The “Noble Method®”: A One Health Approach for a Sustainable Improvement in Dairy Farming
Abstract
:1. Introduction
- Animals must have free access to outdoor paddocks;
- Diet forage/concentrate ratio 70:30;
- Silage and GMOs prohibited;
- Fresh and/or preserved forages (hay) with five different essences (with at least 10% of each);
- Mineral nitrogen fertilization of meadows may not exceed 50 kg of N/ha in order to not imbalance meadow vegetation. The total nitrogen input (organic + mineral) should not exceed 120 kg of N/ha to allow sufficient development of legumes. Manure input should be made with mature product (8–12 months of maturation in heap covered with breathable plastic sheeting); in the case of pastures, the maximum dose of mineral nitrogen cannot exceed 30 kg of N/ha.
- Preference should be given to autochthon breeds for the best adaptation to the area. However, the “Noble Method®” model aims to encourage the breeding of native breeds that are well adapted to their production area.
- The levels of animal welfare required by the Welfare Quality® standard must be ensured.
- The hay must achieve a score of at least 70 points out of 100. This score is obtained through a sensory evaluation system, used to identify hay quality. It is scored on a scale from 1 to 100 (Table 1). At the end of the evaluation, the partial value of each characteristic is summed to obtain the final score.
Parameters | Evaluation | Lowest Score (0) | Highest Score (100) |
---|---|---|---|
Color | It ranges from green to brown. Is indicative of the good quality of the forage. A brown color may suggest rotting during drying. | Dark brown | Dark green |
Number of essences | More essences correspond to higher quality forage. | Few essences | More than 5 essences |
Presence of dust | Indicative of correct forage harvesting and storage. | Presence of dust | Absence of dust |
Tactile evaluation | Woody forage presents a high lignin content, it corresponds a lower nutritive value. | Woody | Soft |
Odor evaluation | The animals eat more willingly a fragrant forage than a less aromatic forage. | Old, mold | Persistent, aromatic and floral |
Leafiness | The leaves are the part of the plant representative of the protein content. | Absence of leaves | Presence of leaves |
2. Animal Welfare
- -
- The hay acts as a filter for the passage of grain, thus preventing the onset of acidosis. Propionic acid, which is formed from starch, thanks to the amilolytic bacteria that are activated by the concentrate, gives an energy boost by becoming glucose, which if present in excess can also become lactic acid and create acidosis [37].
- -
- Fiber promotes the function of cellulosolytic bacteria and is responsible for the formation of acetic acid in the rumen, important for the milk fat content [38].
- -
- Increases salivation by lowering ruminal pH due to the presence of bicarbonate in saliva, which has a buffering effect [39].
PHYSIOLOGICAL EFFECTS | |
---|---|
Forage/Concentrate Ratio ≥ 70:30 (Noble Milk® Method) | Forage/Concentrate Ratio < 70:30 (Intensive Farming Method) |
Optimal balance of available ammonia-N and readily fermentable carbohydrates [21]. | Reduction in fiber digestibility, altering volatile fatty acid patterns [20]. |
Higher CLA levels in sheep milk [11], cow [10], and goat [13] milk for animals fed with fresh forage than with total mixed ration (TMR) technique. | Decrease in saliva production, decrease in rumen pH [22] and VFA concentration [23]. |
Improvement in oxidative status [14]. | Accumulation of free radicals caused by altered action of the mitochondria. |
3. Environmental Mitigation Strategies
3.1. Animal Nutrition
3.2. Forage/Concentrate Ratio
3.3. The Use of Pasture
3.4. Livestock Units
4. Human Health
BENEFICAL EFFECTS | MECHANISM OF ACTION |
---|---|
anticarcinogenic | Cytotoxic activity against human cancer cells, in particular toward malignant melanoma and breast cancer [123] |
antiobesity | Reduction in body fat mass [124] |
antidiabetic | Normalization of glucose metabolism and improved insulin sensitivity [120] |
prevention of chronic inflammatory diseases | Reduction in inflammatory markers in human cells, and prevention of subsequent related disease [125] |
prevention of cardiovascular disease | Resolution of atherosclerosis by inhibiting the expression of genes that promote inflammation and cause apoptosis in the atherosclerotic lesion [127] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubino, R. A special section on Latte Nobile: An evolving model. J. Nutr. Ecol. Food Res. 2014, 2, 214–222. [Google Scholar] [CrossRef]
- Available online: https://www.metodonobile.com/il-consorzio/regolamento-e-disciplinare (accessed on 30 August 2023).
- Infascelli, F.; Gigli, S.; Campanile, G. Buffalo meat production: Performance infra vitam and quality of meat. Vet. Res. Commun. 2004, 28, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Hanuš, O.; Samková, E.; Krížová, L.; Hasonová, L.; Kala, R. Role of fatty acids in milk fat and the influence of selected factors on their variability—A review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Pastushenko, V.; Matthes, H.D.; Schellenberg, J. Conjugated linoleic acid contents in beef of cattle of organic farming. Ernährungs-Umschau 2000, 47, 146–147. [Google Scholar]
- Benjamin, S.; Spener, F. Conjugated linoleic acids as functional food: An insight into their health benefits. Nutr. Metab. 2009, 6, 36. [Google Scholar] [CrossRef]
- Ellis, W.C.; Mahlooji, M.; Lascano, C.E.; Matis, J.H. Effects of size of ingestively masticated fragments of plant tissues on kinetics of digestion of NDF. J. Anim. Sci. 2005, 83, 1602–1615. [Google Scholar] [CrossRef]
- Harvatine, K.J.; Boisclair, Y.R.; Bauman, D.E. Recent advances in the regulation of milk fat synthesis. Animal 2009, 3, 40–54. [Google Scholar] [CrossRef]
- White, S.L.; Bertrand, J.A.; Wade, M.R.; Washburn, S.P.; Green, J.T.; Jenkins, T.C. Comparison of fatty acid content of milk from Jersy and Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 2001, 84, 2295–2301. [Google Scholar] [CrossRef] [PubMed]
- Meluchová, B.; Blaško, J.; Kubinec, R.; Górová, R.; Dubravská, J.; Margetín, M.; Soják, L. Seasonal variations in fatty acid composition of pasture forage plants and CLA content in ewe milk fat. Small Rum. Res. 2008, 78, 56–65. [Google Scholar] [CrossRef]
- Cavaliere, G.; Trinchese, G.; Musco, N.; Infascelli, F.; De Filippo, C.; Mastellone, V.; Morittu, V.M.; Lombardi, P.; Tudisco, R.; Grossi, M.; et al. Milk from cows fed a diet with a high forage:concentrate ratio improves inflammatory state, oxidative stress, and mitochondrial function in rats. J. Dairy Sci. 2018, 101, 1843–1851. [Google Scholar] [CrossRef]
- Trinchese, G.; Cavaliere, G.; Penna, E.; De Filippo, C.; Cimmino, F.; Catapano, A.; Musco, N.; Tudisco, R.; Lombardi, P.; Infascelli, F.; et al. Milk from cow fed with high forage/concentrate ratio diet: Beneficial effect on rat skeletal muscle inflammatory state and oxidative stress through modulation of mitochondrial functions and AMPK activity. Front. Physiol. 2019, 9, 1969. [Google Scholar] [CrossRef] [PubMed]
- Musco, N.; Tudisco, R.; Grossi, M.; Mastellone, V.; Morittu, V.M.; Pero, M.E.; Wanapat, M.; Trinchese, G.; Cavaliere, G.; Mollica, M.P.; et al. Effect of a high forage: Concentrate ratio on milk yield, blood parameters and oxidative status in lactating cows. Anim. Prod. Sci. 2020, 60, 1531–1538. [Google Scholar] [CrossRef]
- Mastellone, V.; Musco, N.; Infascelli, F.; Scandurra, A.; D’Aniello, B.; Pero, M.E.; Iommelli, P.; Tudisco, R.; Lombardi, P. Higher forage: Concentrate ratio and space availability may favor positive behaviours in dairy cows. J. Vet. Behav. 2022, 51, 16–22. [Google Scholar] [CrossRef]
- Tudisco, R.; Grossi, M.; Calabrò, S.; Cutrignelli, M.I.; Musco, N.; Addi, L.; Infascelli, F. Influence of pasture on goat milk 521 fatty acids and stearoyl-CoA desaturase expression in milk somatic cells. Small Rum Res. 2014, 122, 38–43. [Google Scholar] [CrossRef]
- Tudisco, R.; Morittu, V.M.; Addi, L.; Moniello, G.; Grossi, M.; Musco, N.; Grazioli, R.; Mastellone, V.; Pero, M.E.; Lombardi, P.; et al. Influence of pasture on stearoyl-coa desaturase and mirna 103 expression in goat milk: Preliminary results. Animals 2019, 9, 606. [Google Scholar] [CrossRef]
- Rivero, M.J.; Lee, M.R.A. perspective on animal welfare of grazing ruminants and its relationship with sustainability. Anim. Prod. Sci. 2022, 62, 1739–1748. [Google Scholar] [CrossRef]
- Russell, J.B.; O’Connor, J.D.; Fox, D.G.; Van Soest, P.J.; Sniffen, C.J. A net carbohydrate and protein system for evaluating cattle diets: I. ruminal fermentation. J. Anim. Sci. 1992, 70, 3551–3561. [Google Scholar] [CrossRef]
- Dixon, R.M. Effects of dietary concentrates on rumen digestion of fibreus feedstuffs. Anim. Feed. Sci. Technol. 1986, 14, 193–202. [Google Scholar] [CrossRef]
- Kljak, K.; Pino, F.; Heinrichs, A.J. Effect of forage to concentrate ratio with sorghum silage as a source of forage on rumen fermentation, N balance, and purine derivative excretion in limit-fed dairy heifers. J. Dairy Sci. 2017, 100, 213–223. [Google Scholar] [CrossRef]
- Lechartier, C.; Peyraud, J.L. The effects of forage proportion and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed neutral detergent fiber and starch contents. J. Dairy Sci. 2010, 93, 666–681. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef]
- Wang, D.S.; Zhang, R.Y.; Zhu, W.Y.; Mao, S.Y. Effects of subacute ruminal acidosis challenges on fermentation and biogenic amines in the rumen of dairy cows. Livestock Sci. 2013, 155, 262–272. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Europ. J. Lip. Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Bjerre-Harpøth, V.; Friggens, N.C.; Thorup, V.M.; Larsen, T.; Damgaard, B.M.; Ingvartsen, K.L.; Moyes, K.M. Metabolic and production profiles of dairy cows in response to decreased nutrient density to increase physiological imbalance at different stages of lactation. J. Dairy Sci. 2012, 95, 2362–2380. [Google Scholar] [CrossRef] [PubMed]
- Aguerre, M.J.; Wattiaux, M.A.; Powell, J.M.; Broderick, G.A.; Arndt, C. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. J. Dairy Sci. 2011, 94, 3081–3093. [Google Scholar] [CrossRef] [PubMed]
- Zicarelli, F.; Calabrò, S.; Piccolo, V.; d’Urso, S.; Tudisco, R.; Bovera, F.; Cutrignelli, M.I.; Infascelli, F. Diets with Different Forage/Concentrate Ratios for the Mediterranean Italian Buffalo: In vivo and In vitro Digestibility. Asian Australas. J. Anim. Sci. 2008, 21, 75–82. [Google Scholar] [CrossRef]
- Zicarelli, F.; Calabrò, S.; Cutrignelli, M.I.; Infascelli, F.; Tudisco, R.; Bovera, F.; Piccolo, V. In vitro fermentation characteristics of diets with different forage/concentrate ratios: Comparison of rumen and faecal inocula. J. Sci. Food Agric. 2011, 91, 1213–1221. [Google Scholar] [CrossRef]
- Da Chuan, P.; Wang, T.; Lee, J.S.; Vega, R.S.A.; Kang, S.K.; Choi, Y.J.; Lee, H.G. Determination of reference intervals for metabolic profile of Hanwoo cows at early, middle and late gestation periods. J. Anim. Sci. Biotechnol. 2015, 6, 9. [Google Scholar] [CrossRef]
- Halliwell, B.; Cross, C.E. Oxygen-derived species: Their relation to human disease and environmental stress. Environ. Health Perspect. 1994, 102, 5–12. [Google Scholar] [PubMed]
- Bildik, A.; Kargin, F.; Seryek, K.; Pasa, S.; Özensoy, S. Oxidative stress and non-enzymatic antioxidative status in dogs with visceral Leishmaniasis. Res. Vet. Sci. 2004, 77, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Kiral, F.; Karagenc, T.; Pasa, S.; Yenisey, C.; Seyrek, K. Dogs with Hepatozoon canis respond to the oxidative stress by increased production of glutathione and nitric oxide. Vet. Parasitol. 2005, 131, 15–21. [Google Scholar] [CrossRef]
- Kumaraguruparan, R.; Balachandran, C.; Murali Manohar, B.; Nagini, S. Altered oxidant-antioxidant profile in canine mammary tumours. Vet. Res. Commun. 2005, 29, 287–296. [Google Scholar] [CrossRef]
- Vajdovich, P.; Kriska, T.; Mézes, M.; Szabó, P.R.; Balogh, N.; Bánfi, A. Redox status of dogs with non-hodgkin lymphomas. An ESR study. Cancer Lett. 2005, 224, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Influence of body condition score on relationships between metabolic status andoxidative stress in periparturient dairy cows. J. Dairy Sci. 2005, 88, 2017–2026. [Google Scholar] [CrossRef] [PubMed]
- Krause, K.M.; Oetzel, G.R. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. An. Feed. Sci. Technol. 2006, 126, 215–236. [Google Scholar] [CrossRef]
- Matthews, C.; Crispie, F.; Lewis, E.; Reid, M.; O’Toole, P.W.; Cotter, P.D. The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 2019, 10, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef]
- Knaus, W. Perspectives on pasture versus indoor feeding of dairy cows. J. Sci. Food Agric. 2016, 96, 9–17. [Google Scholar] [CrossRef]
- Pulina, G.; Francesconi, A.H.D.; Stefanon, B.; Sevi, A.; Calamari, L.; Lacetera, N.; Dell’ Orto, V.; Marsan, P.A.; Rossi, F.; Bertoni, G.; et al. Sustainable ruminant production to help feed the planet. Italian J. An. Sci. 2017, 16, 140–171. [Google Scholar] [CrossRef]
- Machado Filho, P.; Carlos, L.; Gregorini, P. Grazing behavior and welfare of ruminants. Front. Vet. Sci. 2022, 9, 89028. [Google Scholar]
- Noziere, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for ruminants: From forages to dairy products. An. Feed. Sci. Technol. 2006, 131, 418–450. [Google Scholar] [CrossRef]
- La Terra, S.; Marino, V.M.; Manenti, M.; Licitra, G.; Carpino, S. Increasing pasture intakes enhances polyunsaturated fatty acids and lipophilic antioxidants in plasma and milk of dairy cows fed total mix ration. Dairy Sci. Technol. 2010, 90, 687–698. [Google Scholar] [CrossRef]
- Cabiddu, A.; Delgadillo-Puga, C.; Decandia, M.; Molle, G. Extensive ruminant production systems and milk quality with emphasis on unsaturated fatty acids, volatile compounds, antioxidant protection degree and phenol content. Animals 2019, 9, 771. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Peña, R.; Avilés, C.; Galán-Soldevilla, H.; Polvillo, O.; Ruiz Pérez-Cacho, P.; Guzmán, J.L.; Horcada, A.; Delgado-Pertíñez, M. Physicochemical composition, antioxidant status, fatty acid profile, and volatile compounds of milk and fresh and ripened ewes’ cheese from a sustainable part-time grazing system. Food 2021, 10, 80. [Google Scholar] [CrossRef]
- Charlton, G.L.; Rutter, S.M.; East, M.; Sinclair, L.A. The motivation of dairy cows for access to pasture. J. Dairy Sci. 2013, 96, 4387–4396. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Mendo, O.; Von Keyserlingk, M.A.G.; Veira, D.M.; Weary, D.M. Effects of pasture on lameness in dairy cows. J. Dairy Sci. 2007, 90, 1209–1214. [Google Scholar] [CrossRef]
- Crump, A.; Jenkins, K.; Bethell, E.J.; Ferris, C.P.; Arnott, G. Pasture access affects behavioral indicators of wellbeing in dairy cows. Animals 2019, 9, 902. [Google Scholar] [CrossRef] [PubMed]
- Grant, R.J.; Ferraretto, L.F. Silage review: Silage feeding management: Silage characteristics and dairy cow feeding behavior. J. Dairy Sci. 2018, 101, 4111–4121. [Google Scholar] [CrossRef] [PubMed]
- Khelil-Arfa, H.; Boudon, A.; Maxin, G.; Faverdin, P. Prediction of water intake and excretion flows in Holstein dairy cows under thermoneutral conditions. Animal 2012, 6, 1662–1676. [Google Scholar] [CrossRef]
- Maekawa, M.; Beauchemin, K.A.; Christensen, D.A. Effect of concentrate level and feeding management on chewing activities, saliva production, and ruminal pH of lactating dairy cows. J. Dairy Sci. 2002, 85, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.G.; Lin, X.Y.; Yan, Z.G.; Liu, G.M.; Sun, Y.D.; Liu, X.W.; Wang, Z.H. Effect of dietary roughage level on chewing activity, ruminal pH, and saliva secretion in lactating Holstein cows. J. Dairy Sci. 2017, 100, 2660–2671. [Google Scholar] [CrossRef]
- Tresoldi, G.; Weary, D.M.; Pinheiro Machado Filho, L.C.; von Keyserlingk, M.A. Social licking in pregnant dairy heifers. Animals 2015, 5, 1169–1179. [Google Scholar] [CrossRef]
- Boissy, A.; Manteuffel, G.; Jensen, M.B.; Moe, R.O.; Spruijt, B.; Keeling, L.J.; Winckler, C.; Bakken, M.; Veissier, I.; Aubert, A.; et al. Assessment of positive emotions in animals to improve their welfare. Physiol. Behav. 2007, 92, 375–397. [Google Scholar] [CrossRef]
- Val-Laillet, D.; Guesdon, V.; von Keyserlingk, M.A.; de Passillé, A.M.; Rushen, J. Allogrooming in cattle: Relationships between social preferences, feeding displacements and social dominance. Appl. An. Behav. Sci. 2009, 116, 141–149. [Google Scholar] [CrossRef]
- Rutter, S.M. Review: Grazing preferences in sheep and cattle: Implications for production, the Environment and Animal Welfare. Can. J. Anim. Sci. 2010, 90, 285–293. [Google Scholar] [CrossRef]
- Haque, M.N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 60, 15. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.J.; Cullen, B.R.; Eckard, R.J. The Influence of Climate, Soil and Pasture Type on Productivity and Greenhouse Gas Emissions Intensity of Modeled Beef Cow-Calf Grazing Systems in Southern Australia. Animals 2012, 2, 540–558. [Google Scholar] [CrossRef]
- FAO. Criteria and Indicators for Sustainable Woodfuels; FAO Forestry Paper No. 160; FAO: Rome, Italy, 2010. [Google Scholar]
- Tan, P.; Liu, H.; Zhao, J.; Gu, X.; Wei, X.; Zhang, X.; Ma, N.; Bai, Y.; Zhang, W.; Nie, C.; et al. Amino acids metabolism by rumen microorganisms: Nutrition and ecology strategies to reduce nitrogen emissions from the inside to the outside. Sci. Total Environ. 2021, 800, 149596. [Google Scholar] [CrossRef]
- Calabrò, S.; Tudisco, R.; Balestrieri, A.; Piccolo, G.; Infascelli, F.; Cutrignelli, M.I. Fermentation characteristics of different grain legumes cultivars with the invitro gas production technique. Ital. J. Anim. Sci. 2009, 8, 280. [Google Scholar] [CrossRef]
- Bannink, M.W.; van Schijndel, J.; Dijkstra, A. A model of enteric fermentation in dairy cows to estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 approach. An. Feed. Sci. Technol. 2011, 166–167, 603–618. [Google Scholar] [CrossRef]
- Kebreab, E.; Tedeschi, L.; Dijkstra, J.; Ellis, J.L.; Bannink, A.; France, J. Modeling greenhouse gas emissions from enteric fermentation. In Synthesis and Modeling of Greenhouse Gas Emissions and Carbon Storage in Agricultural and Forest Systems to Guide Mitigation and Adaptation; John Wiley & Sons: Hoboken, NJ, USA, 2016; Volume 6, pp. 173–195. [Google Scholar] [CrossRef]
- Boadi, D.A.; Wittenberg, K.M. Methane production from dairy and beef heifers fed forages differing in nutrient density using the Sulphur hexafluoride (sf6) tracer gas technique. Can. J. Anim. Sci. 2002, 82, 201–206. [Google Scholar] [CrossRef]
- Beever, D.E.; Dhanoa, M.S.; Losada, H.R.; Evans, R.T.; Cammell, S.B.; France, J. The effect of forage species and stage of harvest on the processes of digestion occurring in the rumen of cattle. Br. J. Nutr. 1986, 56, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, S.; Infascelli, F.; Bovera, F.; Moniello, G.; Piccolo, V. In vitro degradability of three forages: Fermentation kinetics and gas production of NDF and neutral detergent-soluble fraction of forages. J. Sci. Food Agric. 2002, 82, 222–229. [Google Scholar] [CrossRef]
- Milich, L. The role of methane in global warming: Where might mitigation strategies be focused? Glob. Environ. Chang. 1999, 9, 179–201. [Google Scholar] [CrossRef]
- Benchaar, C.; Pomar, C.; Chiquette, J. Evaluation of dietary strategies to reduce methane production in ruminants: A modelling approach. Can. J. Anim. Sci. 2001, 81, 563–574. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Martin, C.; Morgavi, D.P.; Doreau, M. Methane mitigation in ruminants: From microbe to the farm scale. Animal 2010, 4, 351–365. [Google Scholar] [CrossRef]
- Boadi, D.A.; Wittenberg, K.M.; Scott, S.L.; Burton, D.; Buckley, K.; Small, J.A.; Ominski, K.H. Effect of low and high forage diet on enteric and manure pack greenhouse gas emissions from a feedlot. Can. J. Anim. Sci. 2004, 84, 445–453. [Google Scholar] [CrossRef]
- Serra, M.G.; Atzori, A.S.; Cannas, A. Carbon footprint of dairy cattle farms in Southern Italy. Ital. J. Anim. Sci. 2013, 12 (Suppl. 1), 62. [Google Scholar]
- Gaspardo, B.; Vello, M.; Sgorlon, S.; Cividino, S.R.S.; Stefanon, B. Workplace safety management in dairy farms–from risk assessment to design of the Workplace (results of a study performed in Friuli Venezia giulia region). Contemp. Eng. Sci. 2015, 8, 1267–1277. [Google Scholar] [CrossRef]
- Bava, L.; Sandrucci, A.; Zucali, M.; Guerci, M.; Tamburini, A. How can farming intensi-fication affect the environmental impact of milk production? J. Dairy Sci. 2014, 97, 4579–4593. [Google Scholar] [CrossRef]
- Pedreira, M.D.S.; Oliveira, S.G.; Primavesi, O.; Lima, M.A.; Frighetto, R.T.S.; Berchielli, T.T. Methane emissions and estimates of ruminal fermentation parameters in beef cattle fed different dietary concentrate levels. Rev. Brasil. Zootec. 2013, 42, 592–598. [Google Scholar] [CrossRef]
- Ribeiro, C.S.; Granja-Salcedo, Y.T.; Messana, J.D.; Neto, A.J.; Canesin, R.C.; Fiorentini, G.; Alarcon, M.F.F.; Berchielli, T.T. Feeding increasing concentrate to Tifton 85 hay ratios modulated rumen fermentation and microbiota in Nellore feedlot steers. J. Agricul. Sci. 2015, 153, 1116–1127. [Google Scholar] [CrossRef]
- Hegarty, R.S. Reducing rumen methane emissions through elimination of rumen protozoa. Aust. J. Agricul. Res. 1999, 50, 1321–1327. [Google Scholar] [CrossRef]
- Brossard, L.; Martin, C.; Chaucheyras-Durand, F.; Michalet-Doreau, B. Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep. Reprod. Nutr. Develop. 2004, 44, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Shiddieqy, M.I.; Prihandini, P.W.; Pramono, A.; Irmawanti, S.; Anggraeny, Y.N.; Tiesnamurti, B.; Rofiq, M.N. The Effect of Cattle Breed and Forage-Concentrate Ratio on Fecal Methane and Nitrous Oxide Emissions. Polish. J. Environ. Stud. 2023, 32, 2809–2817. [Google Scholar] [CrossRef]
- Fadaee, S.; Danesh Mesgaran, M.; Vakili, A. In vitro Effect of the Inorganic Buffers in the Diets of Holstein Dairy Cow Varying in Forage: Concentrate Ratios on the Rumen Acid Load and Methane Emission. Iran. J. Appl. An. Sci. 2021, 11, 485–496. [Google Scholar]
- Woodward, S.L.; Waghorn, G.C.; Ulyatt, M.J.; Lassey, K.R. Early indications that feeding Lotus will reduce methane emissions from ruminants. N. Z. Soc. Anim. Prod. 1999, 61, 23–26. [Google Scholar]
- Króliczewska, B.; Pecka-Kiełb, E.; Bujok, J. Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture 2023, 13, 602. [Google Scholar] [CrossRef]
- Aemiro, A.; Watanabe, S.; Suzuki, K.; Hanada, M.; Umetsu, K.; Nishida, T. Effects of Euglena (Euglena gracilis) supplemented to diet (forage:Concentrate ratios of 60:40) on the basic ruminal fermentation and methane emissions in in vitro condition. An. Feed. Sci. Technol. 2016, 212, 129–135. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some challenges and oppor-tunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef]
- French, P.; Driscoll, K.O.; Horan, B.; Shalloo, L. The economic, envi-ronmental and welfare implications of alternative systems of accommodating dairy cows during the winter months. Anim. Prod. Sci. 2015, 55, 838–842. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F. Review: Use of human-edible an-imal feeds by ruminant livestock. Animal 2018, 12, 1735–1743. [Google Scholar] [CrossRef]
- de Klein, C.; Monaghan, R.; Donovan, M.; Wall, A.; Schipper, L.; Pinxterhuis, I. Attributes of resilient pasture for achieving environmental outcomes at farm scale. NZGA Res. Pract. Ser. 2021, 17, 15–24. [Google Scholar] [CrossRef]
- Balivo, A.; Sacchi, R.; Genovese, A. The Noble Method in the dairy sector as a sustainable production system to improve the nutritional composition of dairy products: A review. Internat. J. Dairy Technol. 2023, 76, 313–328. [Google Scholar] [CrossRef]
- Hubbard, R.K.; Newton, G.L.; Hill, G.M. Water quality and the grazing animal. J. Anim. Sci. 2004, 82, E255–E263. [Google Scholar] [PubMed]
- de Faccio Carvalho, P.C.; Anghinoni, I.; de Moraes, A.; de Souza, E.D.; Sulc, R.M.; Lang, C.R.; Flores, J.P.C.; Lopes, M.L.T.; da Silva, J.L.S.; Conte, O.; et al. Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutr. Cycl. Agroecosyst. 2010, 88, 259–273. [Google Scholar] [CrossRef]
- Thiessen Martens, J.; Entz, M. Integrating green manure and grazing systems: A review. Can. J. Plant Sci. 2011, 91, 811–824. [Google Scholar] [CrossRef]
- Gardner, J.C.; Faulkner, D.B.; Hargrove, W.L. Use of cover crops with integrated crop-livestock production systems. In Cover Crops for Clean Water; Soil and Water Conservation Society: Ankeny, IA, USA, 1991; pp. 185–191. [Google Scholar]
- Boehncke, E.; Fricke, I. (Eds.) Importance of Biological Agriculture in a World of Diminishing Resources; Verlagsgruppe Witzenhausen: Witzenhausen, Germany, 1986. [Google Scholar]
- McDowell, R.W.; Wilcock, R.J. Water quality and the effects of different pastoral animals. N. Z. Vet. J. 2008, 56, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Aboagye, I.A.; Beauchemin, K.A. Potential of Molecular Weight and Structure of Tannins to Reduce Methane Emissions from Ruminants: A Review. Animals 2019, 9, 856. [Google Scholar] [CrossRef]
- Distel, R.A.; Arroquy, J.I.; Lagrange, S.; Villalba, J.J. Designing diverse agricultural pastures for improving ruminant production systems. Front. Sustain. Food Syst. 2020, 4, 596869. [Google Scholar] [CrossRef]
- Eckard, R.J.; Grainger, C.; de Klein, C.A.M. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Follett, R.F.; Reed, D.A. Soil carbon sequestration in grazing lands: Societal benefits and policy implications. Rangel. Ecol. Manag. 2010, 63, 4–15. [Google Scholar] [CrossRef]
- Meyer, R.; Cullen, B.R.; Eckard, R.J. Modelling the influence of soil carbon on net greenhouse gas emissions from grazed pastures. An. Prod. Sci. 2016, 56, 585–593. [Google Scholar] [CrossRef]
- Esposito, G.; Iommelli, P.; Infascelli, L.; Raffrenato, E. Traditional Sources of Ingredients for the Food Industry: Animal Sources. In Sustainable Food Science—A Comprehensive Approach; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 7–20. ISBN 9780128241660. [Google Scholar] [CrossRef]
- Lorenz, H.; Reinsch, T.; Hess, S.; Taube, F. Is low-input dairy farming more climate friendly? A meta-analysis of the carbon footprints of different production systems. J. Clean. Prod. 2019, 211, 161–170. [Google Scholar] [CrossRef]
- Lovett, D.K.; Shalloo, L.; Dillon, P.; O’Mara, F.P. Greenhouse gas emissions from pastoral based dairying systems: The effect of uncertainty and management change under two contrasting production systems. Livest. Sci. 2008, 116, 260–274. [Google Scholar] [CrossRef]
- Bridges, E.M.; Oldeman, R. Global Assessment of Human-Induced Soil Degradation. Arid. Soil. Res. Rehabilit. 1999, 13, 319–325. [Google Scholar] [CrossRef]
- Bilotta, G.S.; Brazier, R.E.; Haygarth, P.M. The impacts of grazing animals on the quality of soils, vegetation, and surface waters in intensively managed grasslands. Adv. Agric. 2007, 94, 237–280. [Google Scholar] [CrossRef]
- MASAF—Decreto Ministeriale del 24 Febbraio 2023 n. 660087. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/19035 (accessed on 22 September 2023).
- Gopal, B.T.; Giridhari, S.P. Evaluation of the livestock carrying capacity of land resources in the Hills of Nepal based on total digestive nutrient analysis. Agric. Ecosys. Environ. 2000, 78, 223–235. [Google Scholar] [CrossRef]
- Gaucheron, F. Milk and dairy products: A unique micronutrient combination. J. Am. Coll. Nutr. 2011, 30, 400S–409S. [Google Scholar] [CrossRef] [PubMed]
- Oste, R.; Jägerstad, M.; Andersson, I. Vitamins in milk and milk products. In Advanced Dairy Chemistry Volume 3 Lactose, Water, Salts and Vitamins; Springer: Boston, MA, USA, 1997; Volume 3, pp. 347–402. [Google Scholar] [CrossRef]
- Perdijk, O.; Van Splunter, M.; Savelkoul, H.F.; Brugman, S.; Van Neerven, R.J. Cow’s milk and immune function in the respiratory tract: Potential mechanisms. Front. Immunol. 2018, 9, 143. [Google Scholar] [CrossRef]
- Ahvanooei, M.R.; Norouzian, M.A.; Vahmani, P. Beneficial effects of vitamins, minerals, and bioactive peptides on strengthening the immune system against COVID-19 and the role of cow’s milk in the supply of these nutrients. Biol. Trace Elem. Res. 2022, 200, 4664–4677. [Google Scholar] [CrossRef]
- Brick, T.; Hettinga, K.; Kirchner, B.; Pfaffl, M.W.; Ege, M.J. The beneficial effect of farm milk consumption on asthma, allergies, and infections: From meta-analysis of evidence to clinical trial. J. Allergy Clin. Immunol. Pract. 2020, 8, 878–889. [Google Scholar] [CrossRef]
- Barłowska, J.; Szwajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- McGregor, R.A.; Poppitt, S.D. Milk protein for improved metabolic health: A review of the evidence. Nutr. Metab. 2013, 10, 46. [Google Scholar] [CrossRef]
- Madureira, A.R.; Tavares, T.; Gomes, A.M.P.; Pintado, M.E.; Malcata, F.X. Invited review: Physiological properties of bioactive peptides obtained from whey proteins. J. Dairy Sci. 2010, 93, 437–455. [Google Scholar] [CrossRef]
- Theobald, H.E. Dietary calcium and health. Nutr. Bull. 2005, 30, 237–277. [Google Scholar] [CrossRef]
- Heaney, R.P. Calcium, dairy products and osteoporosis. J. Am. Coll. Nutr. 2000, 19, 83S–99S. [Google Scholar] [CrossRef] [PubMed]
- Tunick, M.H. Calcium in dairy products. J. Dairy Sci. 1987, 70, 2429–2438. [Google Scholar] [CrossRef]
- Black, R.E.; Williams, S.M.; Jones, I.E.; Goulding, A. Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. Am. J. Clin. Nutr. 2002, 76, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Kepler, C.R.; Hirons, K.P.; McNeill, J.J.; Tove, S.B. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J. Biol. Chem. 1966, 241, 1350–1354. [Google Scholar] [CrossRef]
- Tudisco, R.; Chiofalo, A.L.; Lo Presti, V.; Rao, R.; Calabrò, S.; Musco, N.; Grossi, M.; Cutrignelli, M.I.; Mastellone, V.; Lombardi, P.; et al. Effect of hydrogenated palm oil dietary supplementation on milk yield and composition, fatty acids profile and Stearoyl-CoA desaturase expression in goat milk. Small Rum. Res. 2015, 132, 72–78. [Google Scholar] [CrossRef]
- Koba, K.; Yanagita, T. Health benefits of conjugated linoleic acid (CLA). Obes. Res. Clin. Prac. 2014, 8, e525–e532. [Google Scholar] [CrossRef] [PubMed]
- Ip, C.; Scimeca, J.A.; Thompson, H.J. Conjugated linoleic acid. A powerful anticarcinogen from animal fat sources. Cancer 1994, 74, 1050–1054. [Google Scholar] [CrossRef]
- Shultz, T.D.; Chew, B.P.; Seaman, W.R.; Luedecke, L.O. Inhibitory effect of conjugated dienoic derivatives of linoleic acid and β-carotene on the in vitro growth of human cancer cells. Cancer Lett. 1992, 63, 125–133. [Google Scholar] [CrossRef]
- Blankson, H.; Stakkestad, J.A.; Fagertun, H.; Thom, E.; Wadstein, J.; Gudmundsen, O. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J. Nutr. 2000, 130, 2943–2948. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef]
- Nakamura, Y.K.; Flintoff-Dye, N.; Omaye, S.T. Conjugated linoleic acid modulation of risk factors associated with atherosclerosis. Nutr. Metab. 2008, 5, 22. [Google Scholar] [CrossRef]
- Toomey, S.; Harhen, B.; Roche, H.M.; Fitzgerald, D.; Belton, O. Profound resolution of early atherosclerosis with conjugated linoleic acid. Atherosclerosis 2006, 187, 40–49. [Google Scholar] [CrossRef]
- Lee, K.N.; Kritchevsky, D.; Parizaa, M.W. Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis 1994, 108, 19–25. [Google Scholar] [CrossRef] [PubMed]
ANIMAL NUTRITION | MANAGEMENT SYSTEM |
---|---|
Prohibited | |
Chemical weeding | Breeding without grazing |
GMOs | Mineral nitrogen fertilization ≥ 50 kg of N/ha |
Silage and bandages | |
Synthetic vitamin and mineral supplements | |
Required | |
≥five dominant forage species | Dairy livestock load of the farm ≤ 1.3 livestock units (LSAs) per hectare of forage area |
Forage/concentrate ratio ≥ 70:30 | Ensuring free access to outdoor paddocks |
Fresh and/or preserved forage (hay) | Ensuring the levels of animal welfare required by the Welfare Quality® standard |
Hay score ≥ 70/100 | |
Preferable | |
Raising native breeds |
“Noble Milk®” | |
---|---|
EFFECTS ON ANIMAL BEHAVIOR | EFFECTS ON EATING BEHAVIOR |
Increase in ambulation and decrease in all stationary behaviors. | Risk of subacute ruminal acidosis reduction by promoting rumination [39]. |
Increase in leg health, which improves locomotor capacity of cows [47,48], resulting in a positive effect on the welfare of dairy cattle. | Increase in allogrooming and social rubbing times, which are involved in the formation and maintenance of social bonds [55]. |
Increase in duration of positive social interactions [15]. | Decrease in social tension among dairy cows [56]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Infascelli, F.; Musco, N.; Lotito, D.; Pacifico, E.; Matuozzo, S.; Zicarelli, F.; Iommelli, P.; Tudisco, R.; Lombardi, P. The “Noble Method®”: A One Health Approach for a Sustainable Improvement in Dairy Farming. Sustainability 2023, 15, 15201. https://doi.org/10.3390/su152115201
Infascelli F, Musco N, Lotito D, Pacifico E, Matuozzo S, Zicarelli F, Iommelli P, Tudisco R, Lombardi P. The “Noble Method®”: A One Health Approach for a Sustainable Improvement in Dairy Farming. Sustainability. 2023; 15(21):15201. https://doi.org/10.3390/su152115201
Chicago/Turabian StyleInfascelli, Federico, Nadia Musco, Daria Lotito, Eleonora Pacifico, Sara Matuozzo, Fabio Zicarelli, Piera Iommelli, Raffaella Tudisco, and Pietro Lombardi. 2023. "The “Noble Method®”: A One Health Approach for a Sustainable Improvement in Dairy Farming" Sustainability 15, no. 21: 15201. https://doi.org/10.3390/su152115201
APA StyleInfascelli, F., Musco, N., Lotito, D., Pacifico, E., Matuozzo, S., Zicarelli, F., Iommelli, P., Tudisco, R., & Lombardi, P. (2023). The “Noble Method®”: A One Health Approach for a Sustainable Improvement in Dairy Farming. Sustainability, 15(21), 15201. https://doi.org/10.3390/su152115201