Logistics Efficiency Evaluation and Empirical Research under the New Retailing Model: The Way toward Sustainable Development
Abstract
:1. Introduction
2. Literature Review
2.1. Logistics Efficiency Evaluation Indicators
2.2. Logistics Efficiency Evaluation Methods
2.3. Review
3. Construction of Logistics Efficiency Evaluation Index System under the Background of New Retailing from Sustainable Development View
3.1. First-Level and Second-Level Indicators of Logistics Efficiency Evaluation
3.2. Data of Decision Units
4. Methodologies for Logistics Efficiency Evaluation under the New Retailing Background from a Sustainable Development Perspective
4.1. The Optimal Logistics Efficiency Calculation Using Cross-Efficiency DEA
4.2. Weights Calculation Using IAHP Entropy
4.3. Dynamic Evaluation of Logistics Efficiency Using the Malmquist Index
4.4. Efficiency-Influencing Factors Identification Using Tobit
y = y*, when y* > 0;
y = 0, when y* ≤ 0.
5. Logistics Efficiency Evaluation and Analysis with the New Retailing Background under Sustainable Development
5.1. Static Evaluation and Analysis of Logistics Efficiency
5.1.1. The Optimal Efficiency Using Cross-Efficiency DEA
5.1.2. Weights Calculation Using IAHP Entropy
=(0.336,0.2591, 0.3802, 0.1412, 0.4559, 0.1145)T
mx+ = m(0.4448, 0.3532, 0.4718, 0. 2262, 0.6167, 0.1520)T
=(0.4557, 0.3619, 0.4834, 0.2318, 0.6319, 0.1557)T.
W = 1/2(kx− + mx+) = (0.3959, 0.3105, 0.43179, 0.1865, 0.5439, 0.1351)T.
5.1.3. The Optimal Logistics Efficiency and Analysis for Fifteen Companies
5.2. Dynamic Evaluation and Analysis of Logistics Efficiency
5.3. Factor Identification Using the Tobit Regression Model
5.3.1. Hausman Test
5.3.2. Result and Analysis
5.3.3. Suggestions and Countermeasures on Logistics Efficiency Improvement
6. Conclusions and Limitations of the Study
6.1. Theoretical Contributions
6.2. Practical Implications
6.3. Limitations and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, F. E-commerce logistics system based on Internet of Things. J. Interconnect. Netw. 2022, 22, 2145002. [Google Scholar] [CrossRef]
- Zhang, S.; Loosemore, M.; Sunindijo, R.Y.; Galvin, S.; Wu, J.; Zhang, S. Assessing safety risk management performance in Chinese subway construction projects: A multistakeholder perspective. J. Manag. Eng. 2022, 38, 1–18. [Google Scholar] [CrossRef]
- Pham, V.K.; Do, T.T.H. Evaluation of the costs through the logistics value chain (LVC) in Vietnam: An AHP approach. Int. J. Innov. Creat. Chang. 2021, 14, 868–889. [Google Scholar]
- Wang, X.; Ng, C.T. New retail versus traditional retail in e-commerce: Channel establishment, price competition, and consumer recognition. Ann. Oper. Res. 2020, 291, 921–937. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, D. Research on coordination fresh product supply chain under new retailing model. In Proceedings of the Computational Intelligence and Intelligent Systems: 9th International Symposium, ISICA 2017, Guangzhou, China, 18–19 November 2017; pp. 439–445. [Google Scholar]
- Souiden, N.; Ladhari, R.; Chiadmi, N.E. New trends in retailing and services. J. Retail. Consum. Serv. 2019, 50, 286–288. [Google Scholar] [CrossRef]
- Xu, N.; Huang, Y.F.; Weng, M.W.; Do, M.-H. New retailing problem for an integrated food supply chain in the baking industry. Appl. Sci. 2021, 11, 946. [Google Scholar] [CrossRef]
- Cai, Y.J.; Lo, C.K.Y. Omni-channel management in the new retailing era: A systematic review and future research agenda. Int. J. Prod. Econ. 2020, 229, 107729. [Google Scholar] [CrossRef]
- Soysal, M.; Bloemhof-Ruwaard, J.; van der Vorst, J.G. Modelling food logistics networks with emission considerations: The case of an international beef supply chain. Int. J. Prod. Econ. 2014, 152, 57–70. [Google Scholar] [CrossRef]
- Qinmei, W.; Rui, L. The mechanism and empirical study of intelligent logistics technology improving the efficiency of logistics industry-taking the “core area” of the silk road economic belt as example. Procedia CIRP 2019, 83, 285–291. [Google Scholar]
- Slavnetskova, L.; Odintsova, T.; Alekseeva, O.; Goryacheva, I.; Baurova, Y. Formation of innovative transport and logistics systems as a factor of the EAEU member countries sustainable development. Transp. Res. Procedia 2022, 63, 2086–2093. [Google Scholar] [CrossRef]
- Piotrowicz, W.; Cuthbertson, R. Performance measurement and metrics in supply chains: An exploratory study. Int. J. Product. Perform. Manag. 2015, 64, 1068–1091. [Google Scholar] [CrossRef]
- Kayakutlu, G.; Buyukozkan, G. Assessing performance factors for a 3PL in a value chain. Int. J. Prod. Econ. 2011, 131, 441–452. [Google Scholar] [CrossRef]
- Markovits-Somogyi, R.; Bokor, Z. Assessing the logistics efficiency of European countries by using the DEA-PC methodology. Transport 2014, 29, 137–145. [Google Scholar] [CrossRef]
- Wang, Y.M.; Chin, K.S. A neutral DEA model for cross-efficiency evaluation and its extension. Expert Syst. Appl. 2010, 37, 3666–3675. [Google Scholar] [CrossRef]
- Rohit, J.; Banwet, D.K.; Ravi, S. A Delphi-AHP-TOPSIS based benchmarking framework for performance improvement of a cold chain. Expert Syst. Appl. 2011, 38, 10170–10182. [Google Scholar]
- Bisheng, Z. Dynamic Analysis of China’s higher education efficiency-based on game cross-efficiency DEA model and global Malmquist index. J. Natl. Acad. Educ. Adm. 2019, 10, 65–72. [Google Scholar]
- Xie, B.C.; Chen, Y.F.; Gao, J.; Zhang, S. Dynamic environmental efficiency analysis of China’s power generation enterprises: A game cross-Malmquist index approach. Environ. Sci. Pollut. Res. Int. 2021, 28, 1697–1711. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, C.X. Analysis of coal logistics efficiency of main ports in Beijing Tianjin and Hebei based on DEA model. Foreign Econ. Relat. Trade 2019, 297, 41–46. [Google Scholar]
- Gunasekaran, A.; Paterl, C. Performance measures and metrics in a supply chain environment. Int. J. Oper. Prod. Manag. 2001, 21, 35–45. [Google Scholar] [CrossRef]
- Hamdan, A.; Rogers, K.J. Evaluating the efficiency of 3PL logistics operations. Int. J. Prod. Econ. 2008, 113, 235–244. [Google Scholar] [CrossRef]
- Ji, Y. Decision optimization for cold chain logistics of fresh agricultural products under the perspective of cost-benefit. Open Access Libr. J. 2019, 6, 1–17. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, Q.Y. Analysis of input-output effect of fresh farm produce cold chain logistics based on DEA: In the case of Henan Topin group. Logist. Technol. 2015, 34, 146–149. [Google Scholar]
- Yuan, Y.; Chen, J.; Dan, B. Research on the efficiency and its convergence of cold-chain logistics considering carbon constriction: Taking fresh agricultural products as an example. Sci. Technol. Manag. Res. 2020, 14, 253–260. [Google Scholar]
- Zhang, Y.; Ochiai, C. A study on the long-term spatio-temporal changes of shrinking cities in China. Urban Reg. Plan. Rev. 2023, 10, 158–178. [Google Scholar] [CrossRef]
- Su, W. Transformation and thought of Chinese retailing industry under the background of Internet+. Consum. Mark. 2017, 12, 31–33. [Google Scholar]
- Jondrow, J.; Lovell, C.A.K.; Materov, I.S.; Schmidt, P. On the estimation of technical inefficiency in the stochastic frontier production function model. J. Econom. 1982, 19, 233–238. [Google Scholar] [CrossRef]
- Liang, L.; Wu, J.; Cook, W.D.; Zhu, J. Alternative secondary goals in DEA cross-efficiency evaluation. Int. J. Prod. Econ. 2008, 113, 1025–1030. [Google Scholar] [CrossRef]
- Mikolajczyk, K.; Schmid, C. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1615–1630. [Google Scholar] [CrossRef]
- Jin, J.L.; Wei, Y.M.; Ding, J. Fuzzy comprehensive evaluation model based on improved analytic hierarchy process. J. Hydraul. Eng. 2004, 2, 144–147. [Google Scholar]
- Krohling, R.A.; Campanharo, V.C. Fuzzy TOPSIS for group decision making: A case study for accidents with oil spill in the sea. Expert Syst. Appl. 2011, 38, 4190–4197. [Google Scholar] [CrossRef]
- Carlos, P.B. Decomposing growth in Portuguese seaports: A frontier cost approach maritime. Econ. Logist. 2005, 7, 297–315. [Google Scholar]
- Trujillo, L.; Tovar, B. The European port industry: An analysis of its economic efficiency. Marit. Econ. Logist. 2007, 9, 148–171. [Google Scholar] [CrossRef]
- Anderson, T.R.; Daim, T.U.; Lavoie, F.F. Measuring the efficiency of university technology transfer. Technovation 2007, 27, 306–318. [Google Scholar] [CrossRef]
- Tan, Y.; Guo, C. Research on two-way logistics operation with uncertain recycling quality in government multi-policy environment. Sustainability 2019, 11, 882. [Google Scholar] [CrossRef]
- Quintano, C.; Mazzocchi, P.; Rocca, A. Examining eco-efficiency in the port sector via non-radial data envelopment analysis and the response based procedure for detecting unit segments. J. Clean. Prod. 2020, 259, 120979. [Google Scholar] [CrossRef]
- Chu, Y.C.; Shen, Y.; Lian, W.H. A study on the efficiency of Chinese logistics enterprises based on DEA-Malmquist and Tobit models empirical evidence from listed companies. Math. Pract. Theory 2020, 50, 95–105. [Google Scholar]
- Wu, X.Y.; Miao, C.; Sun, L.; Sun, X.X. An empirical study of differences in operational efficiency of listed cold chain logistics companies in China and dynamic evolution trend based on DEA-Malmquist model. J. Heilongjiang Univ. Technol. 2020, 20, 54–60. [Google Scholar]
- Deng, H.X.; Munkhtuul, J.; Liu, M. Analysis on logistics efficiency of highway ports between China-Mongolia based on DEA-Malmquist. J. Chongqing Univ. Technol. (Nat. Sci.) 2021, 35, 224–230. [Google Scholar]
- Wu, J.; Zhu, Q.; Yin, P.; Song, M. Measuring energy and environmental performance for regions in China by using DEA-based Malmquist indices. Oper. Res. 2017, 17, 715–735. [Google Scholar] [CrossRef]
- Zheng, B.Y.; Yang, H.F. Evaluation of Port Efficiency of China’s Coastal Cities in “The Belt and Road”-Based on DEA Game Cross over Efficiency-Tobit Model. J. Appl. Stat. Manag. 2021, 40, 502–514. [Google Scholar]
- Huang, Y.F. Financing efficiency of logistics firms using DEA and Tobit-taking thirty-eight firms panel data. Logist. Manag. 2020, 14, 112–117. [Google Scholar]
- Wang, Q.M.; Zhang, Y. The silk road economic belt “core area” logistics industry efficiency as a whole evaluation and sub-provincial, sub-country comparison. J. Shaanxi Norm. Univ. (Philos. Soc. Sci. Ed.) 2017, 46, 5–15. [Google Scholar]
- Diaz-Hernandez, J.J.; Martinez-Budria, E.; Salazar-Gonzalez, J.J. Measuring cost efficiency in the presence of quasi-fixed inputs using dynamic Data Envelopment Analysis: The case of port infrastructure. Marit. Econ. Logist. 2014, 16, 111–126. [Google Scholar] [CrossRef]
- Zhou, W.Z.; Li, Q.H.; Cui, X.Q. Conversion efficiency of new and old driving energy and its impact factors in China’s construction industry based on Malmquist index method. J. Environ. Prot. Ecol. 2022, 23, 1309–1320. [Google Scholar]
- Wu, J.; Zhu, Q.; Chu, J.; Liu, H.; Liang, L. Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach. Transp. Res. Part D Transp. Environ. 2016, 48, 460–472. [Google Scholar] [CrossRef]
- Grenkevich, O.; Kalidova, A. Evaluating the efficiency of investment in a project for railway transport companies. Transp. Res. Procedia 2022, 63, 1946–1952. [Google Scholar] [CrossRef]
- Ensslin, S.R.; Welter, L.M.; Pedersini, D.R. Performance evaluation: A comparative study between public and private sectors. Int. J. Product. Perform. Manag. 2022, 71, 1761–1785. [Google Scholar] [CrossRef]
- Rdseth, K.L.; Schyen, H.; Wangsness, P.B. Decomposing growth in Norwegian seaport container throughput and associated air pollution. Transp. Res. Part D Transp. Environ. 2020, 85, 102391. [Google Scholar] [CrossRef]
- Wanke, P.F. Physical infrastructure and shipment consolidation efficiency drivers in Brazilian ports: A two-stage network-DEA approach. Transp. Policy 2013, 29, 145–153. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, F.; Shi, C.; Chen, Y. Social Media Data-Based Sentiment Analysis of Tourists’ Air Quality Perceptions. Sustainability 2019, 11, 5070. [Google Scholar] [CrossRef]
- Wu, J.; Yan, H.; Liu, J. Groups in DEA based cross-evaluation: An application to Asian container ports. Marit. Policy Manag. 2009, 36, 545–558. [Google Scholar] [CrossRef]
- Rezaee, M.J.; Izadbakhsh, H.; Yousefifi, S. An improvement approach based on DEA-game theory for comparison of operational and spatial efficiencies in urban transportation systems. KSCE J. Civ. Eng. 2016, 4, 1526–1531. [Google Scholar] [CrossRef]
- Shan, D. Hybrid Kano-DEMATEL-TOPSIS model based benefit distribution of multiple logistics service providers considering consumer service evaluation of segmented task. Expert Syst. Appl. 2023, 213, 119292. [Google Scholar]
- Yu, S.; Huixia, H.; Chi, Z. DEA Game cross-efficiency model to urban public infrastructure investment comprehensive efficiency of China. Math. Probl. Eng. 2016, 3, 1–10. [Google Scholar]
- Sexton, T.R.; Silkman, R.H.; Hogan, A.J. Data envelopment analysis: Critique and extensions. New Dir. Program Eval. 1986, 32, 73–105. [Google Scholar] [CrossRef]
- Doyle, J.; Green, R. Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. J. Oper. Res. Soc. 1994, 45, 567–578. [Google Scholar] [CrossRef]
- Doyle, J.; Green, R. Cross-evaluation in DEA: Improving discrimination among DMUs. INFOR 1995, 33, 205–222. [Google Scholar] [CrossRef]
- Chan, F.T.S.; Chan, H.K.; Lau, H.C.W.; Ip, R.W. An AHP approach in benchmarking logistics performance of the postal industry. Benchmarking-Int. J. 2006, 13, 636–661. [Google Scholar] [CrossRef]
- Martínez-Budría, E.; Díaz-Armas, R.; Navarro-Ibañez, M.; Ravelo-Mesa, T. A study of the efficiency of Spanish port authorities using Data Envelopment Analysis. Int. J. Transp. Econ. 1999, 26, 237–253. [Google Scholar]
- Barros, C.P. A benchmark analysis of Italian seaports using data envelopment analysis. Marit. Econ. Logist. 2006, 8, 347–365. [Google Scholar] [CrossRef]
- Lin, L.C.; Tseng, C.C. Operational performance evaluation of major container ports in the Asia-Pacifific region. Marit. Policy Manag. 2007, 34, 535–551. [Google Scholar] [CrossRef]
- Wu, X.G.; Wang, S.P. Evaluation and temporal-spatial evolution of regional new and old driving force conversion in Shandong province. Sustainability 2022, 14, 14805. [Google Scholar] [CrossRef]
- Sarkis, J.; Talluri, S. Performance based clustering for benchmarking of US airports. Transp. Res. Part A Policy Pract. 2004, 38, 329–346. [Google Scholar] [CrossRef]
- Whetten, D.A. What constitutes a theoretical contribution? Acad. Manag. Rev. 1989, 14, 490–495. [Google Scholar] [CrossRef]
- Ali, S.S.; Kaur, R. Effectiveness of corporate social responsibility (CSR) in implementation of social sustainability in warehousing of developing countries: A hybrid approach. J. Clean. Prod. 2021, 324, 129154. [Google Scholar] [CrossRef]
- Ali, S.S.; Kaur, R.; Persis, D.J.; Saha, R.; Pattusamy, M.; Sreedharan, V.R. Developing a hybrid evaluation approach for the low carbon performance on sustainable manufacturing environment. Ann. Oper. Res. 2023, 324, 249–281. [Google Scholar] [CrossRef]
First-Level Indicators | Explanation |
---|---|
B1: Delivery [10] | Delivery is the critical factor of the supplier chain, whose core elements involve cost, speed, and so on. |
B2: Warehousing [14] | Warehousing is an indispensable component of the modern logistics system, which is an important indicator of service quality and economic benefits. |
B3: Operation [39] | Operation is closely related to logistics efficiency, including operational efficiency and the profitability of human resources. |
B4: New retailing | The new retailing merges online and offline resources, which closes the gap between them. |
B5: Innovation [19] | Innovation reflects the development potential in the near future. |
B6: Environmental protection | Environmental protection is an important part of continuous economic development. |
First-Level Indicators | Second-Level Indicators | Type |
---|---|---|
B1: Delivery | C11: Delivery fee rate [10] | Input |
C12: Cold-chain vehicle rate | Input | |
C13: On-time delivery rate [10] | Output | |
C14: The average vehicle capacity rate | Output | |
B2: Warehousing | C21: Warehouse fee rate | Input |
C22: Cooling warehousing rate [14] | Input | |
C23: Inventory turnover rate | Output | |
C24: Warehouse utilization rate | Output | |
B3: Operation | C31: Logistics professionals rate [14] | Input |
C32: Logistics cost rate | Input | |
C33: Logistics profit margins rate [19] | Output | |
C34: Customer satisfaction rate | Output | |
C35: Omni-channel market share | Output | |
B4: New retailing | C41: Offline investment rate | Input |
C42: Online active users rate [19] | Output | |
C43: Mobile orders rate | Output | |
C44: Turnover per square meter | Output | |
B5: Innovation | C51: R&D investment rate | Input |
C52: Intellectual property rights (IPR) rate [39] | Input | |
C53: Technician rate | Input | |
C54: Investment in information technology | Input | |
C55: Information-sharing level | Input | |
B6: Environmental protection | C61: Green package rate | Input |
C62: New energy vehicles rate | Input | |
C63: Environmental protection investment rate [39] | Input | |
C64: Pollutant discharge rate | Output | |
C65: Three-waste disposal rate | Output |
First Level | Second Level | Unit | Average | Standard Deviation | Min | Max |
---|---|---|---|---|---|---|
B1 | C11 | % | 1.34 | 1.16 | 0.4 | 4.6 |
C12 | % | 60.9 | 26.4 | 10.1 | 97.0 | |
C13 | % | 94.3 | 3.5 | 89.2 | 99.1 | |
C14 | % | 82.0 | 6.6 | 69.0 | 92.0 | |
B2 | C21 | % | 0.7 | 0.4 | 0.1 | 1.3 |
C22 | % | 11.0 | 14.1 | 0.1 | 57.1 | |
C23 | % | 13.0 | 5.2 | 3.9 | 21.6 | |
C24 | % | 92.0 | 2.7 | 89.0 | 97.2 | |
B3 | C31 | % | 9.0 | 7.3 | 2.1 | 29.0 |
C32 | % | 1.6 | 1.7 | 0.3 | 10.0 | |
C33 | % | 2.8 | 2.8 | 0.1 | 6.9 | |
C34 | % | 92.0 | 3.3 | 87.1 | 97.3 | |
C35 | % | 0.6 | 1.3 | 0.01 | 5.1 | |
B4 | C41 | % | 22.0 | 7.4 | 12.1 | 34.8 |
C42 | % | 51.0 | 63.3 | 3.1 | 117.0 | |
C43 | % | 76.1 | 19.2 | 42.3 | 96.0 | |
C44 | Ten thousand per square meter | 2.8 | 3.8 | 1.2 | 6.8 | |
B5 | C51 | % | 3.4 | 2.1 | 0.6 | 51.1 |
C52 | 3.1 | 1.5 | 10.2 | 1.0 | ||
C53 | % | 6.3 | 8.0 | 0.3 | 30.1 | |
C54 | % | 0.6 | 1.1 | 0.1 | 40.5 | |
C55 | 3.1 | 2.4 | 2.0 | 4.1 | ||
B6 | C61 | % | 46.1 | 34.3 | 24.0 | 58.0 |
C62 | % | 38.3 | 27.4 | 16.3 | 57.8 | |
C63 | % | 36.4 | 31.5 | 14.4 | 60.4 | |
C64 | % | 41.8 | 60.4 | 35.4 | 90.8 | |
C65 | % | 58.1 | 48.3 | 39.6 | 89.8 |
DMU | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|
DMU1 | 0.1464 | 0.1437 | 0.1183 | 0.0979 | 0.1093 |
DMU2 | 0.215 | 0.177 | 0.1182 | 0.1184 | 0.1747 |
DMU3 | 0.1886 | 0.2296 | 0.1676 | 0.1253 | 0.1013 |
DMU4 | 0.1331 | 0.1128 | 0.1215 | 0.1142 | 0.0977 |
DMU5 | 0.1173 | 0.1084 | 0.0841 | 0.0884 | 0.1325 |
DMU6 | 0.1876 | 0.2112 | 0.1285 | 0.1576 | 0.0941 |
DMU7 | 0.1599 | 0.1293 | 0.1159 | 0.0996 | 0.0985 |
DMU8 | 0.2131 | 0.1771 | 0.155 | 0.1473 | 0.1285 |
DMU9 | 0.1046 | 0.1072 | 0.0808 | 0.0868 | 0.0954 |
DMU10 | 0.1718 | 0.2047 | 0.0967 | 0.112 | 0.1142 |
DMU11 | 0.2174 | 0.1919 | 0.1287 | 0.1293 | 0.1487 |
DMU12 | 0.1683 | 0.1783 | 0.1038 | 0.1068 | 0.0994 |
DMU13 | 0.1792 | 0.1273 | 0.1151 | 0.0851 | 0.076 |
DMU14 | 0.2822 | 0.2141 | 0.1282 | 0.0982 | 0.1118 |
DMU15 | 0.1175 | 0.1109 | 0.093 | 0.0881 | 0.0897 |
Logistics Efficiency | B1: Delivery | B2: Warehousing | B3: Operation | B4: New Retailing | B5: Innovation | B6: Environmental Protection |
---|---|---|---|---|---|---|
DMU1 | 2.7500 | 2.8406 | 3.2786 | 3.4606 | 3.5487 | 2.7754 |
DMU2 | 3.7273 | 4.9983 | 4.0173 | 2.6997 | 3.5215 | 3.6247 |
DMU3 | 3.3070 | 3.5981 | 2.8515 | 3.4243 | 4.2158 | 3.6685 |
DMU4 | 2.3914 | 2.5654 | 2.7139 | 4.4099 | 4.0158 | 3.5547 |
DMU5 | 3.2555 | 2.0380 | 3.5333 | 2.6250 | 3.5417 | 2.6985 |
DMU6 | 4.5656 | 3.9922 | 2.6109 | 3.9481 | 3.2411 | 3.5224 |
DMU7 | 2.8304 | 2.6865 | 2.4150 | 3.5145 | 2.9660 | 3.5214 |
DMU8 | 5.5540 | 3.6753 | 4.3551 | 2.8289 | 2.8982 | 3.2584 |
DMU9 | 2.0379 | 2.7583 | 1.5179 | 2.8109 | 3.5749 | 3.6258 |
DMU10 | 4.3980 | 3.9572 | 2.1477 | 3.1999 | 2.9965 | 3.0547 |
DMU11 | 2.5885 | 2.2699 | 4.1180 | 3.5334 | 3.1149 | 3.6528 |
DMU12 | 3.0429 | 2.8705 | 1.7299 | 3.8197 | 3.1187 | 3.2588 |
DMU13 | 3.4653 | 2.9815 | 2.1848 | 3.2333 | 3.5249 | 2.9574 |
DMU14 | 3.9939 | 3.8648 | 3.6550 | 3.0705 | 3.2471 | 3.6254 |
DMU15 | 4.1730 | 2.4883 | 3.0587 | 2.9279 | 3.2574 | 3.6258 |
A | B1 | B2 | B3 | B4 | B5 | B6 |
---|---|---|---|---|---|---|
B1 | [1,1] | [2,3] | [1/3,1/2] | [1,2] | [1/5,1/4] | [1,2] |
B2 | [1/3,1/2] | [1,1] | [1/5,1/4] | [1/3,1/2] | [2,3] | [1/4,1/3] |
B3 | [2,3] | [1/4,1/3] | [1,1] | [1/4,1/3] | [1/4,1/3] | [1/4,1/3] |
B4 | [1/5,1/4] | [1/4,1/3] | [1/6,1/5] | [1,1] | [1/4,1/3] | [3,4] |
B5 | [3,4] | [2,3] | [1/5,1/4] | [1/5, 1/4] | [1,1] | [1,2] |
B6 | [1,2] | [2,3] | [3,4] | [4,5] | [1/4,1/3] | [1,1] |
Weight | B1 | B2 | B3 | B4 | B5 | B6 |
---|---|---|---|---|---|---|
Objective | 0.1976 | 0.1550 | 0.2155 | 0.0931 | 0.2715 | 0.0674 |
Subjective | 0.1544 | 0.1749 | 0.1474 | 0.1979 | 0.2034 | 0.1218 |
Comprehensive | 0.1760 | 0.1649 | 0.1815 | 0.1455 | 0.2375 | 0.0946 |
Logistics Efficiency | B1 | B2 | B3 | B4 | B5 | B6 | Total |
DMU1 | 0.2056 | 0.1077 | 0.2247 | 0.0604 | 0.4652 | 0.9845 | 0.3071 |
DMU2 | 0.4302 | 0.3401 | 0.3506 | 0.4094 | 0.5874 | 0.9875 | 0.4879 |
DMU3 | 0.3298 | 0.2466 | 0.4558 | 0.1076 | 0.4456 | 0.9874 | 0.3963 |
DMU4 | 0.2248 | 0.0582 | 0.9925 | 0.0418 | 1.3541 | 0.7487 | 0.6278 |
DMU5 | 0.3572 | 0.0957 | 0.1647 | 0.0831 | 1.5748 | 0.8587 | 0.5758 |
DMU6 | 0.5581 | 0.2347 | 0.3967 | 0.1262 | 1.6654 | 0.9854 | 0.7160 |
DMU7 | 0.2825 | 0.1689 | 1.2039 | 0.1026 | 0.8745 | 0.2574 | 0.5430 |
DMU8 | 0.7154 | 0.2632 | 0.4127 | 0.1234 | 1.7415 | 1.5748 | 0.8247 |
DMU9 | 0.1512 | 0.1981 | 0.4498 | 0.073 | 2.8741 | 0.8741 | 0.9168 |
DMU10 | 0.5264 | 0.2317 | 0.9347 | 0.1314 | 0.5417 | 2.1455 | 0.6512 |
DMU11 | 0.2388 | 0.0959 | 1.1343 | 0.1606 | 0.8741 | 1.5489 | 0.6412 |
DMU12 | 0.3312 | 0.1886 | 0.7590 | 0.1701 | 1.1647 | 1.3246 | 0.6538 |
DMU13 | 0.3984 | 0.2314 | 0.9530 | 0.1115 | 1.3506 | 1.0967 | 0.7219 |
DMU14 | 0.5310 | 0.2317 | 0.8032 | 0.093 | 1.4558 | 1.2039 | 0.7506 |
DMU15 | 0.5470 | 0.0565 | 1.4553 | 0.0814 | 0.7925 | 0.5774 | 0.6244 |
Logistics Efficiency | CCR | Benevolent Cross-Efficiency | Aggressive Cross-Efficiency | This Study |
---|---|---|---|---|
DMU1 | 0.8969 | 0.9889 | 0.1231 | 0.3071 |
DMU2 | 0.9969 | 0.9960 | 0.1607 | 0.4879 |
DMU3 | 0.9603 | 0.9888 | 0.1625 | 0.3963 |
DMU4 | 0.8971 | 0.9810 | 0.1159 | 0.6278 |
DMU5 | 0.9900 | 0.9769 | 0.1061 | 0.5758 |
DMU6 | 0.9801 | 0.9815 | 0.1558 | 0.7160 |
DMU7 | 0.899 | 0.9782 | 0.1206 | 0.5430 |
DMU8 | 1.0000 | 0.9940 | 0.1642 | 0.8247 |
DMU9 | 0.7687 | 0.9683 | 0.0950 | 0.9168 |
DMU10 | 0.9245 | 0.9851 | 0.1399 | 0.6512 |
DMU11 | 1.1421 | 0.9880 | 0.1632 | 0.6412 |
DMU12 | 0.8821 | 0.9849 | 0.1313 | 0.6538 |
DMU13 | 0.8252 | 0.9777 | 0.1165 | 0.7219 |
DMU14 | 0.9353 | 0.9840 | 0.1669 | 0.7506 |
DMU15 | 1.0000 | 0.9908 | 0.0998 | 0.6244 |
Year | effch | techch | pech | sech | tfpch |
---|---|---|---|---|---|
2017–2018 | 1.1012 | 0.8317 | 1.0000 | 1.1421 | 0.9123 |
2018–2019 | 1.1314 | 0.8639 | 1.0000 | 1.1335 | 0.9711 |
2019–2020 | 0.8755 | 0.9925 | 0.9715 | 0.9096 | 0.8633 |
2020–2021 | 1.0123 | 1.0000 | 1.0000 | 1.0108 | 1.0124 |
2021–2022 | 1.0309 | 1.0425 | 1.0396 | 1.0000 | 1.0819 |
Average | 1.0303 | 0.9460 | 1.0022 | 1.0392 | 0.9682 |
DMU | effch | techch | pech | sech | tfpch | Rank |
---|---|---|---|---|---|---|
DMU1 | 1.00 | 0.96 | 1.00 | 1.00 | 0.96 | 9 |
DMU2 | 0.95 | 0.80 | 1.00 | 0.95 | 0.76 | 14 |
DMU3 | 1.00 | 1.01 | 1.00 | 1.00 | 1.01 | 7 |
DMU4 | 1.11 | 1.06 | 1.00 | 1.10 | 1.17 | 1 |
DMU5 | 1.08 | 1.00 | 1.03 | 1.05 | 1.08 | 3 |
DMU6 | 0.79 | 0.80 | 0.99 | 0.80 | 0.63 | 15 |
DMU7 | 1.07 | 0.89 | 1.00 | 1.07 | 0.95 | 10 |
DMU8 | 1.11 | 1.05 | 1.00 | 1.10 | 1.15 | 2 |
DMU9 | 0.99 | 0.92 | 0.99 | 1.00 | 0.91 | 12 |
DMU10 | 0.99 | 1.00 | 1.00 | 0.99 | 0.99 | 8 |
DMU11 | 0.95 | 1.13 | 0.90 | 1.05 | 1.07 | 5 |
DMU12 | 1.02 | 0.90 | 1.02 | 1.00 | 0.92 | 11 |
DMU13 | 0.98 | 1.10 | 1.00 | 0.98 | 1.08 | 4 |
DMU14 | 0.91 | 0.89 | 0.90 | 1.01 | 0.81 | 13 |
DMU15 | 1.00 | 1.06 | 1.00 | 1.00 | 1.06 | 6 |
Explanatory Variable | Correlation Coefficient | Standard Deviation | Statistic | p (Significance Level) |
---|---|---|---|---|
x1 | 0.0954 | 0.0349 | 2.9900 | 0.0081 |
x2 | 0.0368 | 0.0116 | 2.4923 | 0.0945 |
x3 | −0.0017 | 0.0001 | −1.5712 | 0.0613 |
x4 | 0.0003 | 0.0002 | 1.0935 | 0.0770 |
x5 | −0.0868 | 0.2741 | −1.9835 | 0.0151 |
x6 | 0.0159 | 0.0310 | 0.7701 | 0.0492 |
Cons | 0.2659 | 0.0219 | 5.3973 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, T.; Wu, X.; Yin, Y. Logistics Efficiency Evaluation and Empirical Research under the New Retailing Model: The Way toward Sustainable Development. Sustainability 2023, 15, 15028. https://doi.org/10.3390/su152015028
Jiang T, Wu X, Yin Y. Logistics Efficiency Evaluation and Empirical Research under the New Retailing Model: The Way toward Sustainable Development. Sustainability. 2023; 15(20):15028. https://doi.org/10.3390/su152015028
Chicago/Turabian StyleJiang, Tongtong, Xiuguo Wu, and Yunxiao Yin. 2023. "Logistics Efficiency Evaluation and Empirical Research under the New Retailing Model: The Way toward Sustainable Development" Sustainability 15, no. 20: 15028. https://doi.org/10.3390/su152015028
APA StyleJiang, T., Wu, X., & Yin, Y. (2023). Logistics Efficiency Evaluation and Empirical Research under the New Retailing Model: The Way toward Sustainable Development. Sustainability, 15(20), 15028. https://doi.org/10.3390/su152015028