
Citation: Dominguez, D.; Barriuso

Pastor, J.; Pantoja-Díaz, O.;

González-Rodríguez, M. Forecasting

Worldwide Temperature from

Amazon Rainforest Deforestation

Using a Long-Short Term Memory

Model. Sustainability 2023, 15, 15152.

https://doi.org/10.3390/

su152015152

Academic Editor: Mohammad

Valipour

Received: 18 September 2023

Revised: 12 October 2023

Accepted: 19 October 2023

Published: 23 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Forecasting Worldwide Temperature from Amazon Rainforest
Deforestation Using a Long-Short Term Memory Model
David Dominguez 1 , Javier Barriuso Pastor 1, Odette Pantoja-Díaz 2 and Mario González-Rodríguez 3,*

1 Grupo de Neurocomputación Biólogica, Departamento de Ingeniería Informática,
Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
david.dominguez@uam.es (D.D.)

2 Business School, Universidad Internacional del Ecuador (UIDE), Quito 170411, Ecuador;
odpantojadi@uide.edu.ec

3 SI2Lab, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Américas, Quito 170124, Ecuador
* Correspondence: mario.gonzalez.rodriguez@udla.edu.ec; Tel.: +593-9587-571-73

Abstract: Biosphere–atmosphere interactions are a critical component of the Earth’s climate system.
Many of these interactions are currently contributing to temperature increases and accelerating
global warming. One of the main factors responsible for this is land use and land cover changes; in
particular, this work models the interaction between Amazon rainforest deforestation and global tem-
peratures. A Long Short-Term Memory (LSTM) neural network is proposed to forecast temperature
trends, including mean, average minimum, and average maximum temperatures, in 20 major cities
worldwide. The Amazon rainforest, often referred to as the Earth’s “lungs”, plays a pivotal role in
regulating global climate patterns. Over the past two decades, this region has experienced significant
deforestation, largely due to human activities. We hypothesize that the extent of deforestation in
the Amazon can serve as a valuable proxy for understanding and predicting temperature changes
in distant urban centers. Using a dataset that tracks cumulative deforestation from 2001 to 2021
across 297 municipalities in the Amazon rainforest, a multivariate time series model was developed
to forecast temperature trends worldwide up to 2030. The input data reveal a variety of behaviors,
including complex deforestation patterns. Similarly, the forecasted temperature data showcases
diverse trends. While some cities are expected to exhibit a steady temperature increase, others
may experience gradual changes, while some cities may undergo drastic and rapid temperature
shifts. Our findings contribute to a deeper understanding of the far-reaching impacts of deforestation
on global climate patterns and underscore the importance of preserving vital ecosystems like the
Amazon rainforest.

Keywords: climate change; temperature forecasting; long short-term memory (LSTM); Amazon
rainforest deforestation; global climate trends; environmental data analysis

1. Introduction

The Amazon rainforest, widely recognized as one of Earth’s most crucial ecosystems,
has become emblematic of the ongoing global environmental crisis [1]. Serving as a vital
component in maintaining the Earth’s climate equilibrium, the Amazon functions both as a
substantial carbon sink and a source of life-sustaining biodiversity [2]. However, recent
decades have witnessed a disturbing escalation in deforestation rates within this pristine
wilderness, prompting an urgent examination of the intricate relationship between Amazon
deforestation and the pervasive issue of climate change [3].

Deforestation refers to the removal of forests and trees from a specific area, typically
for industrial or agricultural purposes. This process can have a detrimental impact on
the ecosystem, leading to increased greenhouse gas emissions, soil erosion, and the loss
of wildlife habitat [2]. Over the past few decades, the Amazon rainforest has gradually
diminished in size, primarily to create space for new pastures and soybean plantations.

Sustainability 2023, 15, 15152. https://doi.org/10.3390/su152015152 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su152015152
https://doi.org/10.3390/su152015152
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-0911-1834
https://orcid.org/0000-0002-5034-2936
https://orcid.org/0000-0002-0204-5662
https://doi.org/10.3390/su152015152
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su152015152?type=check_update&version=1


Sustainability 2023, 15, 15152 2 of 17

Notably, the size of the most recent deforestation patches in 2019 and 2020 has expanded
significantly and surpasses the extent observed in the preceding decade. This observation
is based on an analysis of data from the Deforestation Monitoring Program of the Brazilian
Amazon Forest by Satellite (PRODES) [4]. Deforestation is not a random process; it is
influenced by numerous socioeconomic and institutional factors. Furthermore, it can have
far-reaching consequences for the ecosystem, including limitations on rainfall and the
acceleration of climate change, among other effects [1].

As mentioned by the authors of reference [2], the rate of deforestation in the Brazilian
Amazon has experienced recent increases for several reasons. These factors encompass
contentious amendments to the Brazilian Forest Code in 2012, reduced enforcement of de-
forestation measures by the Ministry of the Environment, non-compliance with associated
climate change policies, and potential legislation that could legitimize seized public prop-
erties. Various elements, including alterations in governance and programs and market
participation, contribute to these shifts [4].

Deforestation in the Amazon has reached alarming proportions, with extensive swaths
of ancient forest succumbing to logging, agriculture, and infrastructure development [3].
The consequences of this rampant deforestation are far-reaching. The release of vast
amounts of carbon dioxide (CO2) into the atmosphere through deforestation has garnered
increasing attention [5]. As reported by the Intergovernmental Panel on Climate Change
(IPCC), deforestation contributes significantly to global greenhouse gas emissions [6].
This link between deforestation and CO2 emissions directly impacts the exacerbation of
climate change.

The Amazon’s role as a significant carbon sink has long been recognized, as it ab-
sorbs atmospheric CO2 through photosynthesis and stores it within its lush vegetation
and soils [7]. However, deforestation disrupts this delicate balance by both releasing
stored carbon and diminishing the forest’s capacity to sequester CO2 [8]. Furthermore,
the consequences of Amazon deforestation extend beyond regional boundaries. Changes
to the forest’s transpiration and evapotranspiration processes have been associated with
shifts in precipitation patterns and an increased vulnerability to extreme weather events,
affecting not only South America but also the global climate system [9]. These cascad-
ing effects underscore the interdependence of the Amazon’s ecosystem with the broader
climate system.

There are numerous wide-ranging effects of climate change on society, the environ-
ment, and the global economy [10]. One of the primary effects of climate change is the rise
in temperatures, which leads to health issues, reduced agricultural productivity, and strains
on energy systems [11]. Similarly, some of the key consequences of climate change include
melting ice and rising sea levels, extreme weather events, ocean acidification, biodiversity
loss, health risks, food and water security challenges, economic impacts, migration, and
displacement [12–15]. To reduce greenhouse gas emissions, transition to renewable energy
sources, and develop adaptation plans to mitigate the effects of climate change on both
people and ecosystems, international collaboration is essential [15]. It is also crucial to
conduct studies and analyses to predict the future of the planet in the face of evolving
climate change.

The work by the authors of reference [16] highlights a critical international concern:
deforestation in the Amazon rainforest. This process has several environmental effects,
with the increase in CO2 emissions and global temperatures being among the most sig-
nificant issues. For instance, studies like that in reference [17] anticipated substantial
changes in temperature and precipitation patterns in the Northern Hemisphere climate
as a consequence of Amazon deforestation, utilizing the Ocean-Land-Atmosphere Model.
Similarly, both references [18] and [19] emphasize that Amazon deforestation, degradation,
and wildfires impact not only the local region but also the entire world. This results in
the release of 110 to 275 tons of CO2 equivalent and an increase in the global average
temperature by 0.1 to 0.2 °C.
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Changes in the deforestation rates of the Amazon can have intricate and interconnected
consequences on both global and regional climatic systems. These effects can influence
temperatures and weather patterns in distant urban areas through various mechanisms,
including alterations in albedo (the amount of sunlight or solar radiation that is reflected
back into space), carbon emissions, atmospheric circulation, and feedback loops. For
instance, changes in albedo occur when the Amazon’s tree cover is replaced by farming
or urban development, making the surface more reflective. This increased albedo, while
locally leading to cooling, can have warming effects on nearby urban areas. Furthermore,
the reduced solar absorption by the Amazon’s surface can result in a global temperature
increase, as more sunlight is reflected back into space rather than being absorbed by the
Earth’s surface [2].

As mentioned previously, numerous studies have explored the close relationship
between human activities (such as deforestation and the burning of fossil fuels) and the
looming threat of climate change to future human existence. Building upon this premise,
the present research endeavors to empirically establish the direct connection between
human actions and climate change. To achieve this, advanced analytical techniques will be
employed to quantify the level of correlation between key deforestation indicators in the
Amazon region (representing human actions) and the recorded temperatures in various
cities around the world, consequently influencing the planet’s overall climate. In a similar
vein, multiple algorithms will be utilized to project the potential impact of these actions on
future global temperatures. This analysis aims to predict temperature increases in major
cities worldwide in the coming years, under the assumption that deforestation will persist
in these regions.

The objective of this work is to forecast temperatures up until 2030 using a Long
Short-Term Memory (LSTM) model [20,21]. The choice of 2030 as the time limit for this
analysis is based on the IPCC’s assessment [22], which suggests that the central estimate
for crossing the 1.5 °C temperature increase threshold will be in the early 2030s. Numer-
ous studies have employed machine learning models to assess deforestation [23–25] and
climate change [26–28]. The current research utilizes a dataset containing information
on 297 municipalities [29], including annual cumulative deforestation data for the past
two decades. Temperature data for 20 cities across the world, spanning all continents,
is both modeled and forecasted. Temperature data for 20 cities across the world, span-
ning all continents, are both modeled and forecasted. An LSTM network serves as the
machine learning model, mapping temporal data input using cumulative deforestation
data from 297 municipalities in the Amazon region of Brazil. The intended output of the
model is the temperature data for 20 cities worldwide. A separate model is constructed
for each of the 20 cities, encompassing mean, average minimum, and average maximum
temperatures. In essence, for each city, three distinct models are created to predict these
temperature parameters.

The paper sections are structured as follows. Section 2: Materials and Methods de-
scribes the data used to build the model and formalizes the general LSTM general model
employed for forecasting temperature increments. Section 3: LSTM Network Architecture
outlines the network architecture used in this work, including the results of the hyper-
parameter optimization process. Section 4: Data Exploration presents an analysis of the
cumulative deforestation data for the 297 Amazon municipalities. Understanding the
complex behavior of these input data is crucial for modeling global warming and climate
change in the 20 selected cities around the world. Section 5: Results provides the forecasted
temperature data for the 20 selected cities around the world. The experimental results
obtained from the LSTM model are discussed in the context of the current climate change
scenario. Finally, Section 6, Discussion and Conclusions, examines the main findings and
implications of this research, as well as the directions for future work.
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2. Materials and Method
2.1. Data Description

The input data, denoted as Xm
t , consist of data from 297 municipalities in the Brazilian

Amazon. The dataset covers the years between 2000 and 2021, recording cumulative de-
forestation data for these 297 municipalities. In Table 1, you can find the dataset variables
along with their corresponding data types (measurement scale) and descriptions for each
variable. The output data Yc

t comprise mean (Tmean), average minimum (Tmin), and average
maximum (Tmax) temperatures of 20 cities around the world. The cities are: Buenos Aires,
Canton, London, Mexico City, Delhi, Cairo, Istanbul, Kinshasa, Kuala Lumpur, Lima, Los
Angeles, Madrid, Manila, Moscow, New York, Sao Paulo, Shanghai, Sidney, Tokyo, and
Jakarta; as described in Table 2. The selection of these 20 locations is significant due to their
global geographical distribution and the diversity of environmental conditions they repre-
sent. Each city was chosen to exemplify a distinct region and climate zone. This diversity
enables us to conduct a comprehensive analysis of global temperature trends and patterns,
contributing to a more comprehensive understanding of urban temperature dynamics.
These cities span North and South America, Europe, Asia, Africa, and Oceania. The tem-
perature data are sourced from WeatherSpark, a platform that provides detailed weather
reports for around a hundred and fifty thousand locations worldwide [30]. As a remark, a
temporal index is used, denoted as t, which corresponds to the year of registration for both
deforestation and temperature data. In addition, two spatial indexes are employed, corre-
sponding to the municipality m where the cumulative deforestation data were recorded
and the city c where temperature measurements (mean, average minimum, and average
maximum) were registered. The input data Xtm have a total size of t×m× c. The number
of rows is determined by the combination of temporal (t) and city indexes (c), resulting in
t× c rows. The number of columns is determined by the number of municipalities, which
is m = 297, along with additional columns for city names, mean temperatures (Tcity

mean),
minimum temperatures (Tcity

min ), and maximum temperatures (Tcity
max). The deforestation data

are sourced from TerraBrasilis [29], a platform designed for the organization, access, and
utilization of geographical data for environmental monitoring. TerraBasilis was developed
by the National Institute for Space Research (INPE), a research unit of the Brazilian Ministry
of Science and Technology. For each of the 20 cities, three models are constructed, one for
each temperature parameter, as described in Equation (1). These models utilize the network
architecture presented in Section 3 LSTM Network architecture.

Table 1. Data description.

Data Variables and Dimension

Notation Variable Type of Data Data Dimension Values/Description

t Year Numerical 20 years (2001, . . . , 2021) Temporal index of the data
(deforestation and temperature)

m Municipality Text 297 municipalities (Altamira,
Barcelos, . . . )

Name of the Amazon Municipality
(spatial index of the deforestation data)

c City Text 20 cities (Buenos Aires, . . . , Yakarta) Name of the city (spatial index of the
temperature data)

Yc
t , Tmean

Mean
Temperature Numerical ( °C) 20 years (mean) temperature

(T2001
mean,city, . . . , T2021

mean,city)
The mean temperature recorded in that
year for a specific city

Yc
t , Tmin

Minimum
Temperature Numerical ( °C) 20 years ((avg. minimum)) temperature

(T2001
min,city, . . . , T2021

min,city)
The average minimum temperature
recorded in that year for a specific city.

Yc
t , Tmax

Maximum
Temperature Numerical ( °C) 20 years (avg. maximum) temperature

(T2001
max,city, . . . , T2021

max,city)
The average maximum temperature
recorded in that year for a specific city.

Xm
t

Cumulative
deforestation Numerical (km2)

Xm
t , with t years and m municipalities,

t ∈ {2001, . . . , 2021}, m ∈ {1, . . . , 297}
municipalities

Total accumulated deforestation area up
to that year for a given municipality
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Table 2. List of cities for which temperature is modeled.

City Country Continent

Buenos Aires Argentina South America
Canton China Asia
London United Kingdom Europe
Mexico City Mexico South America
Delhi India Asia
Cairo Egypt Africa
Istanbul Turkey Eurasia
Kinshasa Democratic Republic of the Congo Africa
Kuala Lumpur Malaysia Asia
Lima Peru South America
Los Angeles United States of America North America
Madrid Spain Europe
Manila Philippines Asia
Moscow Russia Europe
New York United States of America North America
Sao Paulo Brazil South America
Shanghai China Asia
Sidney Australia Australia
Tokyo Japan Asia
Jakarta Indonesia Asia

2.2. Forecasting Model: Long-Short Term Memory (LSTM)

A Long Short-Term Memory (LSTM) network is employed to model the temperature
data of cities around the world, denoted as Yc

t , using the deforestation data of municipalities,
Xm

t , as presented in Table 1. The objective of the LSTM is to forecast the temperature for
the upcoming ten years based on the cumulative deforestation of the Amazon rainforest.
The general forecasting model can be formalized as follows:

Ŷc
t = f (Xm

t ), (1)

where Xm
t represents the temporal input (cumulative deforestation) for the last 20 years,

t ∈ {2001, . . . , 2021}, for the 297 Amazon municipalities, m ∈ {1, . . . , 297}. Ŷc
t represents

the temporal output of the model, with c ∈ {Buenos Aires, . . . , Jakarta}, according to
Table 2. Three models are built for the three different outputs: Tmean, Tmin, Tmax for each of
the 20 cities.

The LSTM model for the temporal data, as presented in Table 1, can be expressed
as follows:

ŷc
t = f (Xm

t ) = f (Xm
2001, . . . , Xm

2021), (2)

where Xm
t represents the temporal input, yearly cumulative deforestation, and ŷc

t the
model’s output, i.e., the temperature. It is important to note that the temporal model is a
multivariate one, as described in previous studies [31,32]. This means that the temperature
forecasting for each city involves the utilization of multiple time-dependent variables,
specifically the deforestation data of the 297 municipalities. Each of these variables not
only relies on its own historical data but also exhibits interdependencies with other vari-
ables. These interdependencies, which are captured by the LSTM model, play a crucial
role in forecasting future temperature values. This is represented in Equation (3) as ma-
trices, illustrating the multidimensional nature of the temporal input, where Xm

t with
m ∈ 1, . . . , 297 corresponds to the cumulative deforestation of municipalities. Considering
the temporal nature of the data used in the LSTM and Equation (2), we can express it
as follows:

ŷc
t+1 = f (Xt, Xt−1, . . . , Xt−k), (3)

where t ∈ {1, . . . , N − k}, {Xt, Xt−1, . . . , Xt−k} are the actual and past values of the
297 municipalities, the m super index was dropped for simplicity. The value ŷc

t+1 rep-
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resents the forecasted temperature for each of the 20 cities worldwide. In this context, the
function f denotes the LSTM model. Here, k corresponds to the window size used for
forecasting, and in this paper, it is set to k = 1. The variable N stands for the number of
observations (years) in the database.

Long-Short Term Memory Model

A Recurrent Neural Network (RNN) is a type of artificial neural network designed to
process and predict data sequences. Unlike traditional feedforward neural networks, where
information flows in one direction, RNNs have connections that loop back on themselves,
enabling them to maintain a hidden state or memory of previous inputs [33]. The RNN is
schematically represented in Figure 1. The RNN processes a sequence of temporal inputs,
denoted as Xt where t < k ∈ N, and k represents the window size for making predictions.
In the initial step, it receives the input x0 and generates the output h0. In the subsequent
steps, the inputs are h0 and x1, resulting in the output h1, which, in turn, serves as an
input in the following step. This process continues successively until the final step, which
receives the input xn and the output of the previous step, denoted as hk−1, to predict hk,
which serves as the model’s output (Yt).

Input (Xt)

htHidden (ht) ht+1

Output (Yt)...

...

Figure 1. Schematic representation of a Recurrent Neural Network.

The training process of an RNN can be summarized as follows: a forward pass, loss
(error) calculation, and a backward pass. During the forward pass, the network processes
data sequentially. For each time step in a sequence, it calculates the predicted output using
the current model parameters, and the hidden state is updated at each time step. The loss
(error) is then computed between the predicted output and the actual target for each time
step in the sequence. The choice of the loss function depends on the specific task. For
regression tasks, mean squared error is often used, while for classification tasks, cross-
entropy loss is common. The gradients are propagated backward through time to update
the model’s parameters. This process is similar to backpropagation in feedforward neural
networks but takes into account the sequential nature of the data. Use an optimization
algorithm to update the model’s weights and biases based on the computed gradients. The
goal is to minimize the loss function.

RNNs have a disadvantage related to gradients either blowing up or diminishing
when learning long-term dependencies. To mitigate this problem, the LSTM network
model was introduced. An LSTM network is essentially an enhanced version of an RNN,
featuring a specialized cell structure equipped with input, output, and forget gates [34].
These gates enable an LSTM layer to effectively grasp and model long-range dependencies,
making it particularly valuable for tasks such as time series prediction. The LSTM cell
is presented in Figure 2. The equations that describe the LSTM Unit, as depicted in the
schematic representation in Figure 2, are as follows:
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xt

xt

ht

xtxt

××

×

Input gate Output gate

Forget gate

Cell state

Figure 2. Schematic representation of an LSTM unit.

Input Gate (it):
it = σ(Wi · [ht−1, xt] + bi) (4)

Candidate Cell State (C̃t):

C̃t = tanh(WC · [ht−1, xt] + bC) (5)

Forget Gate ( ft):
ft = σ(W f · [ht−1, xt] + b f ) (6)

Cell State Update (Ct):
Ct = ft · Ct−1 + it · C̃t (7)

Output Gate (ot):
ot = σ(Wo · [ht−1, xt] + bo) (8)

Hidden State (ht):
ht = ot · tanh(Ct) (9)

where:

it—Input Gate’s output;
C̃t—Candidate Cell State;
ft—Forget Gate’s output;
Ct—Cell State;
ot—Output Gate’s output;
ht—Hidden State;
xt—Input at time step; t
ht−1—Previous hidden state;
Wi, WC, W f , Wo—Weight matrices for respective gates;
bi, bC, b f , bo—Bias terms for respective gates;
σ(·)—Sigmoid activation function;
tanh(·)—Hyperbolic tangent activation function.

For this work, the LSTM network is configured with an LSTM layer consisting of
64 neurons, followed by two dense layers with 64 and 1 neurons in the first and second
dense layers, respectively. The network was trained for 200 epochs. LSTM networks
are ideal for sequence and time-series tasks, given their capacity to capture long-term
dependencies in the data. This model leverages these properties to learn complex patterns
in the input data. The aforementioned LSTM network architecture is detailed in the
next section.
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3. LSTM Network Architecture

While Section 2 describes the general aspects of the LSTM model, this section delves
into the specifics of the machine learning model designed to predict global temperatures
based on Amazon rainforest deforestation data. Additionally, it covers the hyperparameter
optimization of the model.

The network architecture consists of a unidirectional LSTM model, comprising a
single LSTM layer followed by a dense layer, as illustrated schematically in Figure 3. The
LSTM layer processes the temporal input Xm

t , which corresponds to the deforestation data
from the 297 Amazon rainforest municipalities. The input data are scaled using z-score
normalization, that is the data are scaled to be a zero mean and a standard deviation of one.
Scaling data are important for neural networks, providing faster convergence in learning,
and ensuring that each feature contributes equally to the learning process [35]. The task of
this layer is to capture the temporal behavior of the data. The LSTM layer is followed by a
dense layer, the task of which is to capture the input data complexity, once the temporal
dimension has been processed by the LSTM layer. Finally, an output dense layer with a
single unit is used to predict the temperature yc

t for a city c in a given year t. A dense
layer, also known as a fully connected layer, is a fundamental building block in artificial
neural networks, especially in deep learning models like feedforward neural networks
and multilayer perceptrons [36]. Combining LSTM layers with dense layers is a common
approach to learn high-level features, particularly for data with complex dimensionality.
This technique finds applications in various fields, including vehicle trajectory analysis in
traffic scenarios [37,38]. To model the average global temperature the number of recurrent
neurons in the LSTM layer and the number of units in the dense layer were both set to 64,
as specified in Figure 3. Three models are built using the network architecture described
above, one model for the mean, average maximum, and average minimum temperature for
each of the 20 cities selected around the world.

OutputX

64
64 1

y
t

c
LSTM Dense

Input

Recurrent 

units

Dense

units

t

m

Mean, minimum, and

maximum temperature

Deforestation

data

Figure 3. Network architecture. Xm
t corresponds to the deforestation input. yc

t corresponds to the
temperature of the city to be modeled. The number of units of the LSTM (64) and Dense layers (64),
are hyperparameters to be optimized.

LSTM Hyperparameter Optimization

The left panel of Figure 4 left panel depicts an example of the learning convergence
of the network model presented in Figure 3. It can be appreciated that, after 170 learning
epochs, the learning stage achieved a steady state, with the loss converging to a value near
0.035, which corresponds to the Mean Square Error, which is used as the loss metric of the
model. The behavior of the loss metric indicates that the model has effectively learned
the temperature from the input deforestation data. The right panel of Figure 4 depicts
the hyperparameter optimization of the model in Figure 3. The number of recurrent units
(in the LSTM layer), and the number of units in the dense layers, were optimized using
grid search. Grid search involves selecting a set of hyperparameters to tune, specifying a
range of values for each hyperparameter, and then systematically searching through all
possible combinations of these values. It was experimentally found that a single LSTM
layer followed by a single dense layer (as depicted in Figure 3) was sufficient to achieve a
good performance. Therefore, only the number of units was optimized through the grid
search process. For the global mean temperature forecast, the optimization process can be
appreciated in the right panel of Figure 4. The minimum loss (mean square error) occurs
for a number of 64 recurrent and 64 dense units. A similar hyperparameters (grid search)
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optimization process is carried out for each of the 20 cities, with forecasted temperatures
for the mean, average maximum, and average minimum temperatures.

16 32 64 128

recurrent units

0.0350

0.0375

0.0400

0.0425

0.0450

0.0475

0.0500

0.0525

0.0550

lo
s
s

0 25 50 75 100 125 150 175 200

epochs

0.1

0.2

0.3

0.4

0.5

0.6

lo
s
s

Figure 4. Left panel: Loss convergence of the model after 200 learning epochs. Right panel: Grid
search optimization of the model hyperparameters.

The selected model must be capable of multivariate time series modeling, given the
multivariate input Xm

t (m = 297 municipalities deforestation) and temperature output. A
classic statistical multivariate time series model, Vector Autoregression (VAR), was tested.
However, as the number of component series (m dimension) is increased, the VAR model
becomes over-parameterized [39]. In particular, the VAR model was over-forecasting
the temperature, showing an exponential increment. Building classical models for this
problem becomes more challenging due to the high number of time series inputs (Xm

t ,
where m = 297) and a relatively short temporal sequence size (only t = 20 years) [39].
Thus, a machine learning model, LSTM, was selected to capture the data complexity in
terms of the input dimiensionality (deforestation) to model the world-wide temperature.

It is worth mentioning that the allusion to data complexity refers to the high dimen-
sionality involving 297 columns of deforestation data and temperature, despite the limited
number of temporal records spanning just 20 years. This is discussed in next Section 4 Data
Exploration. The LSTM model, with optimized hyperparameters, effectively captures the
intricate relationship between the input deforestation data and temperature, making it the
chosen model.

4. Data Exploration

The left panel of Figure 5, depicts the deforestation up to 2021 as a heat-map for the
297 Amazon municipalities. The heat-map represents deforestation in colors red (higher),
yellow (medium), and green (low). The map and the deforestation data have been taken
from TerraBrasilis [29]. The heat-map shows higher deforestation in the southern and
eastern parts of the Amazon rainforest, aligning with the greater number of municipalities
in that region. Figure 5 (right panel) displays a list of 20 cities for which temperature is
modeled and forecasted. These cities represent a diverse global selection, including various
continents, geographical regions (Northern and Southern Hemispheres, equatorial regions),
climate zones (tropical, subtropical, and temperate), and urban settings, encompassing
both coastal cities (e.g., Sydney) and inner cities (e.g., Madrid).

Figure 6 displays the normalized cumulative deforestation data for a sample of
8 Amazon municipalities out of a total of 297. The normalization is based on the maximum
deforestation value in 2021, bringing all municipalities to a common scale with a maximum
value of 1. In Figure 6, the cumulative deforestation data is normalized such that the value
for the last registered year, 2021, is set to 1 for all municipalities. The values for the initial
year, 2001, represent the percentage of the total deforestation observed in 2021. These data
illustrate the change in deforestation over the 20-year period for each municipality. For
instance, Altamira (depicted by the red solid line) began in 2001, with approximately 20%
of its current cumulative deforestation and has shown a roughly linear increase over time.
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Various patterns of behavior are evident in the data. For instance, consider Campinápolis
(indicated by the solid blue line), where the cumulative deforestation has exhibited re-
markable stability over the past two decades. This municipality has experienced minimal
changes in deforested areas from 2001 to 2021. Consider Tapauá as an example, represented
by the dotted-dashed magenta line. Between 2001 and 2016, there was a gradual increase
in cumulative deforestation in Tapauá, with deforested areas accounting for 60% to 70% of
the total registered in 2021. However, the most rapid deforestation occurred in the last five
years, bringing Tapauá to its current state.

Figure 5. Left Panel: A heatmap illustrating Amazon rainforest deforestation data up to 2021, with
colors ranging from red (high deforestation) to yellow and light green (low deforestation). Right
Panel: A list of cities for which temperature forecasts have been generated.
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Figure 6. Cumulative deforestation rates for selected municipalities, shown using min–max normal-
ization for comparative purposes.

Figure 7 displays the cumulative deforestation data for all 297 municipalities. Various
patterns emerge across the 297 municipalities, with some exhibiting minimal changes
over the 20-year period (lines close to or equal to 1 for all years), while others display
significant variations (lines starting near 0 in the year 2001). Additionally, various change
rate velocity behaviors are noticeable, encompassing linear, sublinear, and superlinear
changes. This intricate and diverse behavior could potentially be captured by the LSTM
network to establish a relationship between temperature and the cumulative deforestation
of the Amazon rainforest.
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Figure 7. Min–max scaling of cumulative deforestation data for the 297 municipalities is displayed.
Each panel, from top to bottom, showcases 33 municipalities, presented in alphabetical order.

5. Results
Temperature Forecasting

Figure 8 depicts the recorded temperature from 2001 to 2021 in a solid blue line. The
temperature output was modeled by the LSTM network using the cumulative deforestation
data from the 297 municipalities of the Amazon rainforest, as described in the previous
section. The forecasted temperature is represented in orange, covering the years 2022 to
2030. The vertical dashed line marks the forecasting boundary, where the model’s input
assumes a cumulative deforestation annual increase of 4% for each of the 297 municipalities.
The forecasting boundary corresponds to the year 2022. From this year up to 2030, the
temperature data are forecasted by the model. The global temperature exhibits a pattern
of peaks and valleys, with both showing an upward trend (indicating a higher mean
temperature) and a longer duration over time. This extended duration is particularly
evident in the case of the peaks, which form a plateau between 2015 and 2020. In the
subsequent year (2021), which marks the end of the recorded data, a valley in temperature
is observed. The LSTM model predicts an even longer-lasting valley extending until 2030,
likely to be succeeded by an even lengthier plateau with higher temperatures beyond
2030. This is an expected behavior in line with climate change, as we anticipate long-term
alterations in the Earth’s climate patterns, which encompass shifts in temperature, as
suggested by the forecast.
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Figure 8. Forecasted global (Earth) mean temperature up until 2030. The forecasting boundary
corresponds to the year 2022. From this year up to 2030, the data are forecasted by the model.

As described in Section 2, the LSTM network is used to model the mean, average
minimum, and maximum temperatures for 20 cities around the world, see Equation (1).
As with the global temperature forecast, the model used as input shows a cumulative
deforestation annual increase of 4% for all the 297 municipalities of the Amazon rainforest
of Brasil. The 20 cities’ (alphabetically ordered) forecasted temperatures are depicted in
Figure 9 and the forecasted values are presented in Table 3. We can observe that Buenos
Aires has a very stable temperature, however, an increase of 1.14 °C, from 22.50 to 23.64 °C,
is forecasted in the average maximum temperature of the city. The scenario for Canton
is worse for the forecasted average maximum temperature, going from 29.80 to 35.26 °C,
which is an increase of 5.46 °C. This increase in average maximum temperature will also
affect the temperature variability Tvar = Tmax − Tmin of the city in a similar value, from
a variability of 29.80− 18.80 = 11 °C to 35.26− 16.9 °C. This is a clear sign of the city
being affected by climate change, where the temperature variability increases drastically.
Canton, like many urban areas, such as the ones studied in this work, experiences the
urban heat island effect, because the largest cities tend to have more concrete and asphalt,
which absorb and retain heat. Deforestation, urban land use changes, and greenhouse
gas emissions, among other factors, can influence such behavior. The LSTM network has
successfully predicted temperature increases based on the cumulative deforestation data
from the Amazon rainforest. London is forecasted to experience a steady and steep increase
of around 1.5 °C in mean, average minimum, and average maximum temperatures. Mexico
City is also expected to experience a steady increase in mean, average minimum, and
average maximum temperatures, similar to London. Delhi’s mean temperature is predicted
to increase from 25.40 to 25.75 °C, indicating a change of 1.35 °C. The average temperature
variation for Delhi is influenced by a slight decrease in the average minimum temperature
and a slight increase in the average maximum temperature. This effect is more pronounced
in cities such as Manila and Jakarta, as shown in Figure 9. Cairo, similar to London and
Mexico City, shows a consistent increase in all three temperatures, with the mean tempera-
ture increasing by 0.97 °C. Istanbul is expected to have a stable temperature up until 2030,
with average maximum temperature changes of 0.73 °C. Kinshasa is predicted to experience
a steady increase in all three temperatures, with a mean temperature increase of 1.17 °C.
Kuala Lumpur is also projected to undergo a steady increase in all three temperatures,
and the increase is notably steep, with a 0.8 °C rise in mean temperature and a 1.48 °C
increase in average maximum temperature. Lima is anticipated to maintain relatively stable
temperatures until 2030, with all temperatures showing minimal changes for the city. Los
Angeles is expected to have steady mean and average maximum temperatures, with the
average minimum temperature forecasted to increase from 12.90 to 15.42°, which is a rise
of 2.52°. Madrid is projected to undergo a similar change in all temperatures, with the
average maximum temperature expected to increase by approximately 1.01 °C. Manila
is anticipated to experience a substantial variation in temperature, with a temperature
variation (Tvar) increase from approximately 6.8 °C to 8.79 °C. This variation is driven by a
decrease in the average minimum temperature and an increase in the average maximum
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temperature. Moscow’s temperature is expected to remain quite stable, with a minimal
increase of 0.11 °C in mean temperature. New York’s temperatures are projected to remain
relatively stable, with a minimal increase of 0.14 °C in mean temperature. Sao Paulo’s
temperatures are also anticipated to remain quite stable, with a mean temperature increase
of 0.35 °C. Shanghai is expected to experience a significant increase in its average maximum
temperature, with an increase of 1.28 °C. Sydney is forecasted to have stable temperatures,
with a slight decrease in the mean temperature of 0.79 °C. Tokyo is expected to have very
stable temperatures for all three: mean, average minimum, and average maximum temper-
atures. Jakarta will undergo a significant change in temperature variability, as its average
maximum temperature is expected to increase substantially. This will result in a change in
temperature variability (Tvar) from 8.4 °C to 11.62 °C. This is in line with the anticipated
increase in the average maximum temperature from 32.10 to 35.43 °C in 2030.
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Figure 9. Forecasted mean, average minimum, and maximum temperature for cities worldwide.
Vertical dashed lines correspond to the forecasting boundary.
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Table 3. Forecasted temperature for cities around the world. Bold rows correspond to the last
observed temperature in the year 2021 (forecasting boundary) and the last forecasted year, 2030.

Buenos Aires Canton London Mexico City Delhi
Year T mean T min T max T mean T min T max T mean T min T max T mean T min T max T mean T min T max

2021 18.50 14.50 22.50 24.30 18.80 29.80 11.90 8.80 15.00 18.05 11.90 24.20 25.40 18.40 32.40
2022 18.35 14.62 22.86 24.80 18.66 31.50 12.70 9.18 16.03 18.61 12.16 24.59 25.25 18.23 32.60
2023 18.34 14.66 22.99 25.12 18.65 32.55 12.79 9.31 16.08 18.84 12.26 24.80 25.33 18.18 32.80
2024 18.34 14.69 23.11 25.35 18.64 33.27 12.88 9.45 16.13 19.02 12.34 24.97 25.40 18.14 32.98
2025 18.34 14.73 23.21 25.51 18.64 33.81 12.97 9.60 16.17 19.15 12.42 25.10 25.47 18.12 33.15
2026 18.35 14.77 23.31 25.63 18.63 34.24 13.05 9.75 16.21 19.25 12.49 25.20 25.53 18.11 33.30
2027 18.35 14.81 23.41 25.71 18.63 34.58 13.13 9.91 16.24 19.32 12.55 25.26 25.59 18.10 33.43
2028 18.37 14.86 23.49 25.76 18.63 34.86 13.20 10.07 16.27 19.37 12.60 25.28 25.64 18.10 33.55
2029 18.38 14.91 23.57 25.77 18.63 35.08 13.27 10.22 16.30 19.40 12.65 25.27 25.70 18.10 33.65
2030 18.39 14.96 23.64 25.75 18.63 35.26 13.34 10.38 16.32 19.41 12.69 25.24 25.75 18.11 33.74

Cairo Istanbul Kinshasa Kuala Lumpur Lima

2021 23.75 18.40 29.10 15.65 12.00 19.30 26.85 22.60 31.10 28.55 24.30 32.80 19.35 17.20 21.50
2022 23.74 18.56 29.03 16.38 12.52 19.98 27.26 22.88 31.20 28.87 24.76 32.89 19.17 17.20 21.23
2023 23.87 18.72 29.28 16.39 12.41 20.01 27.47 23.06 31.35 28.94 24.94 33.12 19.18 17.11 21.24
2024 23.96 18.86 29.53 16.38 12.33 20.03 27.63 23.20 31.49 29.01 25.11 33.36 19.20 17.07 21.27
2025 24.04 18.98 29.75 16.37 12.25 20.04 27.75 23.30 31.61 29.07 25.27 33.64 19.23 17.05 21.30
2026 24.10 19.08 29.96 16.36 12.19 20.05 27.84 23.38 31.71 29.14 25.41 33.86 19.27 17.05 21.34
2027 24.14 19.17 30.14 16.35 12.13 20.05 27.91 23.43 31.80 29.20 25.54 34.01 19.30 17.05 21.38
2028 24.17 19.25 30.30 16.33 12.07 20.04 27.96 23.47 31.87 29.25 25.67 34.13 19.33 17.06 21.42
2029 24.19 19.32 30.43 16.31 12.02 20.04 27.99 23.48 31.93 29.30 25.78 34.21 19.36 17.07 21.45
2030 24.19 19.37 30.54 16.29 11.97 20.03 28.02 23.48 31.97 29.35 25.88 34.28 19.39 17.08 21.48

Los Angeles Madrid Manila Moscow New York

2021 17.30 12.90 21.70 15.05 8.30 21.80 28.60 25.20 32.00 6.30 2.50 10.10 13.70 8.70 18.70
2022 17.87 13.77 22.74 15.55 8.93 22.35 28.72 25.12 32.17 6.29 2.55 10.25 13.71 8.58 18.51
2023 17.74 13.96 22.78 15.58 8.97 22.44 28.80 25.06 32.32 6.26 2.57 10.27 13.84 8.66 18.55
2024 17.77 14.19 22.82 15.60 9.00 22.52 28.89 25.01 32.48 6.24 2.58 10.28 13.95 8.72 18.58
2025 17.83 14.43 22.85 15.62 9.02 22.58 28.99 24.95 32.65 6.22 2.59 10.28 14.04 8.77 18.60
2026 17.91 14.67 22.89 15.63 9.03 22.64 29.09 24.90 32.81 6.20 2.60 10.27 14.12 8.81 18.62
2027 18.00 14.89 22.92 15.64 9.03 22.69 29.19 24.86 32.99 6.19 2.60 10.27 14.18 8.83 18.63
2028 18.10 15.09 22.94 15.65 9.02 22.73 29.29 24.81 33.17 6.17 2.61 10.26 14.23 8.84 18.64
2029 18.21 15.27 22.97 15.66 9.01 22.77 29.37 24.77 33.35 6.16 2.61 10.26 14.27 8.85 18.64
2030 18.32 15.42 23.00 15.67 9.00 22.81 29.45 24.73 33.52 6.15 2.61 10.26 14.30 8.84 18.65

Sao Paulo Shanghai Sidney Tokyo Jakarta

2021 21.00 16.20 25.80 18.55 13.70 23.40 18.20 13.50 22.90 16.60 12.50 20.70 27.90 23.70 32.10
2022 21.28 16.66 25.88 18.35 13.54 24.47 17.84 14.11 23.92 16.60 12.40 20.87 28.18 24.14 33.44
2023 21.28 16.62 25.89 18.43 13.57 25.09 17.69 14.13 23.92 16.60 12.41 20.92 28.21 24.05 33.83
2024 21.28 16.59 25.90 18.51 13.61 25.46 17.60 14.14 23.92 16.59 12.42 20.96 28.23 24.00 34.16
2025 21.29 16.57 25.93 18.57 13.66 25.67 17.53 14.16 23.92 16.59 12.43 21.00 28.24 23.96 34.45
2026 21.30 16.55 25.95 18.63 13.74 25.77 17.49 14.17 23.92 16.59 12.45 21.04 28.24 23.92 34.70
2027 21.31 16.53 25.98 18.68 13.83 25.81 17.45 14.19 23.92 16.59 12.48 21.07 28.23 23.89 34.92
2028 21.32 16.51 26.01 18.73 13.94 25.80 17.43 14.20 23.92 16.60 12.50 21.11 28.21 23.86 35.11
2029 21.34 16.49 26.04 18.78 14.04 25.75 17.41 14.22 23.92 16.60 12.53 21.14 28.18 23.84 35.28
2030 21.35 16.48 26.07 18.81 14.13 25.68 17.41 14.24 23.92 16.60 12.56 21.17 28.15 23.81 35.43

6. Discussion and Conclusions

In essence, the intricate interactions between the biosphere, such as the Amazon
rainforest, and the atmosphere, particularly temperature, play a crucial role within the
Earth’s climate system. These interactions have the potential to either exacerbate or al-
leviate climate change. Currently, many of these interactions are contributing to rising
temperatures and accelerating global warming. Therefore, understanding and efficiently
managing these dynamics are essential for developing resilient strategies to combat and
adapt to climate change.

A temporal learning model has been introduced for predicting the temperatures of
20 cities worldwide. This model utilizes the temporal data of cumulative deforestation
increments across 297 municipalities in the Amazon rainforest as its input. An LSTM
network is employed to capture the temporal relationship between rainforest deforestation
and temperature changes in cities across the globe. The mean, average minimum, and
average maximum temperatures were modeled for cities worldwide. The data exploration
of Amazon rainforest deforestation revealed its complex behavior, with the cumulative de-
forestation change rate exhibiting linearity, sublinearity, and superlinearity. These changes
occurred at various points during the last two decades (2001 to 2021). This work has demon-
strated how the LSTM network effectively mapped such complex behavior to forecast the
temperature of 20 cities worldwide.
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The LSTM network forecasted a variety of behaviors. For some cities, their tem-
peratures are expected to remain stable, while others will likely experience temperature
increases, with varying rates of change, including both gradual and more rapid trends.
In certain cities, the temperature variation, which represents the difference between the
average maximum and minimum temperatures, is forecasted to increase significantly, indi-
cating that the temperature range between day and night or across seasons will become
more pronounced. This is one of the indicators of climate change. The temperature changes
forecasted for the analyzed cities, like many places worldwide, primarily stems from global
climate change. The key factors driving this increase include global warming, driven by
greenhouse gas accumulation in the atmosphere, leading to overall planetary warming.
Metropolises also experience the urban heat island effect common in cities, with concrete
and infrastructure absorbing and retaining heat. Local climate variability, and changes in
land use, further influence temperature trends. Rising energy use for cooling in growing
urban areas contributes, while natural climate variations, such as El Niño events, can
cause short-term fluctuations. Overall, ongoing greenhouse gas emissions from human
activities, like fossil fuel burning and deforestation, play a significant role in long-term
temperature rise.

Given the significant influence of deforestation on global temperature change, it is
crucial to reiterate the need for consolidated policies aimed at reducing deforestation in this
region. As indicated in reference [40], it is essential to enact and rigorously enforce policies
regulating deforestation in the Amazon. These policies should prioritize the creation of new
protected areas, the preservation of indigenous lands, satellite-assisted law enforcement,
and the imposition of financing limits for farmers in regions with high deforestation rates.

In future work, in order to assess climate change, one may consider a range of climate
indicators, including changes in average temperatures, precipitation patterns, extreme
weather events, and sea level rise, among others, to provide a more comprehensive picture
of how climate change is affecting a particular city worldwide. Furthermore, additional
machine learning models can be optimized to address the complexity of the input data,
including techniques such as Random Forest and Light Gradient-Boosting Machines, which
are adaptable for handling time series data. Temporal feature selection and engineering
analysis can also be performed as part of upcoming research.
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