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Abstract: Accidents caused by road hazards can be prevented through regular inspections by road
management agencies. To this end, traffic agencies allocate substantial budgets and workforces to
maintain the performance of roads. Additionally, traffic agencies require comprehensive data such as
the classifications and sizes of road hazards. However, collecting spatial–temporal data on various
road hazards is challenging, and evaluating it comprehensively with respect to work efficiency and
budget allocation is difficult due to stakeholder interests across agencies. This study proposes a
process of evaluating operational efficiency in terms of maintaining roads and preventing hazards
by analyzing citizen scientist-based data. First, we collected data from drivers through a mobile
application and applied text mining techniques to classify each complaint into several types of road
hazard maintenance. Second, we developed an indicator to measure operational efficiency using the
processed data and evaluated each regional agency per each type of maintenance. The results of this
study provide evidence that specific types of road hazards occur prominently under specific agencies.
In addition, the time required to provide maintenance for identical road hazards can vary among
agencies. These results suggest that the maintenance budget for the entire national highway may
need to be distributed differently based upon regional characteristics.

Keywords: citizen science; road hazard; maintenance efficiency; road safety; text mining

1. Introduction

The length of roadways across the world is consistently increasing as the global
economy grows. For example, the highway network in the US has increased by 10,000 miles
every year since 1990 (from OECD statistics). However, despite the quantitative increase in
roads, traffic accidents also increased significantly up until 2000. To reduce traffic accidents,
governments and transportation authorities have been implementing several systematic
and ongoing road safety projects, such as improving accident-prone areas and renovating
dangerous roads.

Road accidents are caused by vehicle, driver, and road infrastructure malfunctions [1].
In terms of vehicles, the development of new technologies such as autonomous vehicles
is expected to greatly contribute to the prevention of traffic accidents [2]. Although many
studies on human factors are currently underway, practically applying these findings is
expected to require substantial time and costs. Accidents caused by hazardous road en-
vironments can be prevented through regular inspections by road management agencies.
However, with the continuous extension of roads, their continuous deterioration, and
the shortage of road management personnel, substantial progress is unlikely. To prevent
accidents through efficient road management, it is particularly important to identify and
address road hazards in real time. To this end, traffic agencies allocate substantial bud-
gets and increase the workforce each year to maintain or improve the performance of
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roads. In addition, traffic agencies require comprehensive foundational data such as the
classifications and sizes of road hazards in each region and the time required to process
each hazard.

Collecting spatial–temporal data on road hazards is challenging, and even if it is
available, evaluating the data for budget allocation is difficult due to stakeholder interests
across agencies. This study proposes a process of evaluating operational efficiency in terms
of maintaining roads and preventing hazards by analyzing citizen scientist-based data.
First, we collected complaints reported by drivers through a mobile application across an
entire national highway in South Korea. Because the data were logged in text format, this
study applied text mining techniques to classify each complaint into several types of road
hazard maintenance. In addition, the data included the time required to clear each type of
road hazard (hereafter called the processing time). Second, based on the information, we
developed an indicator to measure operational efficiency using the processing time and
evaluated each regional agency from the calculated indicator per each type of maintenance.

The remainder of this paper is organized as follows: Section 2 reviews previous
studies related to this research. Section 3 presents the text mining methodology. Section 4
introduces the analyses of the area and data. Then, the empirical results obtained after
applying the text mining technique are presented in Section 5. Section 6 presents the
discussion and conclusions.

2. Literature Review

Road agencies have an obligation to ensure the safety of the roads under their jurisdic-
tion. Thus, monitoring when and where the maintenance of road infrastructure is needed is
a routine task for road agencies and should be part of their operational processes to reduce
road safety risks [3]. The first step is to collect road hazard data, which can be achieved in
various ways. As information and communications technology (ICT) evolves, numerous
studies seek to recognize potential road hazards through various sensors. On the contrary,
other studies still rely on manual data collection via either volunteers or citizen scientists.
This study reviews recent research in terms of data collection methods for not only the most
representative road hazards, such as potholes and roadkill, but also for other minor issues.

Road networks experience significant impacts due to potholes and roadkill on the
roads, leading to accidents and fatal injuries [4]. In particular, it is important to detect and
repair hazardous factors in a timely and quickly manner to minimize adverse impacts on
traffic. Recent studies have used the power of artificial intelligence (AI) to monitor the
conditions of road pavements. Machine learning and deep learning methods have been
employed to assess the condition of road surfaces through either field trials or case studies.

Briefly reviewing the literature using machine learning, ref. [5] developed a supervised
machine learning model that uses image data to detect and classify nine types of crack image
data. To develop the model, they utilized a data augmentation technique and achieved an
accuracy of 85%. Ref. [6] developed a cloud-assisted road condition-monitoring system
that is capable of applying monitoring in real time and can classify road conditions with
an accuracy of 88% accuracy. Ref. [7] employed SVM to provide real-time warnings for
bumps and potholes, which is also capable of providing instructions to drivers to suddenly
accelerate and brake. For road anomalies, the classification accuracy in is approximately
80%. Ref. [8] proposed a new approach for comprehensive pavement condition indicators.
The authors argued that the model improves the accuracy when fewer data are available.
However, it is expected that considerable effort will be required to collect relevant data in
new regions.

There are similar efforts using deep learning methods. Ref. [9] regenerated image
data from an RGB-D pavement surface dataset and developed deep convolutional neural
networks for pothole detection, which is capable of extracting depth information when
depth data are not available. Ref. [10] collected thermal imaging data and applied the CNN
approach for pothole detection. Ref. [11] proposed a method that yields reliable pothole
detection results under small sample conditions. After data augmentation, they tested
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the CNN fusion model and the detection accuracy improved up to 90%. Ref. [12] focused
on identifying the severity and type of cracks at the same time using the Mobilenet-SSD
approach. This study included the assumption that the severity of cracks is directly related
to the area of said cracks. Ref. [13] modified a CNN to detect potholes in real time, where
they removed some convolution layers and used different dilation rates. Ref. [14] focused on
generating pseudo images for a training dataset by combining GAN with Poisson blending
artificially. They improved the accuracy of pothole detection by 5% when the original image
data were small. Ref. [15] introduced a new approach to obtain labeled training data. After
training two mainstream deep learning frameworks (YOLO v2 and R-CNN), they evaluated
them using a new dataset extracted via Google API. Ref. [16] developed a location-aware
CNN to detect potholes. They argued that the model captures discriminative regions
with potholes rather than the global context and as a result outperforms existing methods.
Ref. [17] employed a crowd sensing-based deep learning approach to detect potholes.
The model is capable of distinguishing potholes from destabilizations of vehicles due to
speed bumps or driver behaviors. Ref. [18] employed a deep learning method to detect
pothole areas and their depth using a mobile point cloud and images. Ref. [19] employed
five different datasets and compared the performance of detecting potholes between 3D
scene reconstruction methods and deep learning techniques. Ref. [20] employed the object
detection technology of a CNN to identify five different pothole types. Ref. [21] proposed
fully automated roadway safety assessment using a deep convolutional neural network.
They used a street-level panorama image dataset, and the network is capable of estimate
various road-level attributes.

Collisions between wildlife and vehicles pose a potential threat to both wildlife popu-
lations and road user safety. Data collection methods for wildlife–vehicle collisions (WVCs)
include accident reports by the police [22]; historical data from hunters, citizen scientists,
or volunteers [23–28]; sensor-driven data collection such as lidar [29] and smartphone [30].
The study by [4] is unique, given the fact that they utilized a YOLO v3 computer vision
algorithm to detect two road hazards (potholes and roadkill) at the same time.

Road attributes such as traffic signs and trees may not be the direct cause of traffic
accidents, but they are still crucial maintenance items to improve road safety. AI technology
can also be used to evaluate the conditions of road sign integrity [31–34]. For example,
ref. [34] used the deep learning method to develop an algorithm that evaluates road sign
integrity and conditions. They validated their algorithm using Google images. There are
also other efforts [35–39] that use deep learning techniques or video image processing
to measure how far roadside objects (e.g., big trees, electric poles, and other roadside
vegetation) are from the road boundary. See Table 1 for a summary of these previous studies.

Table 1. Summary of the data collection method for road hazard types.

Literature Pavement Conditions Roadkill Road Attribute Maintenance

[4] Image data Image data
[5] Image data
[6] Smart phone
[7] Smart phone
[8] Field data
[9] Image data

[10] Image data
[11] Image data
[12] Image data
[13] Image data
[14] Image data
[15] Image data
[16] Image data
[17] Smart phone
[18] Image data
[19] Image data
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Table 1. Cont.

Literature Pavement Conditions Roadkill Road Attribute Maintenance

[20] Image data
[21] Image data
[22] Accident report
[23] Historical data
[24] Historical data
[25] Historical data
[26] Historical data
[27] Historical data
[28] Historical data
[29] LIDAR data
[30] Smart phone
[31] Image data
[32] Image data
[33] Image data
[34] Image data
[35] Image data
[36] Image data
[37] Image data
[38] Image data
[39] Image data

In addition to the road hazards suggested in the review of previous studies, there are
numerous others that can affect driver safety. Collecting data associated with various road
hazards can be challenging because they are widely distributed in space and may not be
timely. To this end, as noted above, research using artificial intelligence techniques has
been actively conducted. However, there are many challenges in applying these techniques
because of a large dataset for training, a class imbalance issue, and the need to retrain for a
new site [40]. More importantly, automatically detecting, identifying, and classifying all
road hazards is almost impossible.

This study sought to employ road hazard data to evaluate operational efficiency to
clear given road hazards among road management agencies. Because this study dealt with
all observable road hazards by users, we analyzed road hazard-related data in text from
volunteers and citizen participations rather than in-vehicle sensor-based data.

Of course, road hazard detection using state-of-the-art technologies will continue to
develop and is expected to be applied in practice someday. However, if a system to monitor
citizen feedback for road hazard maintenance is in place, it has the advantage of being
immediately applicable to a wide range of road networks. Another benefit is that such a
system can monitor various hazards that may occur on the road. Conversely, data collection
can be the biggest weakness in recognizing diverse and widely distributed road hazard
factors using the latest technology.

3. Methodology

As a first step, this study needed to interpret road user complaints stored in text format
and classify them into different types of road hazards. Thus, the Power Query feature of
Excel was used for text mining. Power Query is a tool that imports data from external data
sources and then cleanses, transforms, and restructures them as needed. It can also be used
for powerful keyword analysis, such as extracting keywords from text-based sentences and
sentence separation. To analyze the given text data, this study underwent five steps, as
follows: First, we collected and extracted raw text-based data, and then used Power Query
to extract one or more keywords from the sentences (step 1 through step 2). After merging
all of the extracted keywords, we classified them for analytical purposes (step 3). Next,
we searched the original text data for the presence of the classified keywords obtained
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from step 3 and classified the sentences accordingly (step 4). We applied this process to all
sentences and derived analysis results according to the required objectives (step 5).

4. Analysis Area and Data

Highways in South Korea can be broadly divided into national highways managed
by local governments and expressways managed by the Korea Expressway Corporation.
The expressways are similar to turnpikes in the US and are generally better maintained
than national highways. However, the combined total length of the national highways
is 9155 km (refer to Table 2), which is more than twice the combined 4036 km length of
expressways. Regarding national highways, complaints from users can be reported via a
phone, but in reality, road users often do not identify the number of the traffic agency, and
it may take over two days for the report to be transferred to the appropriate road agency.
Thus, this study focused on national highways, where complaints are relatively frequent
and the response times is expected to be somewhat long. Table 2 shows the regional and
local agencies managing the national highways in South Korea, the local offices in each
region, and the length of the roads they manage.

Table 2. Five national highways maintained by regional and local traffic agencies in 2021.

Regional Office Length (Meters) Local Office Length (Meters)

Office A 985,500
A1 466,800
A2 518,700

Office B 1,265,584
B1 418,103
B2 329,738
B3 517,743

Office C 1,637,317

C1 404,954
C2 326,439
C3 525,315
C4 380,609

Office D 2,854,451

D1 589,874
D2 420,406
D3 460,091
D4 745,880
D5 638,200

Office E 2,412,463

E1 768,415
E2 425,395
E3 604,943
E4 613,710

Total 9,155,315

To overcome the limitations of the conventional reporting system for national high-
ways, the Department of Transportation in South Korea developed the Road Inconvenience
Reporting System (RIRS), which allows communication with the appropriate road agency.
The system has been collecting reports of complaints from any road using GPS technology
since 28 March 2014. The RIRS provides a simple and convenient way for road users to
report road hazards via a smartphone app, while also allowing road managers to receive
location and image information, enabling accurate identification of issues and prompt
response to them. Information collected through the RIRS app is stored as historical data,
along with details such as report ID, registration time, complaint content, location, agency,
processing status, and time taken to process the complaint, as shown in Table 3. This study
analyzed a total of 17,738 complaints collected from the RIRS between 2014 and 2022, along
with data on complaint processing times.
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Table 3. Examples of road complaint reports.

ID YYYYMMDD HH:MM Complaint Regional Office Status Processing Time (h)

8574 20140401 8:00 Stop sign
replacement A1 Completed 1

8584 20140401 9:48 Rock on the road B2 Completed 6
8623 20140402 9:34 Roadkill C1 Completed 55
8639 20140402 14:27 Uneven pavement E1 Completed 166

5. Results
5.1. Classification of Road Hazard Types

To systematically analyze the complaints recorded in the RIRS, it was necessary to
first extract representative keywords for each complaint. We converted 17,738 reported
complaints into text format and used the Power Query feature in Excel to extract a total of
472 keywords. Next, we carefully reviewed these extracted keywords and defined eight
representative road hazard types, as shown in Table 4. Complaints that were unclear or
difficult to classify into a road hazard type were categorized as “unclassified”. In addition,
basic statistics such as the number of records and keywords and the percentage of each
road hazard type are summarized in the table. Of the total 17,738 complaints, 94% were
classified into one of the eight complaint types. Unclassified complaints accounted for only
approximately 5%.

Table 4. Major keywords and basic statistics by each road hazard type.

Road Hazard Type Major Keywords Number of Records Number of Keywords %

Facilities Facilities, Signage, Manholes,
Guardrails, Structures, Reflectors, etc. 4797 164 27%

Roads Roads, Accident, Sidewalk, Gradient,
Lane Mark, Road Marking, etc. 3323 89 19%

Road Hazards Obstructions, Soil, Falling Rocks, Tires,
Plastic, Dirt, Boxes, Cleaning, etc. 3119 123 18%

Roadkill Animal Carcasses, Deer, Boars,
Animals, Cats, Badgers, Pigeons, etc. 1799 19 10%

Potholes Potholes, Subsidence, Sinkholes,
Ditches, Holes, Hollows, etc. 1649 13 9%

Illegal Illegal, Advertisements, Parking,
Placards, Vendors, Illegal Signs, etc. 945 17 5%

Drainage Drainage, Drains, Canals, Rainwater,
Dikes, Puddles, Flooding, etc. 811 28 5%

Weeding Weeding, Weeds, Twigs, Bushes, Trees,
Plants, Roadside Trees, etc. 279 19 2%

Unclassified - 1016 NaN 5%

Total 17,738 472 100%

NaN: Not a Number.

5.2. Processing Time by Agency and Road Hazard Type

To understand what types of road hazard maintenance requests are received by each
road agency, the number of complaint reports for each type was tabulated by regional and
local office, as shown in Table 5.

In Table 5, Office D received 5423 (32%) of the total records. At the local office level,
the location with the highest number of records was A2, receiving 2630 (15%). The regional
office with the lowest records was Region C, with 1915 (11%), and at the local agency level,
E3, with 194 (1.1%).

Focusing on the type of road hazards, “Road Signs” was the highest at 29%, while
“Weeding” was the least common. There was a substantial variance in the number of
complaint records across local offices. For example, in the case of “Roadkill”, D2 received
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a relatively high proportion of complaints. On the contrary, it is noteworthy that many
complaints were reported in E1 and B3 for “Potholes”. These examples reveal that specific
complaints are concentrated for specific agencies due to their environmental factors. As
shown in Table 5, the road hazard types that showed the most prominent variation in the
number of reported complaints by local office were “Roadkill”, “Road Hazards”, “Potholes”,
and “Illegal Ads”. These results suggest that financial resources to resolve specific road
hazards should be allocated based upon the circumstances of each agency.

Table 5. Number of complaint reports by agency and type.

Office Roads Roadkill Drainage Illegal
Ads

Road
Signs

Road
Hazards Weeding Potholes Sum 1 Sum 2

Office A
A1 424 64 92 20 281 64 4 126 1075

3705A2 538 120 172 175 632 656 71 266 2630

Office B
B1 59 8 22 11 172 26 6 16 320

2102B2 261 25 44 3 211 128 25 145 842
B3 257 39 51 26 305 71 8 183 940

Office C

C1 79 46 17 201 133 71 19 26 592

1915
C2 131 32 42 33 253 65 5 51 612
C3 107 49 15 8 121 38 4 37 379
C4 60 84 11 3 90 28 3 53 332

Office D

D1 230 44 23 75 494 115 10 34 1025

5423
D2 145 590 50 43 289 895 19 121 2152
D3 210 66 34 29 303 151 14 119 926
D4 201 38 8 11 376 88 3 29 754
D5 99 97 18 15 126 161 10 40 566

Office E

E1 143 206 60 30 312 106 12 284 1153

3566
E2 154 107 82 20 436 244 30 54 1127
E3 30 14 10 2 76 30 6 26 194
E4 195 165 60 239 184 181 30 38 1092

Column Sum 3323 1794 811 944 4794 3118 279 1648 16,711

The time required to process road hazards may vary with the capabilities of each
agency, and the time required to clear them directly impacts the satisfaction of road users.
As shown in Table 3, the analysis data included not only the record of complaints, but also
the time taken to resolve them. In this study, we further analyzed the processing time in
Table 3 to evaluate and compare work efficiency across agencies. Table 6 summarizes the
total processing time taken by each agency and road hazard type.

Table 6. Complaint processing time by office and complaint type.

Office Roads Roadkill Drainage Illegal
Ads

Road
Signs

Road
Hazards Weeding Potholes Sum 1 Sum 2

Office A
A1 35 K 6 K 6 K 1 K 19 K 7 K 1 K 12 K 87 K

526 KA2 86 K 12 K 22 K 34 K 94 K 124 K 13 K 53 K 439 K

Office B
B1 7 K 1 K 3 K 1 K 29 K 3 K 1 K 19 K 62 K

178 KB2 17 K 2 K 4 K 1 K 12 K 8 K 1 K 9 K 54 K
B3 13 K 2 K 2 K 6 K 30 K 4 K 1 K 4 K 62 K

Office C

C1 11 K 1 K 3 K 9 K 19 K 4 K 1 K 2 K 50 K

280 K
C2 9 K 1 K 2 K 4 K 17 K 4 K 1 K 3 K 41 K
C3 15 K 12 K 1 K 1 K 23 K 2 K 1 K 1 K 56 K
C4 106 K 3 K 1 K 1 K 11 K 4 K 1 K 7 K 133 K
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Table 6. Cont.

Office Roads Roadkill Drainage Illegal
Ads

Road
Signs

Road
Hazards Weeding Potholes Sum 1 Sum 2

Office D

D1 9 K 2 K 1 K 2 K 41 K 2 K 1 K 1 K 58 K

445 K
D2 24 K 59 K 1 K 1 K 24 K 59 K 1 K 10 K 179 K
D3 11 K 3 K 2 K 1 K 115 K 6 K 1 K 7 K 146 K
D4 7 K 1 K K 1 K 12 K 3 K 1 K 1 K 24 K
D5 6 K 12 K 1 K 1 K 8 K 7 K 1 K 3 K 38 K

Office E

E1 2 K 3 K 6 K 1 K 12 K 1 K 1 K 8 K 32 K

534 K
E2 42 K 25 K 18 K 21 K 137 K 72 K 6 K 13 K 334 K
E3 3 K 1 K 1 K 1 K 6 K 2 K 1 K 4 K 18 K
E4 107 K 4 K 3 K 6 K 7 K 21 K 1 K 2 K 150 K

Column Sum 511 K 150 K 77 K 87 K 616 K 333 K 29 K 160 K 1962 K

In addition, Figure 1 presents a box plot of the processing time by local office per event
(i.e., Table 6 divided by Table 5) for a given road hazard type. In each box plot, the top and
bottom edge of a box show the first and third quartiles, while the horizontal line within the
box shows the median value of the processing time for a given type. Above and below each
box, the “T”-shaped whiskers extend to the furthest point within 150% of the interquartile
range to bound the range of the data. Following standard conventions, all of the points
outside of this range are considered to be outliers and are indicated with plus symbols.

Figure 1. Box plot of the processing time by local office per event for a given road hazard type.

Comparing the median values of the processing time among road hazard types,
“Roads” maintenance took the longest time, while “Illegal Ads” the shortest. The difference
in processing time between them was 55 h, with the others distributed within the gap.
Overall, the processing time seemed quite different across road hazard types. Investigat-
ing the variance of processing across local office for a given road hazard type, “Roads”
maintenance type showed the highest variance, which was 165,344 h2. The lowest variance
came from “Drainage”, 3113 h2. It turns out that the minimum processing time per event
for “Drainage” came from D4 and maximum from E2, and their difference was over 190 h.
From Figure 1, it can be concluded that the time required to process the same type of
complaint can vary by local agency.
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5.3. Development and Evaluation of An Operational Efficiency Indicator

Thus far, we have investigated road complaint report data to define road hazard types
and analyzed the number of reports and processing times by road hazard type and agency.
We found that the operational efficiency of each office differs depending on the type of
road hazard. However, deriving these basic statistics to confirm operational efficiency at
each office can be slightly complex and cumbersome, as illustrated above. Therefore, we
aimed to develop an indicator that can quantitatively calculate operational efficiency, and
then evaluate the maintenance performance of road agencies based on the indicator.

The operational efficiency for a given complaint can be quantified by the processing
time per road hazard type. To derive an operational efficiency indicator, we first calculated
the Z-score to align the units of report count per kilometer and the processing time per
event of all agencies. Second, we visualized the Z-score of the processing time per event,
corresponding to the Z-score of the report count per kilometer for each agency on a
two-dimensional plane, as shown in Figure 2. If the Z-score of a local office is on the
positive diagonal, it can be considered that the agency has average operational efficiency.
Conversely, if the Z-score is in the region above the diagonal, the efficiency is low; when it
is in the region below the diagonal, the efficiency is high.

Figure 2. Operational efficiency indicator using the Z-score.

Figure 3 shows the scatter plots of Z-scores for report counts per kilometer and
processing times per event for eight types of road hazards ((a) through (h)) and a scatter
plot for all types (i). In each figure, “o” represents the Z-score of the processing time,
corresponding to the Z-score of the complaint record count for a specific local office; this
was used as an indicator of operational efficiency by calculating the orthogonal distance to
the positive diagonal.
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Figure 3. Z-score for processing time per event vs. Z-score for the number of events per kilometer:
(a) Roads, (b) Roadkill, (c) Drainage, (d) Illegal Activity, (e) Facilities, (f) Road Hazards, (g) Weeding,
(h) Potholes, and (i) All.

In Figure 3, most points are located near the diagonal line for each road hazard type.
Particularly, for “Roadkill”, the points are distributed along the diagonal line, implying
the lack of a large difference in operational efficiency for this type across local offices. The
results of calculating the operational efficiency indicator based on Figure 3 are shown in
Table 7. In Table 7, a positive operational efficiency indicator value means that the Z-score
coordinate in Figure 3 is located in the upper section of the positive diagonal, which can be
interpreted as low operational efficiency. In Table 7, Office B is ranked the lowest, whereas
Office C is ranked the highest. Notably, even though office C had the lowest number of
complaint records (See Table 6), the majority of operational efficiency indicator values for
the different types of road hazards showed positive values, indicating low operational
efficacy compared to the other regional offices. Regarding local agencies, C4, with the
lowest operational efficiency, showed positive indicator values for all types. The second
least efficient local office was E2, with particularly low efficiency for “Potholes”. The third
least efficient office was D2, with a longer processing time for “Roads” compared to the
other types. The office with the highest operational efficiency was E1, which showed
negative values for all types.
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Table 7. Results of the operational efficiency indicator calculations.

Office Roads Roadkill Drainage Illegal
Ads

Road
Signs

Road
Hazards Weeding Potholes Sum 1 Sum 2

Office A
A1 0.0 0.0 −0.2 0.1 −0.3 0.1 0.0 0.1 −0.2 −7.2A2 0.1 −2.4 −0.7 −0.2 −0.4 −2.4 −0.7 −0.4 −7.1

Office B
B1 −1.5 0.3 −0.9 0.1 −0.5 0.5 0.7 −0.4 −1.7

−8.0B2 −0.4 −0.3 −0.2 0.1 −1.2 −0.3 −0.2 0.2 −2.2
B3 0.5 −0.9 −0.7 −2.1 −0.2 0.3 −1.3 0.2 −4.2

Office C

C1 −0.7 0.3 0.2 0.2 −0.2 −0.1 −0.8 −0.7 −1.9

5.9
C2 0.5 −0.2 1.8 −1.7 0.8 0.0 −0.4 0.4 1.1
C3 −0.6 0.0 −0.2 −0.5 −1.4 −0.5 0.3 0.2 −2.7
C4 0.3 1.6 1.1 3.0 0.6 1.9 0.3 0.6 9.5

Office D

D1 −0.7 0.1 −0.6 0.5 −0.4 0.1 0.8 −1.1 −1.3

5.2
D2 3.4 −0.3 0.1 0.7 0.9 0.9 1.1 0.3 7.1
D3 0.2 0.5 −0.1 0.3 0.2 −0.4 −0.1 0.2 0.9
D4 −0.1 −1.2 0.0 −0.1 −0.8 −0.6 −0.5 −2.0 −5.3
D5 0.7 0.5 0.8 0.1 0.6 0.3 0.3 0.6 3.9

Office E

E1 −2.0 0.1 −1.6 −1.0 −1.5 −0.4 −1.7 −1.3 −9.5

4.1
E2 0.5 0.0 1.0 0.4 0.8 0.9 0.1 3.4 7.1
E3 0.3 2.0 0.0 0.1 1.2 0.2 2.5 0.2 6.6
E4 −0.4 −0.1 0.1 0.0 1.8 −0.4 −0.5 −0.5 −0.1

6. Conclusions

To prevent accidents through efficient road management, it is important to identify
and address road hazards in real time. Hence, traffic agencies allocate substantial budget
and personnel each year to maintain or improve the performance of the roads under their
jurisdiction. However, the budget for road management is limited, and traffic agencies are
distributed across regions; therefore, it is essential to determine the appropriate budget size
and regional allocation for which comprehensive foundational data are required, including
the classification and size of road hazards in each region and the time required to process
each hazard. In this study, we proposed a text mining-based methodology to acquire
such foundational data for allocating road management assets efficiently. We employed
text-based complaint records reported by volunteers and citizen participation data collected
using a mobile-based RIRS application. Taking advantage of the text mining technique,
we defined road hazard types to be cleared for all complaint records. The analysis of
road hazard types and complaint records for each road management agency revealed that
specific types of road hazards (i.e., “Roadkill”, “Road Hazards”, “Potholes”, and “Illegal
Ads”) occurred prominently under specific agencies. After extracting the processing time
from the analysis of the data, we examined the operational efficiency of road management
agencies through road hazard type. The results showed that the time required to process
identical road hazard types can vary among agencies. These results suggest that the control
tower overseeing the entire national highway may need to distribute its budget and support
by region to resolve specific road hazards. Additionally, we developed an indicator that
easily evaluates the operational efficiency of each management agency by combining the
processing time and complaint record counts for each type.

We expect this research will help transportation authorities in road maintenance data
acquisition and budget allocation. As road and traffic environments change, road mainte-
nance workload and frequency also change over time. Therefore, it is very important to
understand the workload for each type of maintenance in order to provide sustainable and
consistent road services. Moreover, monitoring the maintenance status of roads is essential
for the analysis of accident risk areas. This study proposed a framework to quantify the
amount of road hazard maintenance. Through the simple method, various road mainte-
nance workloads can be identified, and it is also easy to tally the work time required for
each maintenance. Second, the budget for road maintenance is limited so that transporta-
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tion authorities need to establish an appropriate budget allocation strategy. A possible
MOE (measure of effectiveness) to determine which local office takes more budget would
be work efficiency. The indicator proposed in this study could be a proxy value to measure
work efficiency. Thus, transportation authorities can utilize the indicator to evaluate local
offices in terms of work efficiency and determine priorities for resource allocation.

Generally, it is quite complicated to extract the necessary information from text data, a
typical form of unstructured data, compared to structured data recorded numerically. In
this study, we used Excel’s Power Query feature to extract keywords from a vast amount
of text data and classify complaint types that can represent the content of the complaint
written by the user. Consequently, we classified 95% of over 17,000 complaints into eight
road hazard types using the data mining methodology. However, there are some limitations
in utilizing text mining in this study. First, a review of researchers is necessary in some
steps for extracting keywords from complaint records, which can extend the time required
for keyword extraction if the historical data volume is vast. Furthermore, approximately 5%
of the complaints were unclassified as a result of data mining; therefore, future studies must
also consider the reduction of unclassified complaints. Finally, the techniques proposed
in this study are a basic approach that works on limited text forms. Various techniques
associated with text clustering, text summarization, and information extraction should be
applied to obtain more sophisticated results in future studies.
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