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Abstract: Urban green innovation plays a crucial role in achieving sustainable urban economic
development, and urban economic resilience is an important manifestation of urban economic
development. This prese nt study aims to investigate how green innovation contributes to urban
economies’ resilience, which is essential for long-term urban agglomeration expansion and sustainable
economic development. To decrease subjectivity and achieve comprehensive evaluation, this study
first constructs an index system for evaluating green innovation capability on urban economic
resilience, which contains 21 indicators in three areas, including innovation input, innovation output,
and green innovation foundation, and the performs a scientific evaluation using the TOPSIS method.
On this basis, using the Super-SBM model, the green innovation efficiency value of cities in the
Yangtze River Delta (YRD) is calculated. Finally, ArcGIS 10.8 software is used to classify the economic
resilience of the 26 cities in the YRD city cluster and analyze the spatial layout characteristics of urban
economic resilience. The results show that: (1) the decision evaluation model used in this study
is stable and effective, and it can effectively address the issues of subjective assessment processes
and information redundancy; (2) green innovation capacity has a positive contribution to urban
economic resilience, and its contribution is more significant for cities with strong economic strength;
and (3) the green innovation capacity of the YRD city cluster is unevenly distributed, with Shanghai,
Suzhou, Hangzhou, and Nanjing having high levels of green innovation capacity and strong urban
economic resilience, thus forming the core area of cities radiating outward, showing a “core-edge”
spatially. Finally, suggestions for improving the overall economic resilience of urban agglomerations
are provided.

Keywords: green innovation; urban economic resilience; Yangtze River Delta (YRD)

1. Introduction

Since the outbreak of the coronavirus disease (COVID-19) pandemic in 2020, global
economic weakness and the trend of counter-urbanization have intensified, and the envi-
ronment at home and abroad has become increasingly severe, which has greatly tested the
anti-risk ability of the urban economy [1]. Within this context, “urban economic resilience”
has emerged as a frontier in research. “Urban economic resilience” refers to the ability
of an urban economy to withstand and recover from external shocks [2,3]. In the face of
the complex situation of increasing internal and external environmental risks, improving
urban economic resilience has become a key concern for the Chinese government. In
October 2022, the Chinese government stressed that “to build livable, resilient and smart
cities, this will help to use cities as an important engine of economic development and an
important highland for scientific and technological innovation.” [4]. As a subsystem of
urban resilience, improving urban economic resilience has become an important measure
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for reducing urban economic risks and achieving sustainable development of the urban
economy [5].

However, China’s urban economic growth still finds it difficult to completely eliminate
using the traditional extensive development model, thereby restricting the ability of urban
economic resilience to resist risks [6]. In this context, China regards green development
as an important path for transforming its mode of economic development and achieving
high-quality development [7]. Green innovation can realize industrial transformation
and upgrading, reduce resource consumption and environmental damage, and improve
resource allocation efficiency, making it an effective way to achieve high-quality develop-
ment of the urban economy [8,9]. Accordingly, it is important to enhance urban economic
resilience and promote the sustainable development of the urban economy by studying the
impact of green innovation on urban economic resilience.

For the following two reasons, the YRD region was chosen as the subject of this study:
1. In terms of economic development, the YRD city cluster is one of the most economically
dynamic, open, and innovative agglomerations in China. The total economic output of
the YRD region accounted for about 24.1% of the country’s total economic output in 2021,
occupying a key position in China’s regional development pattern. However, with rapid
economic development, the YRD region is facing ecological damage and environmental
pollution, which restrict high-quality economic development [10]. Thus, in the context
of a pattern of development that includes both opportunities and challenges, changing
the rough economic development mode using green technology innovation, on the one
hand, reduces environmental pollution and resource consumption internally, realizes
sustainable economic development externally, improves the economic resilience of the
urban agglomeration as a whole, and solidifies the leading position of green innovation in
the nation [11]. On the other hand, it is highly significant for the economic transformation
and upgrading of other urban agglomerations and is favorable to promoting the growth of
the entire East China area and the Yangtze River Economic Belt. 2. In terms of collaborative
innovation, although the YRD city cluster has reached more than one-fourth of the national
share of R&D investment, the uneven development within the urban agglomeration has
led to many difficulties and drawbacks in terms of collaborative innovation, including
inefficient synergy, uneven distribution of innovation resources, and impeded flow of
development resources, among others. These difficulties and drawbacks are faced by the
integrated development strategy of urban agglomeration in terms of enhancing regional
synergy [12]. Analyzing the characteristics of the current situation of green innovation
in the cities of the YRD city cluster, discovering the existing problems, and proposing
corresponding countermeasures and suggestions are of great significance to enhancing the
overall green collaborative innovation capacity of the YRD city cluster and the economic
resilience of the urban agglomeration.

Therefore, combining the above analysis and Appendix A, it is representative to select
the YRD city cluster as the research object. This study explores whether green innovation
capacity can effectively enhance urban economic resilience by constructing an evaluation
index system for green innovation capacity to urban economic resilience. It investigates
whether green innovation capacity can effectively improve the economic resilience of cities.
Finally, this study empirically examines the current state of green innovation capacity in
cities, which can improve the overall economic resilience of urban agglomerations. It also
provides references to other urban agglomerations in terms of sustainable development,
which helps improve the overall economic resilience of urban agglomerations and provides
a reference for the sustainable development of other urban agglomerations.

In this paper, we focus on investigating a method that can impartially assess the
contribution of green innovation to urban economic resilience. We first conduct a liter-
ature review on the definition of urban economic resilience and green innovation. The
related research on urban economic resilience and green innovation is covered in Section 2.
Section 3 presents the construction of an evaluation index system for green innovation
capacity and urban economic resilience. Section 4 presents the empirical analysis of the
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evaluation results, and Section 5 summarizes the research conclusions and proposes policy
recommendations. The specific evaluation process used in this paper to determine the
impact of green innovation capacity on urban economic resilience is shown in Figure 1.
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2. Literature Review
2.1. The Definition of Urban Economic Resilience

“Resilience” is a multidisciplinary concept that was first derived from physics [13].
Holling was the first to propose the idea of “engineering resilience”, which represents the
ability of a system to recover to its initial state after being stressed by an impact. Since then,
the use of resilience has gradually been extended to other social science fields including
engineering and ecology [14]. In the development of the connotation of economic resilience,
two definitions have emerged: “ecological resilience” and “adaptive resilience”. “Ecological
resilience” refers to a system’s ability to absorb perturbations to the maximum extent
possible without changing its structure, thus achieving a stable state [15]. Economic systems
undergo structural changes over time and cannot always be in equilibrium. Therefore, this
definition is not suitably applicable to economic systems. Therefore, an increasing number
of scholars prefer the term “adaptive resilience” as the origin of economic resilience to view
the development of an economic system from a dynamic perspective. Martin systematically
studied economic resilience in four dimensions, viz. resistance, resilience, adaptability, and
renewal, after systematically integrating the relevant literature [16].

Urban economic resilience refers to the ability of urban economies to withstand and
recover from external shocks when they are encountered [17]. The urban economic system
involves a process of dynamic change in multiple stages, specifically, the ability to resist
before facing a shock, the ability to adapt and stabilize when facing a shock, and the ability
to recover after the shock [18]. Summarizing the above literature, this study argues that
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urban economic resilience reflects the competitive strength of a city in several ways. If a
city’s economic system can maintain stable growth, adapt to changes in response to shocks,
allocate factor resources effectively, and optimize industrial composition in the face of
market, competitive, and environmental shocks, the city will have strong urban economic
resilience.

2.2. The Research on Urban Economic Resilience

Academics have conducted in-depth research on the issue of urban economic resilience,
which includes two aspects: measurement and influencing factors of urban economic re-
silience. First, methods for measuring economic resilience in academic circles are divided
into two methods. The first is the core variable measurement method. For example, Mar-
tin’s difference between the real and predicted gross domestic products (GDPs) of 85 cities
in the UK showed four major recessions and recoveries of cities during the period of
1971–2015 and analyzed the significant changes in the four fluctuations and differences
between northern and southern cities [19]. Based on the urbanization perspective, Sensier
et al. selected real GDP and unemployment rates to study changes in economic shocks in
EU countries and further analyzed the size of the shocks and the speed of recovery [20,21].
Faggian divided Italy into hundreds of regional economic systems, selected the unem-
ployment rate index to measure economic resilience, and concluded that the population
and industrial system will play a fundamental role in regional economic resilience [22]. In
summary, most current scholars using the core variable method tend to use indicators such
as real GDP or employment rates that are sensitive to economic shocks as core variables.
Kitsos also highlighted that compared with other measurement methods, the core variable
method is rarely subject to causal confusion and is more economical [23].

However, some scholars have proposed economic resilience as a composite concept
that covers the adaptation, resistance, and adjustment periods. It is difficult for a single indi-
cator to fully reflect the implications of overall economic resilience. Therefore, a multi-index
system measurement method is required. For example, Briguglio et al. divided economic
resilience into four parts—macro-environment, micro-market, government intervention,
and social development—and performed a measurement analysis [24]. Cox constructed an
evaluation index system of regional economic resilience from an investment and environ-
mental perspective, and posited suggestions from various angles to reduce the gap with
expectations [25]. Paolo selected indicators from the three dimensions of economic, social,
and ecological environments to construct an evaluation system for evaluating the economic
resilience of more than 200 regions in Europe [26].

In conclusion, although the multi-index vehicle measurement method can reflect the
overall connotation of economic resilience, different scholars do not use a unified method
for the selection and weight of relevant indicators of the index system. Therefore, the
constructed index system is quite different. Although this study adopted a multi-index
evaluation system, the collinearity–variation coefficient method was used to ensure the
rationality of the index system, which differs from other studies.

Another aspect of the research on urban economic resilience is the study of influencing
factors. Most scholars discuss the impact of urban economic resilience from the perspectives
of industrial structure, disease disasters, and population aggregation. Brown and Green-
baum proposed that a region with a diversified industrial structure would show greater
economic resilience in the face of a crisis because the gains of prosperous industries can
offset the losses in declining industries, thus stabilizing the regional economy [27]. Zhang
et al. selected monthly data from the Beijing–Tianjin–Hebei urban agglomeration from June
2019 to September 2020 to explore the impact of COVID-19 on the economic resilience of
urban agglomerations. The research conclusions showed that the Beijing–Tianjin–Hebei
urban agglomeration was impacted by the new coronavirus epidemic, and the economic
resilience of urban agglomerations presented different development types over time [1].
From the perspective of population agglomeration, some scholars used 284 cities in China
as samples to empirically analyze the impact of population agglomeration on urban eco-
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nomic resilience in the context of the 2008 financial crisis. The research conclusions showed
that population agglomeration can enhance a city’s resistance to economic crises. It was
also conducive to economic recovery after the crisis and had a positive spatial spillover
effect on surrounding cities [28].

However, few studies have focused on the importance of innovation in terms of
urban economic resilience. Bristow and Healy found that regions identified as innovation
leaders can recover from a crisis more quickly than other regions [29]. Moreover, no more
studies examine the impact of green innovation capabilities on urban economic resilience.
Green innovation focuses on sustainability and social responsibility, which are crucial to
high-quality economic development. The only way to raise green productivity, resource
conservation, environmental protection, and economic sustainability and further boost
cities’ resilience to economic hazards is through green innovation. Thus, it is of great
significance to study the impact of green innovation on urban economic resilience.

2.3. The Research on Green Innovation

“Green innovation” is also known as “eco-innovation”, “environmental innovation”,
and “sustainable innovation” [30,31]. Fussler et al. first described “eco-innovation”, ar-
guing that it provides business value to companies and consumers as well as reduces
environmental impact [32]. The difference between “green innovation” and “innovation”
is that “innovation” emphasizes the role of technology promotion and market pull in
innovation activities and introduces new products, processes, or services that may ignore
environmental considerations [33]. “Green innovation” is guided by environmental protec-
tion and sustainable development and reduces the external environmental costs of products
by using technology and business models [34].

By organizing and summarizing the existing literature, we find that scholars’ research
on green innovation mainly focuses on research perspectives, evaluation methods, and
influencing factors. On the one hand, in terms of research perspectives, the three research
perspectives from micro to macro are the enterprise perspective, industry perspective, and
regional perspective. 1. From an enterprise perspective, Wu, Xia, and Li studied whether
green innovation could promote the improvement of green total factor productivity with
the unstudied objects of A-share listed companies. Using an empirical analysis, they
found that green innovation can improve the GTFP, but the impact on different enterprises
is heterogeneous [35]. 2. From an industry perspective, Wang and Li used the SBM-
undesirable model and Malmquist–Luenberger productivity index to evaluate the green
innovation performance of China’s pollution-intensive industries from 2014 to 2018 from
the dual perspectives of transformation efficiency and productivity. They also studied
the impact of innovation-driven green development on the transformation of pollution-
intensive industries [36]. 3. From a regional perspective, Dai et al. explored the impact
of the digital economy on promoting regional green innovation based on data from 30
provincial-level administrative regions (excluding Tibet) in China from 2011 to 2018. Their
empirical results show that a digital economy can effectively improve regional economic
resilience [37].

On the other hand, there are two types of evaluation methods for green innovation: ob-
jective empowerment evaluation method and subjective empowerment evaluation method.
The objective empowerment evaluation method includes the entropy weight method
(EWM), gray correlation analysis method, etc. The subjective empowerment evaluation
method includes the analytic hierarchy process (AHP) method, fuzzy synthesis evaluation
method, and so on.

1. Entropy weight method (EWM). Zou et al. constructed an evaluation index system
for the energy green consumption revolution (EGCR) from four perspectives: economic,
social, energy, and environmental, and used the entropy weight technique for order prefer-
ence by similarity to ideal solution (TOPSIS) method to calculate and objectively evaluate
China’s EGCR from 2011 to 2019 [38].2. Gray correlation analysis method. Xu and Zhai
studied the evaluation method for enterprise green innovation capacity combined with
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the cloud model method, decision-making trails, and the evaluation laboratory method to
determine the comprehensive weight of indicators. They also determined the similarity
between each value and the ideal value using the cloud distance measurement and grey
correlation analysis methods. Finally, the effectiveness of the method was verified using an
empirical analysis [39]. 3. Analytic hierarchy process (AHP) method. Pan et al. proposed
that most green innovation capacity evaluation methods are subjective and cannot solve the
problem of index information duplication. Therefore, they combined the analytic hierarchy
process (AHP) and osculating value process (OVP) to construct an AHP-OVP evaluation
model to evaluate the green innovation capacity of enterprises and empirically analyze its
effectiveness, which solved the problem of information repetition and subjective evaluation
methods [40]. 4. Fuzzy synthesis evaluation method. In order to study the green competi-
tiveness change trend in 30 provinces in China from 2004 to 2014, Cheng et al. developed
a regional green competitiveness evaluation index system based on the connotation of
regional green innovation competitiveness using the fuzzy comprehensive evaluation
method and the entropy weight method and graded the output results [41].

Furthermore, in terms of decision analysis methods, the main methods included are
the TOPSIS method, the ELimination Et Choix Traduisant la REalité (ELECTRE) method,
the VIse Kriterijumski Optimizacioni Racun (VIKOR) method, etc. The TOPSIS method is
widely used in social [42], industry [43], engineering [44], and other domains of judgment
and assessment [45]. The ELECTRE method is a multi-criteria decision-making method
that can quantify the decision-making process and resolve complex decision-making issues,
but it has the drawback of requiring more factors that must be taken into account and
contains non-data table factors, which can have erratic effects on decision-making and
are unsuitable for long-term decision-making [46]. Compared with the TOPSIS method,
the VIKOR method has an additional decision mechanism coefficient and requires the
researcher to determine data such as weighting coefficients, which is difficult to realize in
practical decision-making [47].

In this paper, the entropy weight approach and TOPSIS method are coupled to as-
sess the variations in each city’s level of green innovation. On the one hand, the entropy
weight method is an objective empowerment evaluation method, whereas AHP [40], DE-
MATEL [48], and other evaluation methods rely on subjective empowerment by experts.
The entropy weight method is an objective evaluation method that is not susceptible to
the issue of imbalance in the weight ratio due to subjective reasons. The entropy weight
method calculates weights using the entropy value information of the research data itself,
ensuring the rationality of the indicator weights and improving the objectivity and fairness
of the research findings [49]. On the other hand, the TOPSIS method can derive the positive
and negative ideal solutions for urban green innovation using the indicator data of each
city and provide a reference standard for the development level of green innovation among
cities with the index data of each city [50]. However, the TOPSIS method’s drawback is that
it lacks the support of indicator weights [51]. Therefore, this paper uses a research method
of combining the entropy weight and TOPSIS methods because this type of combined
research method is more mature, the two advantages complement each other, it has been
widely used in all types of evaluation-based research, and the research results are objective,
reasonable, and highly credible [52].

Moreover, the factors influencing green innovation capability contain two categories:
internal factors and external factors, of which most of the literature studies examine ex-
ternal indicators. 1. Internal factors. Using a survey of 262 manufacturing enterprises in
China, Wang and Du found that an improvement in green absorptive capacity and green
market orientation, two internal factors of green innovation, has a significant effect on
the promotion of green innovation of enterprises [53]. 2 External factors. The existing
research posits several key factors that can affect green innovation capacity, such as, reg-
ulation environment [54], digital economy [37], FDI [55], environmental investment [56],
etc. Based on the above research, few studies have been conducted on green innovation
involving urban economic resilience. Green innovation affects urban economic resilience by
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improving factor allocation [57], optimizing industrial structures [58], and utilizing human
resource advantages [59]. This study fills this research gap by examining the impact of
green innovation on urban economic resilience.

2.4. Theoretical Analysis

Green innovation capacity can enhance the economic resilience of cities, as demon-
strated by:

1. Green innovation capacity enhances the economic resilience of cities by optimizing
the allocation of factors. Yao et al. argue that green innovation capacity is the key
to achieving this goal. Cities may encourage specialization in the division of labor
and boost production efficiency in terms of factor consumption and output by fully
using the potential of inventive factor allocation. This might lessen a city’s reliance on
outside funding and improve its capacity to resist and recover from external risks [57].
What is more, by boosting innovation inputs and enhancing innovation outputs,
green innovation may support the growth of the green economy. One way to boost
the effectiveness of green innovation is to increase investment in it. This may be
completed by allocating innovation resources as efficiently as possible. The lack of
funding for the development of green technologies can be filled by FDI investment
and domestic R&D money. Innovation in green technology can improve economic
gains while lowering pollution-related expenses and environmental damage [60,61].

2. Green innovation can enhance the economic resilience of cities by optimizing the
industrial structure. Increasing green innovation will support the growth of new
industries, alter existing industries, eliminate outdated industries, and advance the
diversity and progress of the industrial structure [62]. The “three highs” of high-
pollution, high-energy-consumption, and high-water-consumption enterprises can
be gradually eliminated in favor of high-technology, high-growth, and high-value
industries, according to Cheng and Jin, who believe that green innovation capability
can act as a major driving force for industrial restructuring [63].

3. Green innovation capacity further enhances the economic resilience of cities through
human resource strengths. First, talent advantages and labor capital are examples of
human resource benefits. A high-tech, high-quality, and high-knowledge personnel
team is a must for innovation. The sustainable growth of a city depends on having a
sufficient talent pool, which is also a necessary condition for speeding the develop-
ment of green innovation and accomplishing the transition of scientific and technical
advancements [64]. Second, by improving the workforce’s quality and capabilities,
science, technology, and innovation may better match the degree to which sectors are
changed and improved. This will increase cities’ economic resilience [65].

In summary, it is not difficult to find that the existing research has the following
shortcomings. First, the research on the impact of the existing literature on urban economic
resilience mainly focuses on industrial structure, disease disasters, population aggrega-
tion, and other perspectives, but there are few green innovation studies closely related
to high-quality economic development. Second, although the multi-index measurement
method in the existing literature has a strong comprehensiveness and comprehensive
measurement range, information redundancy can easily occur in the same index layer,
and the index screening lacks rationality analysis. Regarding the indicator system, the
majority of researchers in the literature at hand did not examine the objectivity in choosing
the indicators, and while the component of the indicator system that assesses innovation
capacity has significant relevance, there are not many indicators that take the environment
and sustainability into account.

Therefore, this study considers green innovation capacity from a research perspective.
Based on the high-frequency indicators that have appeared in the literature, the collinearity–
variation coefficient method was used to screen the indicators, solve the problem of infor-
mation redundancy, and establish an evaluation index system of green innovation capacity
for urban economic resilience to make the evaluation index system more scientific and
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reasonable. Then, the entropy weight TOPSIS method was used to analyze the urban
economic resilience of 26 cities in the YRD city cluster from a green innovation perspective.
On this basis, the Super-Slack Based Measure (Super-SBM) model is used to measure the
current situation of green innovation efficiency in the YRD cities, and the spatial distribu-
tion differences in urban green innovation capacity are analyzed. This study attempts to
make academic contributions from the following three aspects:

1. When compared with previous studies, this paper’s main contribution is the construc-
tion of an evaluation model for evaluating regional green innovation capacity. This
model screens the indicators covering all aspects of the evaluation system using a
comprehensive set of the indicator screening process, and it studies a city’s green
innovation capacity with an objective and reasonable evaluation and decision-making
method, which achieves the best decision-making results for regional green innova-
tion capacity. The method not only corrects the flaws of earlier evaluation methods
for green innovation capacity, such as the non-objective evaluation method and re-
dundant information of indicators, but also passes the sensitivity test, demonstrating
the viability of the method.

2. There is a dearth of academics conducting research on green innovation and urban
economic resilience. This paper attempts to fill that gap by presenting quantitative
analysis techniques and research ideas. It also offers a practical and scientific method
for evaluation, which aids in the growth of this research field.

3. Despite city clusters being more economically interconnected in terms of the research
region, there are not many studies on green innovation that focus on them in the
present literature. As a result, this study uses the YRD region as its research object in
order to both explore the effects of green innovation on urban economic resilience at
the micro-city level and provides research ideas and methods for other regions.

3. Materials and Methods
3.1. The Structure of the Index System

At present, the indicator systems established by academics conducting research on
green innovation are diverse and do not constitute an indicator system that is widely
accepted [66]. This article holds the opinion that the index system should be built using the
connotation of green innovation capabilities based on an analysis of a variety of studies in
the literature. For instance, Hua thinks that green innovation capacity can be understood
as “green + innovation + capacity”. “Green” means “sustainable development”, balanced
economic development, and intergenerational equity, and “innovation” emphasizes the
introduction of new products, services, and processes. “Capability” is a skill or potential,
which focuses on innovation inputs and innovation outputs [67]. Ge et al. define regional
green innovation capacity as a region’s capability to generate new value while using
fewer resources from the environment. This capacity must adhere to the principles of
innovation, resource efficiency, and capacity building [68]. According to Cao et al., the
definition of “green innovation capacity” is the “regional comprehensive development
ability of a region to transform innovation inputs into innovation outputs within a certain
period of time under the guarantee of sustainable development of economy, society, and
environment”. This definition embodies the concepts of “innovativeness”, “capability”,
and “sustainable development” of green innovation capacity. Because of this, it is clear
from the literature mentioned above that green innovation capability differs from general
innovation capability, which embodies three principles: “green” stands for the principle
of sustainable development; “innovation” stands for the principle of innovativeness; and
“capability” stands for the principle of strong ability. “Capability” also stands for the idea
of powerful capacity [69].

Based on the above analysis of the connotation of green innovation capacity to urban
economic resilience, and according to the principles of strong capacity, innovation, and
sustainable development, this paper, which supports the sustainable and steady growth of
urban green innovation, evaluates the level of green innovation of cities from economic,
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social, and environmental perspectives based on the concept of green innovation. To
achieve this, a set of accurate and effective index assessment systems should be constructed
on the basis of adhering to relevant theories of green innovation.

The choice of the guideline level cannot be made without the relevant theoretical
support. The theoretical basis for the guideline level selection in the research of this article
is “Green Economy Theory”, “Green Innovation Theory”, and “Sustainable Development
Theory”.

The “Green Economy Theory”, which emphasizes the economic development mode
of increasing human capital input and reducing resource consumption, is represented as
green innovation input. The “Green Economy Theory” encourages investing capital in
resource-saving and environmentally friendly fields in order to realize economic benefits.
In this paper, the various components of the green economy are represented by human
input, material input, and capital input.

The “Green Innovation Theory”, which stresses a reduction in environmental costs
with the output and application of technical innovation, is represented as green innovation
output. Application innovation and technological innovation are represented in this study
by innovation industry output and innovation technology output.

The “Sustainable Development Theory”, which encompasses the critical elements of
sustainable development in economic, social, and environmental aspects, serves as the
foundation for green innovation. Thus, the three elements of the theory of sustainable devel-
opment are represented by economic development, social foundations, and environmental
foundations in the study.

What is more, with reference to [70–72], we establish a framework of evaluation
indicators of green innovation capacity to urban economic resilience using three broad
criteria: innovation input, innovation output, and green innovation foundation, as shown
in Table 1.

Table 1. Framework for evaluating green innovation capacity on urban economic resilience indicators.

Tier 1 Guideline Level Tier 2 Guideline Level

Green innovation capability

X1 Innovation input
X1-1 Manpower input
X1-2 Material input
X1-3 Financial input

X2 Innovation output X2-1 Innovative industrial output
X2-2 Innovative technological output

X3 Green innovation foundations
X3-1 Economic development
X3-2 Social foundations
X3-3 Environmental foundations

Source: Based on the above literature, the authors organized this framework by themselves.

1. Innovation Input. In general, the urban innovation environment, which is primarily
influenced by the gathering of inventive people resources and resource inputs, is
directly connected to the amount of green innovation potential. The flow of innovation
factors will be accelerated further, leading to a rise in innovation outputs and a further
expansion of innovation inputs as there are more people and resource inputs. In
accordance with Guo et al.’s methodology, this article chooses human, material, and
capital inputs as the secondary indicators of innovation inputs [73–75].

2. Innovation output. Innovation output reflects the level of green innovation transfor-
mation in a city and is usually represented by indicators such as the number of patent
applications [76], the turnover in the technology market [77], the income from sales of
new products [78], etc. In this paper, the output of the innovation industry is selected
to reflect the ability of current urban green innovation technology to transform eco-
nomic benefits, and the output of innovation technology reflects the ability of future
urban green innovation technology reserves.

3. Green innovation foundations. By conducting a review of the literature, this pa-
per found that the foundation of green innovation frequently contains three main
categories: the social environment, the economic environment, and the ecological
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environment. The green innovation foundation is an important component of the
urban green innovation system. A good green innovation foundation can promote
the flow of various types of innovation factors in a city, which is conducive to the
development of green innovation activities [68,69]. Therefore, a subset of indicators
indicating green innovation foundations are constructed in this work using economic
development, social foundations, and environmental foundations. Economic devel-
opment is a reflection of a city’s economic strength; the more resources a city has to
invest in innovation, the more it can advance the degree of green innovation inside
the city [79]. The social basis contributes to ensuring the framework for green innova-
tion; the stronger a city’s social base, the more green aspects it will be able to draw
in [80]. The environmental base reflects the level of urban pollution emissions and
environmental governance, and it is closely linked to the development of an urban
green economy [81]. The indicator system developed in this study thus far satisfies
the criteria for completeness, hierarchy, and comparability.

The full set of index possibilities for comprehensive evaluation was initially built in
order to screen the indexes for systematicity and representativeness and to ensure that there
was no repetitive information for the screening of the indexes conducted later in this article.
This was performed in accordance with the principles of systematicity, scientificity, and
representativeness of the evaluation index system, as well as the high-frequency indexes
appearing in the results of previous research.

3.2. Data Sources and Index Calculation Method
3.2.1. Data Sources

For data completeness, the data in this study were obtained from the China Statistical
Yearbook 2022, China Science and Technology Statistical Yearbook 2022, Zhejiang Statistical
Yearbook 2022, Anhui Statistical Yearbook 2022, Jiangsu Statistical Yearbook 2022, Shanghai
Statistical Yearbook 2022, 2021 National Economic and Social Development Bulletin of 26
cities in the YRD city cluster, and the official websites of various local governments. Some
missing data were supplemented by interpolation.

3.2.2. Evaluation Indicator Selection Process

Step 1: Construct a sample matrix with m indicators and n cities as follows:

X =
{

xij
}

m×n(1 ≤ i ≤ m, 1 ≤ j ≤ n) (1)

where xij is the original value of indicator i for city j.
Step 2: Standardize the indicators:

Data normalization formula for positive indicators : Zij =

xij − min
1≤j≤n

(xij)

max
1≤j≤n

(xij)− min
1≤j≤n

(xij)
(2)

Data normalization formula for inverse indicators : Zij =

max
1≤j≤n

(Xij)−Xij

max
1≤j≤n

(Xij)− min
1≤j≤n

(Xij)
(3)

where Zij is the standardized value of indicator i in city j; xij is the original value of
indicator i in city j; min

1≤j≤n
(xij) is the minimum value of indicator i in all cities; max

1≤j≤n
(xij) is

the maximum value of indicator i in all cities; and n is the number of cities.
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Step 3: Introduce the variance expansion factor (VIF) to determine the presence
of multicollinearity and eliminate the presence of multicollinearity indicators using a
cointegration test to avoid the duplication of information reflected by the indicators.

R2
i =

n
∑

j=1
(x̂ij − xi)

n
∑

j=1
(xij − xi)

(4)

VIFi =
1

1− R2
i

(5)

where R2
i is the decidability factor of indicator i; x̂ij is the ordinary least-squares (OLS)

estimate of indicator i in region j; and xi is the mean value of xi. The larger the R2
i , the more

severe the multicollinearity between the other indicators and the i indicator and the larger
the VIFi. It is generally believed that when VIFi > 10, there is severe multicollinearity
between the i indicator and the other indicators, and the i indicator should be deleted. The
calculation formulae refer to [66,68,69].

Step 4: Select of the most informative indicators using the coefficient of variation
method

vi =

√
1
n

n
∑

j=1
(xij − xi)

2

xi
; xi =

1
n

n

∑
j=1

xij (6)

where vi is the coefficient of variation of the i indicator; n is the evaluated city; xi is the
mean value of each city for the i indicator; and xij is the value of the i indicator for city j.
The calculation formula refers to [66,68,69].

Step 5: Determine of the reasonableness of the indicator system.
The evaluation indicators screened by the covariance–variance coefficient are ex-

pressed in terms of information contribution In :

In =
trss

trsh
(7)

where In denotes the information contribution of the screened indicators to the selected
indicators; S denotes the covariance matrix of the data; trS denotes the trace of the covari-
ance matrix; s denotes the number of screened indicators; and h denotes the number of
selected indicators. The calculation formula refers to [66,68,69].

Step 6: Define the evaluation indicator system.
Step 7: Weight the standardized indicators using the entropy weighting method.

Pij =
Zij

n
∑

i=1
Zij

(8)

where Pij is the weight of indicator i in city j; Zij is the dimensionless value of indicator i in

city j; and
n
∑

i=1
Zij is the sum of the dimensionless data of indicator i in city j.

Step 8: Calculate the entropy value of each indicator.

Eij = −k
m

∑
j=1

Pij InPij; k =
1

Inm
(9)

When Pij = 0, Pij InPij = 0; Eij ∈ [0, 1].
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Step 9: Calculate the redundancy of the entropy value of each indicator.

Dij = 1− Eij; Dij ∈ [0, 1] (10)

Step 10: Calculate entropy weights.

Wij =
Dij

m
∑

j=1
Dij

; Wij ∈ [0, 1],
m

∑
j=1

Wij = 1 (11)

Step 11: Calculate the economic resilience of individual cities.

Fij = Wij × Zij (12)

The basic formulas for TOPSIS and Super-SBM are in Appendix B.

4. Results and Discussion
4.1. Indicator Screening Results
4.1.1. Initial Screening of Indicators and Standardization of Data

In this study, based on the constructed evaluation framework and the principles of
scientificity and representativeness of data selection, an initial set of 72 indicators for the
evaluation of green innovation capacity on urban economic resilience was established.
Among the 72 indicators initially selected, X1−1 is the ratio of employees in scientific and
technological activities to the total employed population (%), the number of university stu-
dents per 10,000 people, and the number of scientific and technological activities in higher
education institutions (person) in human input; X1−2 is the number of higher education
institutions per 10,000 people in physical input; X2−1 is the industry in innovation industry
output diversification index (%), and the index of advanced industrial structure (%); X2−2
is 28 unobservable indicators such as the number of scientific and technological papers
published (articles) and the number of scientific and technological achievements registered
(items) in innovation output. A total of 44 indicators were retained, of which 36 were posi-
tive indicators, including full-time equivalent of R&D personnel (man-year) and internal
expenditure on R&D funds of industrial enterprises above the scale (CNY 1 billion), and
patent authorizations (pieces), and eight were negative indicators, including foreign trade
dependence (%), mortality rate (‰), and urban industrial wastewater emissions (billion
tons). The data were standardized using Equations (2) and (3). The data were standardized
to reduce the urban household waste disposal rate (%) using X3−2 environmental base
indicators.

4.1.2. Screening the Indicators Using Coefficient Tests

The indicators under each of the nine secondary criteria layers were tested for covari-
ance. Taking the secondary criteria layer X1−3 financial input as an example, the data in
the six columns under X1−3 financial input were substituted into Formula (5) to calculate
the VIF value. Only two indicators, i.e., local expenditure on science and technology (CNY
1 billion) and total R&D expenditure, had variance inflation factors greater than 10. There-
fore, these two indicators were excluded, while the other indicators were retained. The
covariance test was applied to screen the remaining indicators; finally, 4 indicators were
excluded, and 39 indicators were retained.

4.1.3. Selection of Indicators Using the Coefficient of Variation Method

The coefficient of variation method was applied to screen the 39 indicators. The
coefficient of variation of each indicator within the secondary criterion layer was calculated,
and indicators with a coefficient of variation vi greater than the mean value of the coefficient
of variation were retained. Taking X1−3 capital investment as an example, the coefficient
of variation values of each indicator were calculated using Equation (6) to obtain the total
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actual foreign investment spent (USD billion), the proportion of expenditure on science
and technology to general public budget expenditure (%), the proportion of expenditure on
education to general public budget expenditure (%), and the proportion of R&D expenditure
to local GDP (%): 1.56, 0.42, 0.26, and 0.25, respectively. For X1−3, the mean value of the
coefficient of variation under the capital input indicator is 0.84. Indicators with a coefficient
of variation vi greater than the mean value of the coefficient of variation were retained;
thus, the total actual foreign investment used in the indicator (USD 1 billion) was retained.
After screening each indicator layer individually, 18 indicators were deleted, including the
full-time equivalent of R&D personnel (man-year), road area per capita (m2), expenditure
on science and technology as a proportion of general public budget expenditure (%),
education expenditure as a proportion of general public budget expenditure (%), and R&D
expenditure as a proportion of local GDP (%). The remaining 21 indicators were retained,
including 19 positive and 2 negative indicators.

4.1.4. Reasonableness of the Judging Indicator System

Based on the above method for screening the retained indicators, the sum of variances
of the retained indicator trSs and the sum of variances of the selected indicators trSh were
calculated from the original collected data and substituted into Equation (7) to obtain the
information contribution rate as follows:

In = trSs/trSh = 0.926× 1010/0.928× 1010 ≈ 99.80%

Of the 72 indicators, 21 indicators (21/72 ≈ 29.17%) were selected to reflect 99.80% of
the original information, indicating that the constructed indicator system is reasonable and
representative.

4.1.5. Determining a System of Indicators for Evaluating the Economic Resilience of Cities
in Terms of Green Innovation Capacity

In this study, we used the entropy weighting method to calculate the weights of each
indicator, and after the dimensionless processing of the data, in order to make the data
processing meaningful, it was necessary to eliminate zero and negative values. Therefore,
for the overall translation of the processed data, Xij = Xij + α, the value of α must be very
small in order not to destroy the original data; in this study α = 0.00001. The weights of
each index were calculated using Equations (8)–(11), and the final evaluation system was
determined, as shown in Table 2.

Table 2. Green innovation capacity to urban economic resilience evaluation system.

(1)
Tier 1 Guideline Level

(2)
Tier 2 Guideline Level

(3)
Indicators Layer

(4)
Weights

(5)
Nature

X1-1 Manpower input
(0.121)

Full-time equivalent of R&D
personnel (man-year) 0.067 +

R&D personnel of industrial
enterprises above the scale (10,000
person)

0.053 +

X1 Innovation input X1-2 Material input (0.207) Total public library collections
(10,000 copies) 0.078 +

Number of internet users (10,000
households) 0.074 +

Internal expenditure on R&D
expenses of industrial enterprises
(CNY 100 Million)

0.055 +

X1-3 Financial input (0.095) Total actual utilization of foreign
capital (USD 100 million) 0.095 +
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Table 2. Cont.

(1)
Tier 1 Guideline Level

(2)
Tier 2 Guideline Level

(3)
Indicators Layer

(4)
Weights

(5)
Nature

X2-1 Innovative industrial
output (0.107) Share of tertiary sector in GDP (%) 0.045 +

X2 Innovation output Value added of industries above
the scale (CNY 100 million) 0.062 +

X2-2 Innovative
technological output
(0.182)

Number of approved trademark
registrations (10,000 pieces) 0.095 +

Technology contract turnover
(CNY 100 million) 0.087 +

X3-1 Economic
development (0.053) GDP per capita (CNY/person) 0.026 +

Disposable income per capita
(CNY 10,000) 0.027 +

X3-2 Social foundations
(0.156)

Number of beds in medical
institutions per 10,000 people (pcs) 0.028 +

Birth rate (‰) 0.025 -
X3 Green innovation
foundations Mortality rate (‰) 0.037 +

Urbanization rate (%) 0.021 +
Share of social insurance and
employment expenditure in
general public budget expenditure
(%)

0.021 +

Total retail sales of consumer
goods as a share of GDP (%) 0.024 +

X3-3 Environmental
foundations (0.079)

Total particulate emissions (10,000
tons) 0.020 -

Greening coverage of built-up
areas (%) 0.021 +

Forest coverage (%) 0.038 +

Source: Organized by the authors; “+”represents positive indicator,“-” represents reverse indicator.

4.2. City Economic Resilience Composite Score

Figure 2 shows that the three lines of innovation input score, innovation output
score, and overall score are basically the same. The stronger the economy of the city, the
greater the innovation input. Innovation input and output remain positively proportional;
therefore, the stronger the green innovation capacity, the higher the overall score, that
is, the city’s economic resilience. Examples include Shanghai, Suzhou, Hangzhou, and
Hefei. The green innovation foundations, where green is the most extensive level of
scale, consist of three secondary levels: economic development, social foundations, and
environmental foundations. Therefore, the green innovation foundation score did not
fluctuate significantly from city to city (Figure 2); rather, the schemes followed the same
format.

The weighted scores were used to calculate the scores of each indicator, and the
comprehensive score of green innovation capability and the score of the first-level criterion
layer were considered to rank the 26 cities in the YRD city cluster. Table 3 shows that the
mean value of the comprehensive score of green innovation capability is 0.26, the maximum
value of the comprehensive score is 0.783, and the minimum value is 0.129, with a difference
of 6.07 times. This indicates an uneven distribution of green innovation capacity in the
YRD city cluster. The strongest green innovation capability is in Shanghai (0.783), which
ranks first, and Anqing (0.129) has the lowest score, ranking 26th. The top five cities in
terms of overall green innovation capacity are Shanghai, Hangzhou, Suzhou, Nanjing,
and Wuxi, and the bottom five cities are Tongling, Zhoushan, Chizhou, Yancheng, and
Anqing. Only seven cities have higher-than-average scores for green innovation capacity.
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This indicates that the overall level of green in cities in the YRD is low. This is due to the
fact that Shanghai, the city with the strongest comprehensive economic power in China, has
advanced infrastructure, abundant human resources, strong scientific and technological
strength, more policy support, and international exchange opportunities to learn from
foreign cutting-edge green and low-carbon knowledge and innovative technologies. This
provides a good demonstration of the role and radiation of the YRD city cluster.
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Figure 2. Green innovation capacity tier 1 guideline tier score (Source: Organized by the authors).

Table 3. Ranking of the YRD city cluster green innovation capacity tier 1 guideline tier.

City Overall Score Overall Score Rank Innovation Input
Rank Innovation Output Rank Green Innovation

Foundation Rank

Shanghai 0.783 1 1 1 20
Nanjing 0.460 4 4 4 1

Wuxi 0.331 5 6 7 6
Changzhou 0.230 12 10 10 17

Suzhou 0.492 3 2 3 13
Nantong 0.249 9 8 8 21
Yancheng 0.136 25 13 15 26
Yangzhou 0.154 20 18 17 25
Zhenjiang 0.153 21 21 19 22
Taizhou 0.164 19 16 16 23

Hangzhou 0.509 2 3 2 2
Ningbo 0.326 6 5 6 11
Jiaxing 0.230 10 9 12 16

Huzhou 0.189 16 19 20 10
Shaoxing 0.259 8 12 13 3
Jinghua 0.215 14 15 14 7

Zhoushan 0.151 23 25 26 9
Taizhou 0.224 13 11 11 14

Hefei 0.317 7 7 5 4
Wuhu 0.230 11 14 9 8

Ma’anshan 0.196 15 20 22 5
Tongling 0.151 22 24 24 12
Anqing 0.129 26 23 21 24

Chuzhou 0.171 17 22 18 18
Chizhou 0.139 24 26 25 15

Xuancheng 0.165 18 17 23 19

Source: Organized by the authors.

As shown in Table 3, in the ranking of the three first-level criterion layers of innovation
input, innovation output, and green innovation foundation, the cities ranked in the top 10 for
innovation input and innovation output are also ranked in the top 10 in their overall ranking,
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except for Changzhou, which has a lower ranking for green innovation foundation and is
therefore not in the top 10 in the overall ranking. Cities in the bottom three of three green
innovation base rankings were in the bottom 20. In the innovation input and output rankings,
only the top eight scores were above average, and the two rankings remained largely consistent.
In the green innovation base ranking, only the top 13 scored above the average.

Figure 3 shows the precise composition of the scores for each city in the YRD city cluster
for the tier 2 guideline level of green innovation capacity. Figure 3a shows that each city
has a higher percentage of the material input score as compared with the other cities, and
this score proportion is essentially consistent with the trend in the folded innovation input
score. In Figure 3b, Specific analysis of the indicator layer reveals that material input contains
indicators including total public library collections (10,000 Copies), the number of Internet users
(10,000 households), and internal expenditure on R&D expenses of industrial enterprises (CNY
100 million). Internal expenditure on R&D expenses of industrial enterprises (CNY 100 million)
is one of them, and it directly affects green innovation; the more money a company invests in
R&D, the more probable it is to produce green innovation [82]. The first two indicators can
indirectly create a supportive atmosphere for green innovation, which can have an influence
on green innovation even though they do not directly affect it in cities [83,84]. In Figure 3c
innovation output scores, innovative technological output and innovative industrial output
account for a balanced ratio, demonstrating that the covariance–coefficient of variation method
can successfully screen out the indicator information with the greatest information content in
accordance with the evaluation requirements, ensuring that the information at the guideline
level is representative. In Figure 3d green innovation foundations, we discovered that a city’s
environmental foundations score decreases as its economic strength increases, as in the cases
of Shanghai, Suzhou, and Hefei. On the one hand, a city’s industrialization process increases
with its economic might, destroying some of its environmental roots in the long-term process
of economic growth. On the other hand, as environmental protection awareness increases, the
pursuit of economic quality and sustainable development replaces the pursuit of economic
growth in urban development. Companies will continue to be forced to implement green
technological innovation and green investment and reduce resource consumption and pollutant
emissions, and environmental foundations will continue to be improved [85,86].
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4.3. Empirical Analysis of the Impact of Green Innovation Capacity on Urban Economic Resilience
Using Entropy-Weighted TOPSIS

The greater the closeness of the Green Innovation Index, the greater is the level of
green innovation capability of the city. Table 4 shows that the top three cities in the Green
Innovation Index are Shanghai, Suzhou, and Hangzhou, whereas the bottom three cities
were Yangzhou, Anqing, and Yancheng. The maximum value of combined closeness was
0.753 and the minimum value was 0.136, with a difference of 5.54 times. Once again,
this shows that cities in the YRD cluster have significant differences in green innovation
capability.

Table 4. City green innovation capability proximity score and ranking.

City City Green Innovation Innovation Input Innovation Output Green Innovation
Foundation

Closeness Rank Closeness Rank Closeness Rank Closeness Rank

Shanghai 0.753 1 0.807 1 1.000 1 0.426 20
Nanjing 0.397 4 0.381 4 0.299 4 0.650 2

Wuxi 0.296 6 0.273 6 0.215 7 0.501 10
Changzhou 0.209 14 0.165 10 0.119 11 0.439 18

Suzhou 0.467 2 0.543 2 0.323 3 0.471 15
Nantong 0.232 9 0.204 8 0.181 8 0.386 22
Yancheng 0.136 26 0.107 14 0.083 16 0.270 26
Yangzhou 0.149 24 0.078 18 0.074 18 0.354 25
Zhenjiang 0.156 23 0.061 21 0.070 19 0.390 21
Taizhou 0.160 22 0.086 17 0.078 17 0.370 24

Hangzhou 0.466 3 0.410 3 0.441 2 0.672 1
Ningbo 0.302 5 0.281 5 0.227 5 0.506 8
Jiaxing 0.213 13 0.166 9 0.111 13 0.469 16

Huzhou 0.183 18 0.074 19 0.059 21 0.501 11
Shaoxing 0.234 8 0.131 12 0.098 14 0.603 3
Jinghua 0.223 10 0.113 13 0.111 12 0.544 5

Zhoushan 0.176 20 0.012 25 0.028 26 0.503 9
Taizhou 0.219 11 0.139 11 0.121 10 0.495 12

Hefei 0.289 7 0.213 7 0.223 6 0.545 4
Wuhu 0.214 12 0.107 15 0.126 9 0.510 7

Ma’anshan 0.193 15 0.072 20 0.055 22 0.537 6
Tongling 0.189 16 0.018 24 0.038 23 0.489 13
Anqing 0.149 25 0.035 23 0.061 20 0.374 23

Chuzhou 0.169 21 0.058 22 0.083 15 0.434 19
Chizhou 0.177 19 0.005 26 0.031 25 0.482 14

Xuancheng 0.184 17 0.107 16 0.035 24 0.446 17

Source: Organized by the authors.

The cities in the first tier rank in the top five in terms of proximity to innovation
inputs and outputs, indicating that the stronger the economy, the greater the investment
in innovation. However, Suzhou and Shanghai are ranked in the middle to lower tiers of
the green innovation base proximity ranking, which, when combined with the proximity
rankings of the second-tier criteria in Table 4, can be attributed to their low environmental
base proximity ranking.

Most cities in the YRD city cluster are within this range. The low innovation base of
cities lowers the level of innovation output and hinders them from fully exploiting their
own characteristics and advantages. Figure 4a–c show that Zhoushan, Ma’anshan, Tongling,
Chuzhou, and Chizhou are the five cities with low levels of innovation investment, which
should focus on strengthening human, material, and financial investment. Figure 4g shows
that Nantong, Zhenjiang, Taizhou, Zhoushan, and Taizhou should focus on improving
their social infrastructure. Figure 4h shows that Wuxi, Changzhou, Nantong, and Hefei
should focus on optimizing their environmental infrastructure.
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The cities in the third tier, whose Green Innovation Index closeness is between 0.1
and 0.15, are ranked low. Yangzhou and Anqing lag behind in terms of the innovation
investment index and should focus on investment in research and innovation, optimize
infrastructure, focus on the training and introduction of highly skilled personnel, and attract
foreign investment. At the same time, the three cities lagged in terms of the proximity of
their green innovation bases. Figure 4f–h show that Yancheng should further improve its
social infrastructure and economic development, and Yangzhou should further optimize its
social and environmental bases. Figure 4a–e show that Anqing, which ranks 26th in terms
of economic development indicators, should focus more on green innovation investment
and the transformation of scientific research results to lay the foundation for sustainable
development in the future.

4.4. Analysis of Calculation Results Using the Super-SBM Model

According to Figure 5, the YRD city cluster has a very diverse distribution of green
innovation efficiency. Shanghai has the highest green innovation efficiency (1.957), placing
it first, while Anqing has the lowest efficiency (0.423), placing it in 26th place. Shanghai,
Jiangsu, Zhejiang, and Anhui have average green innovation efficiency ratings of 1.957,
0.979, 0.974, and 0.664, respectively. Accordingly, the YRD city cluster’s overall capacity
for green innovation is still not very high, with the exception of Shanghai, where the
average efficiency value of green innovation has reached the efficiency frontier, whereas
the other provinces’ average efficiency values have not. Among these is Anhui Province’s
average value for green innovation efficiency. Anhui Province’s average green innovation
efficiency score is the lowest among them, and the province’s overall green innovation
efficiency rating is essentially poorer. The lowest efficiency ratings are seen in Tongling,
Anqing, Chuzhou, Chizhou, and Xuancheng. This is because Anhui Province has a poor
level of innovation and development, insufficient investment in innovation, inadequate
environmental protection, and a low degree of green innovation efficiency. Combined
with Figure 6, we can observe that the provinces of Jiangsu and Zhejiang have the highest
concentration of effective DMUs, and the cities with the highest green innovation efficiency
values are Shanghai, Nanjing, Wuxi, Suzhou, Hangzhou, Ningbo, Shaoxing, and Hefei.
Shanghai, Nanjing, Hangzhou, and Hefei are the capital cities of the province, which is a
municipality directly under the central government. They have a strong innovation base,



Sustainability 2023, 15, 15235 19 of 28

abundant innovation resources, and the agglomeration effect of radiating the region. The
four cities of Wuxi, Suzhou, Ningbo, and Shaoxing have strong economies, a wealth of
innovative accomplishments, and a focus on green innovation and development. The radar
map also reveals a polarization effect in the YRD cities’ green innovation efficiency, with
Shanghai, Suzhou, Hangzhou, and Hefei serving as the key hubs.
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4.5. Spatial Characterisation of Urban Economic Resilience

Using ArcGIS 10.8 software, the economic resilience of the 26 cities was classified
according to 50%, 100%, and 150% economic resilience scores using the World Bank’s
regional economic criteria classification method, and the economic resilience intensity of
26 cities in the YRD in 2021 was visualized [87].
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As shown in Figure 7, the economic resilience scores of cities can be classified into four
levels: very low, low, medium and high. From the classification results, very-low-resilience
cities included one city: Anqing; low-resilience cities included 18 cities: Changzhou,
Nantong, Yancheng, Yangzhou, Zhenjiang, Taizhou, Jiaxing, Huzhou, Shaoxing, Jinhua,
Zhoushan, Taizhou, Wuhu, Ma’anshan, Tongling, Chuzhou, Chizhou, and Xuancheng;
medium-high-resilience cities included three cities: Wuxi, Ningbo, and Hefei; and high-
resilience cities included four cities: Shanghai, Hangzhou, Suzhou, and Nanjing.
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From an academic perspective, the spatial pattern of economic resilience in the YRD
city cluster indicates a general trend of high and low resilience in the east and west, re-
spectively. The city cluster’s overall economic resilience level was low, with only a small
number of highly resilient cities and a large number of low-resilience cities. Furthermore,
the unevenness of a city’s level of economic resilience is more pronounced. Specifically,
the economic resilience of the YRD city cluster followed a radiative distribution from the
core area to the periphery, referred to as the spatial pattern of the core edge. The core area
comprised four highly resilient cities: Shanghai, Hangzhou, Suzhou, and Nanjing. These
cities have an edge in politics, economy, transportation, and culture with abundant devel-
opment resources, robust economic strength, and a higher capacity for green innovation.
The economic resilience of the cities in the core area shows a “ladder” distribution in terms
of spatial radiation, with Nantong, Wuxi, Changzhou, Wuhu, Hefei, Jiaxing, Shaoxing, and
Ningbo being within the radiation range of the cities in the core area. These cities have
close economic exchanges with the cities in the core area, advanced manufacturing and
modern service industries, and more complete infrastructure. They also have advanced
manufacturing and modern service industries, a well-developed infrastructure and social
foundation, and better conditions for green innovation, so their urban economic resilience
level is higher than that of the cities on the edge of radiation. Cities on the periphery of
the core cities, such as Anqing, have a lower level of economic resilience as they move
farther from the core cities. These cities tend to have weak industrial bases, inadequate
infrastructure, low levels of urban economic development, and low investment in green
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innovation capacity. Therefore, from the perspective of green innovation capacity, these
cities have poor urban economic resilience.

5. Conclusions, Recommendations, and Research Limitations
5.1. Conclusions

Green innovation capability is an important indicator for assessing the comprehensive
strength of a city and is a key factor in promoting sustainable urban economic development.
This study uses the integrated index method to construct an index system for evaluating
the green innovation capability of the economic resilience of cities and uses the covariance
coefficient method to solve the problem of redundancy of index information, reflecting
99.8% of the original index information with 29.17% of the index. The green innovation
capacity of 26 cities within the YRD cluster was assessed using the entropy-weighted
TOPSIS method, and the effectiveness of each city’s green innovation was examined using
the Super-SBM model. Finally, ArcGIS 10.8 software was used to divide the economic
resilience of the 26 cities in the YRD city cluster using the natural breakpoint method
and to analyze the spatial layout characteristics of urban economic resilience. The main
conclusions are as follows.

1. The existing evaluation techniques for green innovation capacity are more arbitrary
and unable to address the issue of information duplication. This paper combines the
entropy weight method and the TOPSIS method in order to address these drawbacks.
An entropy weight TOPSIS evaluation model is created, which not only solves the
issue of unbalanced weight ratios caused by the subjective empowerment evaluation
method but also addresses the TOPSIS method’s lack of indicator weight guidance
that causes one-sidedness in the research findings. The weights are determined
using the entropy value of the data itself, which also ensures the objectivity and
fairness of the research findings. The covariance coefficient of variation method
is then used to filter out the indicator data with the highest information content
and remove the redundant indicators in order to further improve the completeness
and representativeness of the indicator system. The findings demonstrate that the
assessment model developed in this study is capable of accurately determining the
extent of urban green innovation and may serve as a methodological foundation for
determining the potential for regional green innovation. And the method have passed
the sensitivity test in Appendix C, demonstrating the viability of the method.

2. Green innovation capability has a positive impact on the economic resilience of
cities, and the level of green innovation capability of cities is often closely related
to the economic level of the cities themselves. The stronger the economic strength
of cities, the stronger their green innovation capability, which further feeds into the
economic resilience of cities, forming a cycle of positive development and realizing the
sustainable development of cities’ economies. Cities with weaker economies, on the
other hand, tend to have limited investment in green innovation. Green innovation is
a long-cycle research activity that consumes large amounts of human, material, and
financial resources and has limited output in the short term, making it difficult for
cities with weaker economies to achieve a positive cycle of development.

3. The distribution of green innovation capacity in the YRD city cluster is uneven, with
Shanghai, Suzhou, Hangzhou, and Nanjing having high levels of green innovation
capacity and strong economic resilience, thus forming a core area where cities radiate
outward, showing a “core-edge” distribution feature in space.

5.2. Recommendations

Based on the above findings, this study proposes policy recommendations for enhanc-
ing green innovation capacity and improving the economic resilience of cities.

1. Increase financial investment to attract talent inflows. Rich innovation resources are
important for improving green innovation. Cities should actively respond to the
country’s innovation-driven development strategy, increase investment in innovation
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funds, attract foreign investment, and give full play to the guiding and incentivizing
roles of fiscal policies in green innovation activities. Second, to adhere to green
development, governments should consider the importance of talent in innovation
and development. It is necessary to further optimize talent introduction policies,
reduce the threshold for talent introduction, encourage talent inflow, promote the
transformation of scientific and technological achievements, and provide a steady
stream of power for green innovation.

2. Promote urban cooperation and strengthen coordinated development. To improve the
overall level of green innovation and coordinated development of the YRD city cluster,
cities should actively explore the establishment of a regional linkage development
mechanism and promote regional integration. First, we should give full play to
the “growth pole” advantages of Shanghai, Hangzhou, Suzhou, and Nanjing in
urban green innovation and promote the development of high-tech and modern
service industries in central cities. Second, to strengthen exchanges and cooperation
between cities in the core area and radiation cities to promote the free flow of green
elements, radiation-edge cities should comprehensively consider green innovation
and economic development, cultivate urban characteristic industries, and promote
coordinated economic development within urban agglomerations.

3. Implement local conditions and enhance economic resilience. A city’s comprehen-
sive strength is the key to determining its economic resilience. From the perspective
of green innovation, the difference in urban economic resilience is mainly due to
differences in innovation investment and foundations. Although Hefei and Nan-
jing are not affected by the spillover effect of green innovation space in the eastern
part of the YRD, the two cities rely on the quantitative advantages of universities
and research institutions to achieve the integrated development of the “industry-
university-research-application”, making urban economic resilience reach the levels
of medium-high-resilience and high-resilience cities, respectively. Other cities can
combine their factor endowments, clarify their positioning, and accurately implement
policies according to local conditions to continuously improve the overall economic
resilience of urban agglomerations.

5.3. Research Limitations

There are some limitations in this paper that need to be addressed in future research.
This study focused on the evaluation and analysis of urban agglomerations in the YRD. The
lack of comparisons between different urban agglomerations is one avenue of exploration
for future research. Further research conclusions should be drawn in future studies based
on a comparison of different urban agglomerations. This study only collected data from
26 cities in the YRD in 2021, which does not intuitively reflect the development level of
green innovation capacity and urban economic resilience over time. In future studies, we
will focus on multiyear panel data econometric regressions to make the research results
more intuitive and convincing.
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Appendix A. Utilization of Expert Knowledge

Expert knowledge is subjective and based on the individual experiences of an expert.
The reliability of expert knowledge depends on how well-versed the expert is in his
or her area, and the opinions of experts on a given subject may vary based on their
backgrounds and levels of experience [88]. Participants brainstormed the issue of this study,
focused on the center of the problem and provided various points of view, widening the
scope of the research in this paper. For instance, Lv thinks that resources are crucial to
urban green innovation because “green innovation”—in contrast to “innovation”—places
a greater emphasis on social responsibility and environmental friendliness. As a result,
more resources are needed to give businesses the energy they need to research and develop
green technology, lower the cost of pollution and environmental pressure, and increase
the share of the green economy in a city’s economy. The capacity for green innovation is
closely correlated with a city’s economic strength. The more economically developed cities
are better able to take advantage of the resource clustering effect, which is also reflected in
this paper’s concluding remarks. Liu noted that the YRD integrated development plan’s
general outline was presented by China in 2019. In the study, it is crucial to focus on
both the green innovation growth of individual cities within the urban agglomeration
and the green synergistic innovation of the YRD city cluster as a whole, which is of great
significance for the development of the regional economy in other areas. According to the
study findings presented in this paper, the YRD city cluster has an unequal distribution
of green innovation capability, with a stepwise dispersion outward from the core green
innovation cities. The rational division of labor among cities can help to further enhance
the synergistic development of the urban agglomeration economy. This paper makes
policy recommendations to strengthen the overall synergistic development of the urban
agglomeration based on the research findings of the existing problems.

Appendix B. TOPSIS Method and Super-SBM Mode Introduction

Appendix B.1. TOPSIS Method Introduction

The TOPSIS method is a ranking method, first proposed by Hwang and Yoon, which
ranks a limited number of evaluation objects according to their proximity to an idealized
target; that is, the ranking of evaluation objects is determined according to their proximity
to optimal and inferior solutions [89]. The calculation formulae refer to [38,90].

Determine the Optimal Solution F+ and The Inferior Solution F−

Fij = Wij × Zij; (i = 1, 2, 3, . . . n; j = 1, 2, 3, . . . m)

F+
i = maxFij ; F+ = (F+

1 , F+
2 , F+

3 , . . . . . . , F+
m )

F−i = minFij ; F− = (F−1 , F−2 , F−3 , . . . . . . , F−n )

Determine the Optimal Solution Distance and Inferior Solution Distance

Optimal solution distance : D+
i =

√√√√ m

∑
j=1

(Fij − F+
i )

2; (i = 1, 2, 3, . . . . . . n; j = 1, 2, 3 . . . m)

Inferior solution distance : D−i =

√√√√ m

∑
j=1

(Fij − F−i )
2 ; (i = 1, 2, 3, . . . . . . n; j = 1, 2, 3 . . . m)

Calculate the Closeness of the Evaluation Object to the Ideal Solution Ci Value

Ci =
D−i

D−i + D+
i

; (i = 1, 2, 3, . . . . . . n); Ci ∈ [0, 1]
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In the equation, Ci indicates the closeness of green innovation capacity to the optimal
and inferior solutions of each indicator of the evaluation object in a city’s economic resilience
evaluation index system. The smaller the value of Ci, the weaker the green innovation
capability of the city and the lower the performance. By ranking the evaluation objects in
descending order of relative closeness, we can obtain a ranking of the green innovation
capabilities.

Appendix B.2. Super-SBM Model Introduction

Currently, data envelopment analysis (DEA) and stochastic frontier analysis (SFA) are
the two approaches most frequently used in academic settings to assess the efficacy of green
innovation. One benefit of SFA over DEA is its capacity to take into account the effects of
numerous random mistakes in the calculation outputs, enhancing measurement accuracy.
Green innovation often requires several inputs and outputs, whereas SFA is only relevant to
situations with a single outcome. For this reason, the DEA technique is used by the majority
of academics when evaluating the effectiveness of green innovation. However, because
of problems with relaxation, the conventional DEA model has a restriction in terms of
measurement precision. To address the relaxation issue with the conventional DEA model,
Tone (2001) introduced the SBM model. However, it also appears that numerous decision-
making units are effective using the SBM model [91]. Based on this, Tone (2002) proposed
the Super-SBM model, which can compare and sort many effective decision-making units
as well as address the relaxation problem [92].

Based on the aforementioned analyses and the current state of research, this paper
selects the Super-SBM model with non-oriented and constant returns to scale (CRS) to
measure the green innovation capacity of 26 cities in the YRD city cluster in 2021.

Appendix B.3. Model Expression

The mathematical expression of the model is as follows:

minρSE = min

1 + 1
m

m
∑

j=1

s−i
xik

1− 1
q1+q2

(
q1
∑

r=1

s+i
Yrk

+
q1
∑

r=1

sb−
t
btk

)

s.t.



n
∑

j=1,j 6=k
λjxij − s−i ≤ xik

n
∑

j=1,j 6=k
λjyij + s+r ≥ xrk

n
∑

j=1,j 6=k
λjxtj − sb−

t ≤ xtk

n
∑

j=1,j 6=k
λj = 1

i = 1, 2, . . . , m; r = 1, 2, . . . , q1; t = 1, 2, . . . , q2; j = 1, 2, . . . , n(j 6= k)

Among them, ρSE is the efficiency value, minρSE ≥ 0, and the higher the ρSE value,
the more productive the decision-making unit is. If ρSE > 1, the decision-making unit
exhibits an effective growth trend. Each input is represented by xi, each expected output
is represented by yj, each undesirable output is represented by bt, each slack variable of
input is represented by s−i , and each slack variable of expected output is represented by
s+r . sb−

t represents the slack variable of undesirable output, m represents the number of
input indicators, q1 represents the number of expected output indicators, q2 represents the
number of undesirable output indicators, λ is the weight vector, and j is the number of
DMUs. The calculation formulae refer to [93,94].
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Appendix C. Model Sensitivity Analysis

We conducted a sensitivity analysis to examine the degree of change in the decision
results. This was accomplished by changing the assumptions and statistical methods and
conducting the statistical analysis again to determine the robustness of the assessment
method. In this paper, the rank and ratio comprehensive (RSR) method and VIKOR method
are used to make decisions based on the data again, and the decision results obtained
from different decision methods are compared with the results of this paper, as shown in
Table A1 below.

Table A1. Evaluation results of comparison methods.

City TOPSIS Method
Ranking

RSR Method
Ranking

VIKORE Method
Ranking

Shanghai 1 1 1
Nanjing 4 4 4

Wuxi 6 5 7
Changzhou 14 9 11

Suzhou 2 2 3
Nantong 9 8 9
Yancheng 26 26 26
Yangzhou 24 23 18
Zhenjiang 23 25 24
Taizhou 22 21 15

Hangzhou 3 3 2
Ningbo 5 6 5
Jiaxing 13 12 10

Huzhou 18 18 14
Shaoxing 8 11 12
Jinghua 10 14 17

Zhoushan 20 16 13
Taizhou 11 13 16

Hefei 7 7 6
Wuhu 12 10 8

Ma’anshan 15 15 20
Tongling 16 19 22
Anqing 25 24 25

Chuzhou 21 20 21
Chizhou 19 22 23

Xuancheng 17 17 19
Source: Organized by the authors.

According to the Table A1, we can see that no matter how the method is changed,
Shanghai, Suzhou, Hangzhou, and Nanjing are cities that maintain their top rankings. This
not only serves to confirm this study’s findings that the four urban core area cities are
Shanghai, Suzhou, Hangzhou, and Hefei, but it also demonstrates the efficacy and stability
of the methodology proposed in this paper.
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