Forecasting Worldwide Temperature from Amazon Rainforest Deforestation Using a Long-Short Term Memory Model
Abstract
:1. Introduction
2. Materials and Method
2.1. Data Description
2.2. Forecasting Model: Long-Short Term Memory (LSTM)
Long-Short Term Memory Model
3. LSTM Network Architecture
LSTM Hyperparameter Optimization
4. Data Exploration
5. Results
Temperature Forecasting
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Staal, A.; Flores, B.M.; Aguiar, A.P.D.; Bosmans, J.H.; Fetzer, I.; Tuinenburg, O.A. Feedback between drought and deforestation in the Amazon. Environ. Res. Lett. 2020, 15, 044024. [Google Scholar] [CrossRef]
- Sierra, J.P.; Junquas, C.; Espinoza, J.C.; Segura, H.; Condom, T.; Andrade, M.; Molina-Carpio, J.; Ticona, L.; Mardoñez, V.; Blacutt, L.; et al. Deforestation impacts on Amazon-Andes hydroclimatic connectivity. Clim. Dyn. 2021, 58, 2609–2636. [Google Scholar]
- Ellwanger, J.H.; Kulmann-Leal, B.; Kaminski, V.L.; Valverde-Villegas, J.; VEIGA, A.B.G.; Spilki, F.R.; Fearnside, P.M.; Caesar, L.; Giatti, L.L.; Wallau, G.L.; et al. Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. Anais Acad. Bras. Ciênc. 2020, 92, e20191375. [Google Scholar]
- Trancoso, R. Changing Amazon deforestation patterns: Urgent need to restore command and control policies and market interventions. Environ. Res. Lett. 2021, 16, 041004. [Google Scholar]
- Silva-Junior, C.H.; Silva, F.B.; Arisi, B.M.; Mataveli, G.; Pessôa, A.C.; Carvalho, N.S.; Reis, J.B.; Silva Júnior, A.R.; Motta, N.A.; e Silva, P.V.M.; et al. Brazilian Amazon indigenous territories under deforestation pressure. Sci. Rep. 2023, 13, 5851. [Google Scholar] [PubMed]
- Driga, A.M.; Drigas, A.S. Climate Change 101: How Everyday Activities Contribute to the Ever-Growing Issue. Int. J. Recent Contrib. Eng. Sci. IT 2019, 7, 22–31. [Google Scholar] [CrossRef]
- Yang, Y.; Saatchi, S.; Xu, L.; Keller, M.; Corsini, C.R.; Aragão, L.E.; Aguiar, A.P.; Knyazikhin, Y.; Myneni, R.B. Interannual variability of carbon uptake of secondary forests in the Brazilian Amazon (2004–2014). Glob. Biogeochem. Cycles 2020, 34, e2019GB006396. [Google Scholar] [CrossRef]
- Kruid, S.; Macedo, M.N.; Gorelik, S.R.; Walker, W.; Moutinho, P.; Brando, P.M.; Castanho, A.; Alencar, A.; Baccini, A.; Coe, M.T. Beyond deforestation: Carbon emissions from land grabbing and forest degradation in the Brazilian Amazon. Front. For. Glob. Chang. 2021, 4, 645282. [Google Scholar]
- Ruv Lemes, M.; Sampaio, G.; Fisch, G.; Alves, L.M.; Maksic, J.; Guatura, M.; Shimizu, M. Impacts of atmospheric CO2 increase and Amazon deforestation on the regional climate: A water budget modelling study. Int. J. Climatol. 2023, 43, 1497–1513. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C.; et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar]
- Rocque, R.J.; Beaudoin, C.; Ndjaboue, R.; Cameron, L.; Poirier-Bergeron, L.; Poulin-Rheault, R.A.; Fallon, C.; Tricco, A.C.; Witteman, H.O. Health effects of climate change: An overview of systematic reviews. BMJ Open 2021, 11, e046333. [Google Scholar] [PubMed]
- Miyamoto, M. Poverty reduction saves forests sustainably: Lessons for deforestation policies. World Dev. 2020, 127, 104746. [Google Scholar]
- Fricke, E.C.; Ordonez, A.; Rogers, H.S.; Svenning, J.C. The effects of defaunation on plants’ capacity to track climate change. Science 2022, 375, 210–214. [Google Scholar] [PubMed]
- Dasgupta, S.; van Maanen, N.; Gosling, S.N.; Piontek, F.; Otto, C.; Schleussner, C.F. Effects of climate change on combined labour productivity and supply: An empirical, multi-model study. Lancet Planet. Health 2021, 5, e455–e465. [Google Scholar]
- Parmesan, C.; Morecroft, M.D.; Trisurat, Y. Climate Change 2022: Impacts, Adaptation and Vulnerability; Research Report; Intergovernmental Panel on Climate Change (IPCC-GIEC), United Nations: New York, NY, USA, 2022. [Google Scholar]
- Tovar, P.; Adarme, M.; Feitosa, R. Deforestation detection in the amazon rainforest with spatial and channel attention mechanisms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 851–858. [Google Scholar] [CrossRef]
- Medvigy, D.; Walko, R.L.; Otte, M.J.; Avissar, R. Simulated changes in northwest US climate in response to Amazon deforestation. J. Clim. 2013, 26, 9115–9136. [Google Scholar]
- Hirota, M.; Nobre, C.A.; Alencar, A.; Arieira, J.; Costa, F.d.A.; Flores, B.; Gandour, C.; Josse, C.; Levis, C.; Póveda, G.; et al. A Call for Global Action to Move the Amazon Forest System Away from Tipping Points; Science Panel for the Amazon: Rio de Janeiro, Brazil, 2022. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. Nonlinear Phenom. 2020, 404, 132306. [Google Scholar]
- Stocker, T.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Gao, S. Deforestation prediction using time series and lstm. In Proceedings of the 2019 International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 20–22 December 2019; pp. 95–99. [Google Scholar]
- Zhang, J.; Wang, Z.; Bai, L.; Song, G.; Tao, J.; Chen, L. Deforestation Detection Based on U-Net and LSTM in Optical Satellite Remote Sensing Images. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3753–3756. [Google Scholar]
- Dominguez, D.; del Villar, L.d.J.; Pantoja, O.; González-Rodríguez, M. Forecasting amazon rain-forest deforestation using a hybrid machine learning model. Sustainability 2022, 14, 691. [Google Scholar]
- Liu, J.; Zhang, T.; Han, G.; Gou, Y. TD-LSTM: Temporal dependence-based LSTM networks for marine temperature prediction. Sensors 2018, 18, 3797. [Google Scholar]
- Liu, Y.; Li, D.; Wan, S.; Wang, F.; Dou, W.; Xu, X.; Li, S.; Ma, R.; Qi, L. A long short-term memory-based model for greenhouse climate prediction. Int. J. Intell. Syst. 2022, 37, 135–151. [Google Scholar]
- Hamidi, M.; Roshani, A. Investigation of climate change effects on Iraq dust activity using LSTM. Atmos. Pollut. Res. 2023, 14, 101874. [Google Scholar]
- Assis, L.F.F.G.; Ferreira, K.R.; Vinhas, L.; Maurano, L.; Almeida, C.; Carvalho, A.; Rodrigues, J.; Maciel, A.; Camargo, C. TerraBrasilis: A spatial data analytics infrastructure for large-scale thematic mapping. ISPRS Int. J. Geo-Inf. 2019, 8, 513. [Google Scholar]
- Cedar Lake Ventures. Weatherspark. Available online: https://weatherspark.com (accessed on 10 October 2023).
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 2018, 8, 1–12. [Google Scholar]
- Liu, Y.; Gong, C.; Yang, L.; Chen, Y. DSTP-RNN: A dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction. Expert Syst. Appl. 2020, 143, 113082. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar]
- Ahsan, M.M.; Mahmud, M.P.; Saha, P.K.; Gupta, K.D.; Siddique, Z. Effect of data scaling methods on machine learning algorithms and model performance. Technologies 2021, 9, 52. [Google Scholar] [CrossRef]
- Javid, A.M.; Das, S.; Skoglund, M.; Chatterjee, S. A relu dense layer to improve the performance of neural networks. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 2810–2814. [Google Scholar]
- Phillips, D.J.; Wheeler, T.A.; Kochenderfer, M.J. Generalizable intention prediction of human drivers at intersections. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1665–1670. [Google Scholar]
- Altché, F.; de La Fortelle, A. An LSTM network for highway trajectory prediction. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 353–359. [Google Scholar]
- Nicholson, W.B.; Wilms, I.; Bien, J.; Matteson, D.S. High dimensional forecasting via interpretable vector autoregression. J. Mach. Learn. Res. 2020, 21, 6690–6741. [Google Scholar]
- Busch, J.; Engelmann, J. Cost-effectiveness of reducing emissions from tropical deforestation, 2016–2050. Environ. Res. Lett. 2017, 13, 015001. [Google Scholar]
Data Variables and Dimension | ||||
---|---|---|---|---|
Notation | Variable | Type of Data | Data Dimension | Values/Description |
t | Year | Numerical | 20 years () | Temporal index of the data (deforestation and temperature) |
m | Municipality | Text | 297 municipalities (Altamira, Barcelos, ⋯) | Name of the Amazon Municipality (spatial index of the deforestation data) |
c | City | Text | 20 cities (Buenos Aires, ⋯, Yakarta) | Name of the city (spatial index of the temperature data) |
Mean Temperature | Numerical (°C) | 20 years (mean) temperature () | The mean temperature recorded in that year for a specific city | |
Minimum Temperature | Numerical (°C) | 20 years ((avg. minimum)) temperature () | The average minimum temperature recorded in that year for a specific city. | |
Maximum Temperature | Numerical (°C) | 20 years (avg. maximum) temperature () | The average maximum temperature recorded in that year for a specific city. | |
Cumulative deforestation | Numerical (km) | , with t years and m municipalities, , municipalities | Total accumulated deforestation area up to that year for a given municipality |
City | Country | Continent |
---|---|---|
Buenos Aires | Argentina | South America |
Canton | China | Asia |
London | United Kingdom | Europe |
Mexico City | Mexico | South America |
Delhi | India | Asia |
Cairo | Egypt | Africa |
Istanbul | Turkey | Eurasia |
Kinshasa | Democratic Republic of the Congo | Africa |
Kuala Lumpur | Malaysia | Asia |
Lima | Peru | South America |
Los Angeles | United States of America | North America |
Madrid | Spain | Europe |
Manila | Philippines | Asia |
Moscow | Russia | Europe |
New York | United States of America | North America |
Sao Paulo | Brazil | South America |
Shanghai | China | Asia |
Sidney | Australia | Australia |
Tokyo | Japan | Asia |
Jakarta | Indonesia | Asia |
Buenos Aires | Canton | London | Mexico City | Delhi | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | T mean | T min | T max | T mean | T min | T max | T mean | T min | T max | T mean | T min | T max | T mean | T min | T max |
2021 | 18.50 | 14.50 | 22.50 | 24.30 | 18.80 | 29.80 | 11.90 | 8.80 | 15.00 | 18.05 | 11.90 | 24.20 | 25.40 | 18.40 | 32.40 |
2022 | 18.35 | 14.62 | 22.86 | 24.80 | 18.66 | 31.50 | 12.70 | 9.18 | 16.03 | 18.61 | 12.16 | 24.59 | 25.25 | 18.23 | 32.60 |
2023 | 18.34 | 14.66 | 22.99 | 25.12 | 18.65 | 32.55 | 12.79 | 9.31 | 16.08 | 18.84 | 12.26 | 24.80 | 25.33 | 18.18 | 32.80 |
2024 | 18.34 | 14.69 | 23.11 | 25.35 | 18.64 | 33.27 | 12.88 | 9.45 | 16.13 | 19.02 | 12.34 | 24.97 | 25.40 | 18.14 | 32.98 |
2025 | 18.34 | 14.73 | 23.21 | 25.51 | 18.64 | 33.81 | 12.97 | 9.60 | 16.17 | 19.15 | 12.42 | 25.10 | 25.47 | 18.12 | 33.15 |
2026 | 18.35 | 14.77 | 23.31 | 25.63 | 18.63 | 34.24 | 13.05 | 9.75 | 16.21 | 19.25 | 12.49 | 25.20 | 25.53 | 18.11 | 33.30 |
2027 | 18.35 | 14.81 | 23.41 | 25.71 | 18.63 | 34.58 | 13.13 | 9.91 | 16.24 | 19.32 | 12.55 | 25.26 | 25.59 | 18.10 | 33.43 |
2028 | 18.37 | 14.86 | 23.49 | 25.76 | 18.63 | 34.86 | 13.20 | 10.07 | 16.27 | 19.37 | 12.60 | 25.28 | 25.64 | 18.10 | 33.55 |
2029 | 18.38 | 14.91 | 23.57 | 25.77 | 18.63 | 35.08 | 13.27 | 10.22 | 16.30 | 19.40 | 12.65 | 25.27 | 25.70 | 18.10 | 33.65 |
2030 | 18.39 | 14.96 | 23.64 | 25.75 | 18.63 | 35.26 | 13.34 | 10.38 | 16.32 | 19.41 | 12.69 | 25.24 | 25.75 | 18.11 | 33.74 |
Cairo | Istanbul | Kinshasa | Kuala Lumpur | Lima | |||||||||||
2021 | 23.75 | 18.40 | 29.10 | 15.65 | 12.00 | 19.30 | 26.85 | 22.60 | 31.10 | 28.55 | 24.30 | 32.80 | 19.35 | 17.20 | 21.50 |
2022 | 23.74 | 18.56 | 29.03 | 16.38 | 12.52 | 19.98 | 27.26 | 22.88 | 31.20 | 28.87 | 24.76 | 32.89 | 19.17 | 17.20 | 21.23 |
2023 | 23.87 | 18.72 | 29.28 | 16.39 | 12.41 | 20.01 | 27.47 | 23.06 | 31.35 | 28.94 | 24.94 | 33.12 | 19.18 | 17.11 | 21.24 |
2024 | 23.96 | 18.86 | 29.53 | 16.38 | 12.33 | 20.03 | 27.63 | 23.20 | 31.49 | 29.01 | 25.11 | 33.36 | 19.20 | 17.07 | 21.27 |
2025 | 24.04 | 18.98 | 29.75 | 16.37 | 12.25 | 20.04 | 27.75 | 23.30 | 31.61 | 29.07 | 25.27 | 33.64 | 19.23 | 17.05 | 21.30 |
2026 | 24.10 | 19.08 | 29.96 | 16.36 | 12.19 | 20.05 | 27.84 | 23.38 | 31.71 | 29.14 | 25.41 | 33.86 | 19.27 | 17.05 | 21.34 |
2027 | 24.14 | 19.17 | 30.14 | 16.35 | 12.13 | 20.05 | 27.91 | 23.43 | 31.80 | 29.20 | 25.54 | 34.01 | 19.30 | 17.05 | 21.38 |
2028 | 24.17 | 19.25 | 30.30 | 16.33 | 12.07 | 20.04 | 27.96 | 23.47 | 31.87 | 29.25 | 25.67 | 34.13 | 19.33 | 17.06 | 21.42 |
2029 | 24.19 | 19.32 | 30.43 | 16.31 | 12.02 | 20.04 | 27.99 | 23.48 | 31.93 | 29.30 | 25.78 | 34.21 | 19.36 | 17.07 | 21.45 |
2030 | 24.19 | 19.37 | 30.54 | 16.29 | 11.97 | 20.03 | 28.02 | 23.48 | 31.97 | 29.35 | 25.88 | 34.28 | 19.39 | 17.08 | 21.48 |
Los Angeles | Madrid | Manila | Moscow | New York | |||||||||||
2021 | 17.30 | 12.90 | 21.70 | 15.05 | 8.30 | 21.80 | 28.60 | 25.20 | 32.00 | 6.30 | 2.50 | 10.10 | 13.70 | 8.70 | 18.70 |
2022 | 17.87 | 13.77 | 22.74 | 15.55 | 8.93 | 22.35 | 28.72 | 25.12 | 32.17 | 6.29 | 2.55 | 10.25 | 13.71 | 8.58 | 18.51 |
2023 | 17.74 | 13.96 | 22.78 | 15.58 | 8.97 | 22.44 | 28.80 | 25.06 | 32.32 | 6.26 | 2.57 | 10.27 | 13.84 | 8.66 | 18.55 |
2024 | 17.77 | 14.19 | 22.82 | 15.60 | 9.00 | 22.52 | 28.89 | 25.01 | 32.48 | 6.24 | 2.58 | 10.28 | 13.95 | 8.72 | 18.58 |
2025 | 17.83 | 14.43 | 22.85 | 15.62 | 9.02 | 22.58 | 28.99 | 24.95 | 32.65 | 6.22 | 2.59 | 10.28 | 14.04 | 8.77 | 18.60 |
2026 | 17.91 | 14.67 | 22.89 | 15.63 | 9.03 | 22.64 | 29.09 | 24.90 | 32.81 | 6.20 | 2.60 | 10.27 | 14.12 | 8.81 | 18.62 |
2027 | 18.00 | 14.89 | 22.92 | 15.64 | 9.03 | 22.69 | 29.19 | 24.86 | 32.99 | 6.19 | 2.60 | 10.27 | 14.18 | 8.83 | 18.63 |
2028 | 18.10 | 15.09 | 22.94 | 15.65 | 9.02 | 22.73 | 29.29 | 24.81 | 33.17 | 6.17 | 2.61 | 10.26 | 14.23 | 8.84 | 18.64 |
2029 | 18.21 | 15.27 | 22.97 | 15.66 | 9.01 | 22.77 | 29.37 | 24.77 | 33.35 | 6.16 | 2.61 | 10.26 | 14.27 | 8.85 | 18.64 |
2030 | 18.32 | 15.42 | 23.00 | 15.67 | 9.00 | 22.81 | 29.45 | 24.73 | 33.52 | 6.15 | 2.61 | 10.26 | 14.30 | 8.84 | 18.65 |
Sao Paulo | Shanghai | Sidney | Tokyo | Jakarta | |||||||||||
2021 | 21.00 | 16.20 | 25.80 | 18.55 | 13.70 | 23.40 | 18.20 | 13.50 | 22.90 | 16.60 | 12.50 | 20.70 | 27.90 | 23.70 | 32.10 |
2022 | 21.28 | 16.66 | 25.88 | 18.35 | 13.54 | 24.47 | 17.84 | 14.11 | 23.92 | 16.60 | 12.40 | 20.87 | 28.18 | 24.14 | 33.44 |
2023 | 21.28 | 16.62 | 25.89 | 18.43 | 13.57 | 25.09 | 17.69 | 14.13 | 23.92 | 16.60 | 12.41 | 20.92 | 28.21 | 24.05 | 33.83 |
2024 | 21.28 | 16.59 | 25.90 | 18.51 | 13.61 | 25.46 | 17.60 | 14.14 | 23.92 | 16.59 | 12.42 | 20.96 | 28.23 | 24.00 | 34.16 |
2025 | 21.29 | 16.57 | 25.93 | 18.57 | 13.66 | 25.67 | 17.53 | 14.16 | 23.92 | 16.59 | 12.43 | 21.00 | 28.24 | 23.96 | 34.45 |
2026 | 21.30 | 16.55 | 25.95 | 18.63 | 13.74 | 25.77 | 17.49 | 14.17 | 23.92 | 16.59 | 12.45 | 21.04 | 28.24 | 23.92 | 34.70 |
2027 | 21.31 | 16.53 | 25.98 | 18.68 | 13.83 | 25.81 | 17.45 | 14.19 | 23.92 | 16.59 | 12.48 | 21.07 | 28.23 | 23.89 | 34.92 |
2028 | 21.32 | 16.51 | 26.01 | 18.73 | 13.94 | 25.80 | 17.43 | 14.20 | 23.92 | 16.60 | 12.50 | 21.11 | 28.21 | 23.86 | 35.11 |
2029 | 21.34 | 16.49 | 26.04 | 18.78 | 14.04 | 25.75 | 17.41 | 14.22 | 23.92 | 16.60 | 12.53 | 21.14 | 28.18 | 23.84 | 35.28 |
2030 | 21.35 | 16.48 | 26.07 | 18.81 | 14.13 | 25.68 | 17.41 | 14.24 | 23.92 | 16.60 | 12.56 | 21.17 | 28.15 | 23.81 | 35.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominguez, D.; Barriuso Pastor, J.; Pantoja-Díaz, O.; González-Rodríguez, M. Forecasting Worldwide Temperature from Amazon Rainforest Deforestation Using a Long-Short Term Memory Model. Sustainability 2023, 15, 15152. https://doi.org/10.3390/su152015152
Dominguez D, Barriuso Pastor J, Pantoja-Díaz O, González-Rodríguez M. Forecasting Worldwide Temperature from Amazon Rainforest Deforestation Using a Long-Short Term Memory Model. Sustainability. 2023; 15(20):15152. https://doi.org/10.3390/su152015152
Chicago/Turabian StyleDominguez, David, Javier Barriuso Pastor, Odette Pantoja-Díaz, and Mario González-Rodríguez. 2023. "Forecasting Worldwide Temperature from Amazon Rainforest Deforestation Using a Long-Short Term Memory Model" Sustainability 15, no. 20: 15152. https://doi.org/10.3390/su152015152
APA StyleDominguez, D., Barriuso Pastor, J., Pantoja-Díaz, O., & González-Rodríguez, M. (2023). Forecasting Worldwide Temperature from Amazon Rainforest Deforestation Using a Long-Short Term Memory Model. Sustainability, 15(20), 15152. https://doi.org/10.3390/su152015152