 | 1.2 | 0.7 | 0.5 | 0.5 | 1.2 | |
In 15/03 | 1.2 | 1.2 | 1.2 | 0.9 | 0.8 | 1.0 | 1.0 | 1.2 | 1.2 | 0.8 | 1.4 | 1.2 | 0.8 | 0.6 | 0.6 | 0.4 | 1.0 | |
Avg. per raft | 1.6 | 1.5 | 1.5 | 1.1 | 0.9 | 1.1 | 1.0 | 0.9 | 1.0 | 1.0 | 1.0 | 0.8 | 0.6 | 0.4 | 0.4 | 0.3 | 1.0 | |
Plant density (plant/m2) | Start | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
In 20/10 | 33 | 20 | 33 | 33 | 33 | 20 | 33 | 20 | 20 | 20 | 25 | 25 | 33 | 33 | 25 | 25 | 27 | |
In 10/11 | 33 | 33 | 33 | 33 | 33 | 28 | 33 | 15 | 28 | 18 | 18 | 23 | 18 | 23 | 18 | 13 | 25 | |
In 13/12 | 38 | 38 | 38 | 38 | 38 | 38 | 34 | 27 | 28 | 30 | 27 | 28 | 10 | 18 | 18 | 16 | 29 | |
In 25/01 | 43 | 43 | 29 | 43 | 33 | 32 | 24 | 23 | 27 | 30 | 25 | 30 | 10 | 18 | 22 | 22 | 28 | |
In 15/03 | 43 | 38 | 38 | 38 | 23 | 24 | 31 | 23 | 29 | 38 | 36 | 43 | 23 | 31 | 35 | 26 | 32 | |
Avg. per raft | 38 | 34 | 34 | 37 | 32 | 28 | 31 | 22 | 26 | 27 | 26 | 30 | 19 | 24 | 23 | 20 | 28 | |
Description |
Date | Days since CFW Set up Average Data in Water (14 September 22) | Roots Length Beneath CFW (cm) | Average Growth (cm·day−1) |
---|---|---|---|
10 November 22 | 57 | 5 | 0.088 |
13 December 22 | 90 | 10 | 0.303 |
25 January 23 | 133 | 15 | 0.349 |
15 March 23 | 182 | 25 | 0.510 |
P24h | HRT | Q | pH | EC | WT | DO | BOD | Turb. | TS | TP | NH4 | NO2 | NO3 | TC | FC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P24h | ||||||||||||||||
HRT | 0.27 | |||||||||||||||
Q | −0.27 | −1.00 | ||||||||||||||
pH | 0.00 | 0.16 | −0.16 | |||||||||||||
EC | 0.09 | 0.41 | −0.41 | −0.02 | ||||||||||||
WT | 0.01 | −0.09 | 0.09 | 0.08 | −0.29 | |||||||||||
DO | −0.14 | 0.28 | −0.28 | 0.07 | −0.06 | 0.00 | ||||||||||
BOD | 0.28 | 0.03 | −0.03 | 0.10 | −0.14 | 0.20 | −0.01 | |||||||||
Turb. | 0.34 | 0.24 | −0.24 | −0.19 | 0.09 | 0.15 | 0.21 | 0.37 | ||||||||
TS | −0.05 | 0.00 | 0.00 | −0.06 | −0.06 | −0.35 | 0.26 | −0.29 | 0.41 | |||||||
TP | 0.33 | 0.08 | −0.08 | −0.25 | 0.21 | −0.46 | −0.04 | 0.07 | 0.60 | 0.45 | ||||||
NH4 | −0.01 | 0.46 | −0.46 | 0.06 | 0.07 | 0.02 | 0.24 | −0.15 | −0.20 | −0.27 | −0.30 | |||||
NO2 | 0.03 | 0.59 | −0.59 | 0.20 | 0.25 | −0.04 | 0.16 | −0.42 | −0.23 | −0.08 | −0.24 | 0.44 | ||||
NO3 | −0.18 | −0.16 | 0.16 | −0.09 | −0.01 | 0.11 | 0.19 | 0.06 | 0.14 | 0.13 | −0.34 | 0.20 | −0.34 | |||
TC | 0.46 | 0.26 | −0.26 | 0.00 | 0.49 | −0.27 | −0.14 | −0.77 | −0.31 | 0.26 | 0.26 | 0.37 | 0.66 | −0.70 | ||
FC | 0.46 | −0.41 | 0.41 | 0.19 | −0.51 | 0.51 | 0.15 | 0.23 | −0.07 | −0.08 | −0.03 | −0.01 | −0.11 | −0.06 | −0.60 | |
Description: |
CFW Monitoring Period—All Data Test | Subgrouped Test | Same Point Test | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P24h > 0 | P24h = 0 | (P24h > 0/P24h = 0) | MW | KS | |||||||||||||||||
Parameter | Point | N | Mean | SD | Median | Test | dConc. | p | N | dConc. | p | N | dConc. | p | test | N1 | N2 | dConc. | p | p | |
pH | P1 | 32 | 7.65 | 0.9 | 7.45 | P1- > P1 | 17 | 15 | −0.2 | 0.497 | >0.10 | ||||||||||
P2 | 32 | 7.38 | 0.9 | 7.20 | P1- > P2 | −0.25 | 0.003 | 17 | −0.35 | 0.289 | 15 | −0.20 | 0.074 | P2- > P2 | 17 | 15 | 0.0 | 0.396 | >0.10 | ||
P3 | 32 | 7.34 | 0.9 | 7.05 | P2- > P3 | −0.15 | 0.026 | 17 | −0.15 | 0.289 | 15 | −0.20 | 0.248 | P3- > P3 | 17 | 15 | −0.1 | 0.720 | >0.10 | ||
EC (µS/cm) | P1 | 31 | 261 | 83 | 234 | P1- > P1 | 16 | 15 | 15 | 0.252 | >0.10 | ||||||||||
P2 | 31 | 219 | 31 | 221 | P1- > P2 | −13 | 0.003 | 16 | −14 | 0.724 | 15 | −12 | 0.683 | P2- > P2 | 16 | 15 | 17 | 0.038 | >0.10 | ||
P3 | 32 | 234 | 43 | 229 | P2- > P3 | 8 | 0.000 | 16 | 8 | 0.724 | 15 | 12 | 0.221 | P3- > P3 | 17 | 15 | 24 | 0.290 | >0.10 | ||
Water temp. (°C) | P1 | 31 | 24.0 | 1.1 | 24.0 | P1- > P1 | 16 | 15 | 0.7 | 0.031 | >0.10 | ||||||||||
P2 | 31 | 24.4 | 1.3 | 24.7 | P1- > P2 | 0.7 | 0.072 | 16 | 0.1 | 0.131 | 15 | 0.5 | 0.617 | P2- > P2 | 16 | 15 | 1.1 | 0.055 | <0.025 | ||
P3 | 31 | 24.1 | 1.1 | 24.3 | P2- > P3 | −0.4 | 0.002 | 16 | −0.2 | 0.617 | 15 | −0.3 | 0.371 | P3- > P3 | 16 | 15 | 1.0 | 0.040 | <0.05 | ||
DO (mg/L) | P1 | 32 | 4.3 | 0.8 | 4.3 | P1- > P1 | 17 | 15 | 0.0 | 0.835 | >0.10 | ||||||||||
P2 | 32 | 4.2 | 1.2 | 4.1 | P1- > P2 | −0.2 | 0.591 | 17 | 0.0 | 0.131 | 15 | −0.6 | 0.683 | P2- > P2 | 17 | 15 | −0.5 | 0.220 | >0.10 | ||
P3 | 32 | 2.7 | 1.2 | 2.5 | P2- > P3 | −1.6 | 0.000 | 17 | −1.6 | 0.013 | 15 | −1.4 | 0.041 | P3- > P3 | 17 | 15 | −0.4 | 0.126 | >0.10 | ||
BOD (mg/L) | P1 | 19 | 4.1 | 4.9 | 3.4 | P1- > P1 | 10 | 9 | −4.9 | 0.246 | >0.10 | ||||||||||
P2 | 19 | 10.9 | 6.5 | 11.0 | P1- > P2 | 7.6 | 0.006 | 10 | 5.4 | 0.289 | 9 | 11.7 | 0.041 | P2- > P2 | 10 | 9 | 1.5 | 0.744 | >0.10 | ||
P3 | 19 | 4.4 | 4.1 | 3.1 | P2- > P3 | −7.9 | 0.001 | 10 | −5.5 | 0.077 | 9 | −9.9 | 0.221 | P3- > P3 | 10 | 9 | −3.0 | 0.540 | >0.10 | ||
Turbidity (NTU) | P1 | 29 | 11.2 | 10.2 | 9.2 | P1- > P1 | 15 | 14 | −0.8 | 0.663 | >0.10 | ||||||||||
P2 | 29 | 26.1 | 16.7 | 21.9 | P1- > P2 | 12.6 | 0.000 | 15 | 11.7 | 0.077 | 14 | 14.4 | 0.041 | P2- > P2 | 15 | 14 | 1.9 | 0.570 | > 0.10 | ||
P3 | 29 | 10.5 | 5.5 | 8.7 | P2- > P3 | −13.1 | 0.000 | 15 | −12.3 | 0.013 | 14 | −13.47 | 0.041 | P3- > P3 | 15 | 14 | 0.8 | 0.616 | >0.10 | ||
TS (mg/L) | P1 | 20 | 300 | 224 | 243 | P1- > P1 | 10 | 10 | −30 | 0.162 | >0.10 | ||||||||||
P2 | 20 | 480 | 215 | 464 | P1- > P2 | 221 | 0.001 | 10 | 303 | 0.077 | 9 | 252 | 0.041 | P2- > P2 | 10 | 10 | −95 | 0.199 | <0.10 | ||
P3 | 20 | 215 | 48 | 218 | P2- > P3 | −246 | 0.000 | 10 | −342 | 0.013 | 9 | −296 | 0.041 | P3- > P3 | 10 | 10 | 19 | 0.326 | >0.10 | ||
TP (mg/L) | P1 | 20 | 0.15 | 0.10 | 0.14 | P1- > P1 | 10 | 10 | −0.02 | 0.791 | >0.10 | ||||||||||
P2 | 20 | 0.27 | 0.18 | 0.27 | P1- > P2 | 0.13 | 0.007 | 10 | 0.03 | 0.289 | 10 | 0.16 | 0.683 | P2- > P2 | 10 | 10 | 0.11 | 0.307 | <0.10 | ||
P3 | 20 | 0.13 | 0.08 | 0.16 | P2- > P3 | −0.11 | 0.000 | 10 | −0.09 | 0.013 | 10 | −0.11 | 0.074 | P3- > P3 | 10 | 10 | 0.09 | 0.140 | >0.10 | ||
N-NH4 (mg/L) | P1 | 20 | 2.23 | 1.02 | 2.04 | P1- > P1 | 10 | 10 | 0.86 | 0.031 | >0.10 | ||||||||||
P2 | 20 | 1.95 | 0.59 | 2.02 | P1- > P2 | −0.03 | 0.502 | 10 | 0.10 | 0.289 | 10 | −0.59 | 0.221 | P2- > P2 | 10 | 10 | 0.17 | 0.198 | >0.10 | ||
P3 | 20 | 2.35 | 0.71 | 2.45 | P2- > P3 | 0.43 | 0.169 | 10 | 0.58 | 1.000 | 10 | 0.47 | 0.683 | P3- > P3 | 10 | 10 | 0.08 | 0.307 | >0.10 | ||
N-NO2 (mg/L) | P1 | 20 | 0.25 | 0.14 | 0.23 | P1- > P1 | 10 | 10 | 0.00 | 0.910 | >0.10 | ||||||||||
P2 | 20 | 0.10 | 0.10 | 0.07 | P1- > P2 | −0.16 | 0.001 | 10 | −0.13 | 0.289 | 10 | −0.19 | 0.074 | P2- > P2 | 10 | 10 | −0.06 | 0.129 | >0.10 | ||
P3 | 20 | 0.09 | 0.07 | 0.07 | P2- > P3 | 0.00 | 1.000 | 10 | 0.00 | 0.683 | 10 | −0.00 | 0.617 | P3- > P3 | 10 | 10 | −0.07 | 0.149 | >0.10 | ||
N-NO3 (mg/L) | P1 | 20 | 1.92 | 1.52 | 1.88 | P1- > P1 | 10 | 10 | −0.87 | 0.427 | >0.10 | ||||||||||
P2 | 20 | 0.50 | 0.72 | 0.13 | P1- > P2 | −1.75 | 0.034 | 10 | −2.32 | 0.450 | 10 | −1.64 | 0.683 | P2- > P2 | 10 | 10 | −0.20 | 0.668 | >0.10 | ||
P3 | 20 | 0.53 | 0.96 | 0.00 | P2- > P3 | −0.13 | 0.773 | 10 | −0.21 | 1.000 | 10 | 0.11 | 0.617 | P3- > P3 | 10 | 10 | 0.11 | 0.562 | >0.10 | ||
FC (MPN·100mL−1) | P1 | 19 | 1.9 × 104 | 2.7 × 104 | 8.6 × 103 | P1- > P1 | 10 | 9 | 7.4 × 103 | 0.744 | >0.10 | ||||||||||
P2 | 18 | 4.4 × 104 | 4.8 × 104 | 3.1 × 104 | P1- > P2 | 2.2 × 104 | 0.015 | 8 | 3.4 × 104 | 0.131 | 9 | 2.8 × 104 | 0.221 | P2- > P2 | 8 | 10 | −6.9 × 103 | 0.477 | >0.10 | ||
P3 | 20 | 4.0 × 104 | 6.6 × 104 | 1.1 × 104 | P2- > P3 | −2.0 × 104 | 0.814 | 8 | 3.1 × 102 | 1.000 | 10 | −2.2 × 104 | 0.221 | P3- > P3 | 10 | 10 | −1.1 × 104 | 0.571 | >0.10 | ||
TC (MPN·100mL−1) | P1 | 11 | 2.0 × 103 | 3.0 × 105 | 1.0 × 106 | P1- > P1 | 8 | 3 | −8.3 × 104 | 0.850 | >0.10 | ||||||||||
P2 | 13 | 3.0 × 103 | 8.8 × 105 | 2.4 × 106 | P1- > P2 | 8.0 × 105 | 0.131 | 5 | 2.1 × 105 | 0.371 | 2 | 1.2 × 106 | P2- > P2 | 6 | 7 | 7.5 × 105 | 0.826 | >0.10 | |||
P3 | 10 | 8.2 × 103 | 6.0 × 105 | 1.7 × 106 | P2- > P3 | −6.9 × 105 | 0.371 | 5 | 8.0 × 104 | 1.000 | 2 | −8.0 × 105 | P3- > P3 | 6 | 4 | −3.2 × 105 | 0.076 | >0.10 | |||
Description: |
Description | Value | Unit |
---|---|---|
BOD median input concentration P2 | 11.0 | mg·l−1 |
BOD median output concentration P3 | 3.1 | mg·l−1 |
BOD median concentration reduction | 72.0 | % |
w—CFW width average | 8.80 | m |
hr—Roots length | 0.25 | m |
Atr—Transverse area with roots | 2.20 | m−2 |
L—CFW Length | 2.20 | m |
hc—Average water depth beneath CFW | 0.40 | m |
Atwc—Transverse area watercourse | 3.52 | m−2 |
Asurf—CFW Surface area | 19.2 | m−2 |
hr/hwc—Relation root length by water depth | 62.5 | |
Qwc—Median flow | 71.0 | m3·day−1 |
BOD load | 779 | g·day−1 |
Vr—Roots volume | 4.84 | m3 |
Vwc—Water volume | 7.74 | m3 |
OLRtr—Organic transverse loading rate (roots) | 354.2 | gBOD·m−2·day−1 |
OVLRvr—Organic volumetric loading rate (roots) | 73.2 | gBOD·m−3·day−1 |
HLRtr—Hydraulic transverse loading rate (roots) | 32.2 | m3·m−2·day−1 |
HLRvr—Hydraulic volumetric loading rate (roots) | 14.6 | m3·m−3·day−1 |
HRTr—Hydraulic retention time (roots) | 1.64 | h |
OLRtwc—Organic transverse loading rate (watercourse) | 221.4 | gBOD·m−2·day−1 |
OLRvwc—Organic volumetric loading rate (watercourse) | 100.6 | gBOD·m−3·day−1 |
HLRtwc—Hydraulic transverse loading rate (watercourse) | 20.1 | m3·m−2·day−1 |
HLRvwc—Hydraulic volumetric loading rate (watercourse) | 9.1 | m3·m−3·day−1 |
HRTwc—Hydraulic retention time (watercourse) | 2.62 | h |
vwc—average flow (watercourse) | 0.84 | m·h−1 |
OLRsurf—Organic surface loading rate (top) | 40.6 | gBOD·m−2·day−1 |
HLRsurf—Hydraulic surface loading rate (top) | 3.69 | m3·m−2·day−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergio, D.Z.; Finotti, A.R. Field-Scale Constructed Floating Wetland Applied for Revitalization of a Subtropical Urban Stream in Brazil. Sustainability 2023, 15, 14923. https://doi.org/10.3390/su152014923
Sergio DZ, Finotti AR. Field-Scale Constructed Floating Wetland Applied for Revitalization of a Subtropical Urban Stream in Brazil. Sustainability. 2023; 15(20):14923. https://doi.org/10.3390/su152014923
Chicago/Turabian StyleSergio, Djesser Zechner, and Alexandra Rodrigues Finotti. 2023. "Field-Scale Constructed Floating Wetland Applied for Revitalization of a Subtropical Urban Stream in Brazil" Sustainability 15, no. 20: 14923. https://doi.org/10.3390/su152014923
APA StyleSergio, D. Z., & Finotti, A. R. (2023). Field-Scale Constructed Floating Wetland Applied for Revitalization of a Subtropical Urban Stream in Brazil. Sustainability, 15(20), 14923. https://doi.org/10.3390/su152014923