In Vitro Propagation of Several Valuable Selections of Robinia pseudoacacia L. as a Fast and Sustainable Source for Wood Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acacia Selections
2.2. Culture Conditions
2.3. Shoot Proliferation and Root Formation
2.4. Acclimatization
2.5. Statistical Analysis
3. Results and Discussion
3.1. Acclimatization of Plants Obtained In Vitro
3.2. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barghchi, M. Mass clonal propagation in vitro of Robinia pseudoacacia L. (Black locust) cv. ‘Jaszkiseri’. Plant Sci. 1987, 53, 183–189. [Google Scholar] [CrossRef]
- Nicolescu, V.-N.; Hernea, C.; Bakti, B.; Keserű, Z.; Antal, B.; Rédei, K. Black locust (Robinia pseudoacacia L.) as a multi-purpose tree species in Hungary and Romania: A review. J. For. Res. 2018, 29, 1449–1463. [Google Scholar] [CrossRef]
- Du, B.; Pang, J.; Hu, B.; Allen, D.E.; Bell, T.L.; Pfautsch, S.; Netzer, F.; Dannenmann, M.; Zhang, S.; Rennenberg, H. N2-fixing black locust intercropping improves ecosystem nutrition at the vulnerable semi-arid Loess Plateau region, China. Sci. Total Environ. 2019, 688, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Y.; Wang, H. Micropropagation of Black Locust (Robinia pseudoacacia L.). In Protocols for Micropropagation of Woody Trees and Fruits; Jain, S.M., Häggman, H., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 193–199. ISBN 978-1-4020-6351-0. [Google Scholar]
- Szyp-Borowska, I.; Banha, C.; Wojda, T.; Szczygieł, K. Micropropagation of black locust (Robinia pseudoacacia L.) and genetic stability of long term cultivated plants. Folia For. Pol. 2016, 58, 13–19. [Google Scholar] [CrossRef]
- Rédei, K.; Keserű, Z.; Rásó, J. Early evaluation of micropropagated black locust (Robinia pseudoacacia L.) clones in Hungary. For. Sci. Pract. 2013, 15, 81–84. [Google Scholar] [CrossRef]
- Lyrene, P.M. Juvenility and Production of Fast-rooting Cuttings from Blueberry Shoot Cultures1. J. Am. Soc. Hortic. Sci. 1981, 106, 396–398. [Google Scholar] [CrossRef]
- James, D.J. Adventitious root formation ‘in vitro’ in apple rootstocks (Malus pumila) I. Factors affecting the length of the auxin-sensitive phase in M.9. Physiol. Plant. 1983, 57, 149–153. [Google Scholar] [CrossRef]
- Balla, I.; Vértesy, J. Experiences and problems related to the micropropagation of black locust. Acta Hortic. 1987, 212, 552. [Google Scholar] [CrossRef]
- Enescu, V.; Jucan, A. Problems of the “In Vitro” Micropropagation of Black Locust (Robinia pseudoacacia L.); Book of Abstracts I; International Society for Horticultural Science: Gembloux, Belgium, 1985. [Google Scholar]
- Davis, J.M.; Keathley, D.E. Differential responses to in vitro bud culture in mature Robinia pseudoacacia L. (black locust). Plant Cell Rep. 1987, 6, 431–434. [Google Scholar] [CrossRef]
- Davis, J.M. In vitro propagation of a black locust tree with an unusual phenotype. Nitrogen Fixing Tree Res. Rep. 1988, 6, 65–67. [Google Scholar]
- Gatti, E.; Sgarbi, E. Micropropagation of Quercus robur: Explant sources and cultural conditions affect in vitro responses differently. Acta Hortic. 2015, 1083, 303–310. [Google Scholar] [CrossRef]
- Arrillaga, I.; Merkle, S.A. Regenerating Plants from in Vitro Culture of Black Locust Cotyledon and Leaf Explants. HortScience 1993, 28, 942–945. [Google Scholar] [CrossRef]
- Han, H.K.; Keathley, D.E. Regeneration of whole plants from seedling-derived callus of black locust (Robinia pseudoacacia L.). Nitrogen Fixing Tree Res. Rep. 1989, 7, 129–131. [Google Scholar]
- Merkle, S.A.; Wiecko, A.T. Regeneration of Robiniapseudoacacia via somatic embryogenesis. Can. J. For. Res. 1989, 19, 285–288. [Google Scholar] [CrossRef]
- In Park Chungbuk, J. Plant biotechnology research at forest fields in South Korea. BMC Proc. 2011, 5, 184. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; Klerk, G.-J.D. (Eds.) Plant Propagation by Tissue Culture: Volume 1. The Background, 3rd ed.; Springer: Dordrecht, The Netherlands, 2007; ISBN 978-1-4020-5004-6. [Google Scholar]
- Reed, B.M.; Wada, S.; DeNoma, J.; Niedz, R.P. Mineral nutrition influences physiological responses of pear in vitro. In Vitro Cell. Dev. Biol.-Plant 2013, 49, 699–709. [Google Scholar] [CrossRef]
- Hameg, R.; Arteta, T.A.; Landin, M.; Gallego, P.P.; Barreal, M.E. Modeling and Optimizing Culture Medium Mineral Composition for in vitro Propagation of Actinidia arguta. Front. Plant Sci. 2020, 11, 554905. [Google Scholar] [CrossRef]
- Bresinsky, A.; Körner, C.; Kadereit, J.W.; Neuhaus, G.; Sonnewald, U. Strasburger’s Plant Sciences: Including Prokaryotes and Fungi; Springer: Berlin, Heidelberg, 2013; ISBN 978-3-642-15517-8. [Google Scholar]
- Nezami-Alanagh, E.; Garoosi, G.-A.; Landín, M.; Gallego, P.P. Computer-based tools provide new insight into the key factors that cause physiological disorders of pistachio rootstocks cultured in vitro. Sci. Rep. 2019, 9, 9740. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Bhojwani, S.S.; Dantu, P.K. Micropropagation. In Plant Tissue Culture: An Introductory Text; Springer: Uttar Pradesh, India, 2013; pp. 245–274. ISBN 978-81-322-1025-2. [Google Scholar]
- Nezami-Alanagh, E.; Garoosi, G.-A.; Landín, M.; Gallego, P.P. Combining DOE With Neurofuzzy Logic for Healthy Mineral Nutrition of Pistachio Rootstocks in vitro Culture. Front. Plant Sci. 2018, 9, 1474. [Google Scholar] [CrossRef]
- Nikam, T.D.; Mulye, K.V.; Chambhare, M.R.; Nikule, H.A.; Ahire, M.L. Reduction in hyperhydricity and improvement in in vitro propagation of commercial hard fibre and medicinal glycoside yielding Agave sisalana Perr. ex Engelm by NaCl and polyethylene glycol. Plant Cell Tissue Organ Cult. 2019, 138, 67–78. [Google Scholar] [CrossRef]
- Gao, L.; Wang, L.; Sun, Z.; Li, H.; Wang, Q.; Yi, C.; Wang, X. Morusin shows potent antitumor activity for human hepatocellular carcinoma in vitro and in vivo through apoptosis induction and angiogenesis inhibition. Drug Des. Dev. Ther. 2017, 11, 1789–1802. [Google Scholar] [CrossRef] [PubMed]
- Benková, E.; Bielach, A. Lateral root organogenesis—From cell to organ. Curr. Opin. Plant Biol. 2010, 13, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Rédei, K.; Csiha, I.; Keseru, Z.; Rásó, J.; Kamandiné Végh, Á.; Antal, B. Growth and Yield of Black Locust (Robinia pseudoacacia L.) Stands in Nyírség Growing Region (North-East Hungary). Southeast Eur. For. SEEFOR 2014, 5, 13–22. [Google Scholar] [CrossRef]
- Károly, R.; Beatrix, B.; Kiss, T.; Takács, M.; Keserű, Z. Yield and crown structure characteristics in a black locust (Robinia pseudoacacia L.) stand: A case study—Short Communication. J. For. Sci. 2018, 64, 96–100. [Google Scholar] [CrossRef]
- Mereti, M.; Grigoriadou, K.; Nanos, G.D. Micropropagation of the strawberry tree, Arbutus unedo L. Sci. Hortic. 2002, 93, 143–148. [Google Scholar] [CrossRef]
- Daguin, F.; Letouze, R. Ammonium-induced vitrification in cultured tissues. Physiol. Plant 1986, 66, 94–98. [Google Scholar] [CrossRef]
- El-Dawayati, M.M.; Zayed, Z.E. Controlling Hyperhydricity in Date Palm In Vitro Culture by Reduced Concentration of Nitrate Nutrients. In Date Palm Biotechnology Protocols Volume I; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1637, pp. 175–183. ISBN 978-1-4939-7155-8. [Google Scholar]
- Ivanova, M.; Van Staden, J. Effect of ammonium ions and cytokinins on hyperhydricity and multiplication rate of in vitro regenerated shoots of Aloe polyphylla. Plant Cell Tissue Organ Cult. 2008, 92, 227–231. [Google Scholar] [CrossRef]
- Phillips, G.C.; Garda, M. Plant tissue culture media and practices: An overview. In Vitro Cell. Dev. Biol.-Plant 2019, 55, 242–257. [Google Scholar] [CrossRef]
- Driver, J.A.; Kuniyuki, A.H. In Vitro Propagation of Paradox Walnut Rootstock. HortScience 1984, 19, 507–509. [Google Scholar] [CrossRef]
- Rahman, S.S. Establishment of In vitro micropropagation and callus formation protocols for large scale production of Clitoria ternatea L. J. Med. Spice Plants 2017, 22, 136–144. [Google Scholar]
- Polivanova, O.B.; Bedarev, V.A. Hyperhydricity in Plant Tissue Culture. Plants 2022, 11, 3313. [Google Scholar] [CrossRef] [PubMed]
- Puddephat, I.J.; Alderson, P.G.; Wright, N.A. Influence of explant source, plant growth regulators and culture environment on culture initiation and establishment of Quercus robur L. in vitro. J. Exp. Bot. 1997, 48, 951–962. [Google Scholar] [CrossRef]
- Vieitez, A.M.; Corredoira, E.; Ballester, A.; Muñoz, F.; Durán, J.; Ibarra, M. In vitro regeneration of the important North American oak species Quercus alba, Quercus bicolor and Quercus rubra. Plant Cell Tissue Organ Cult. 2009, 98, 135–145. [Google Scholar] [CrossRef]
- Kumar, M.; Sirohi, U.; Malik, S.; Kumar, S.; Ahirwar, G.K.; Chaudhary, V.; Yadav, M.K.; Singh, J.; Kumar, A.; Pal, V.; et al. Methods and Factors Influencing In Vitro Propagation Efficiency of Ornamental Tuberose (Polianthes Species): A Systematic Review of Recent Developments and Future Prospects. Horticulturae 2022, 8, 998. [Google Scholar] [CrossRef]
- Abdelghaffar, A.M.; Soliman, S.S.; Ismail, T.A.; Alzohairy, A.M.; Latef, A.A.H.A.; Alharbi, K.; Al-Khayri, J.M.; Aljuwayzi, N.I.M.; El-Moneim, D.A.; Hassanin, A.A. In Vitro Propagation of Three Date Palm (Phoenix dactylifera L.) Varieties Using Immature Female Inflorescences. Plants 2023, 12, 644. [Google Scholar] [CrossRef] [PubMed]
- Juncker, B.; Favre, J.M. Clonal effects in propagating oak trees via in vitro culture. Plant Cell Tissue Organ Cult. 1989, 19, 267–276. [Google Scholar] [CrossRef]
- Alanagh, E.N.; Garoosi, G.; Haddad, R.; Maleki, S.; Landín, M.; Gallego, P.P. Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models. Plant Cell Tissue Organ Cult. 2014, 117, 349–359. [Google Scholar] [CrossRef]
- Fallah Ziarani, M.; Tohidfar, M.; Navvabi, M. Modeling and optimizing in vitro percentage and speed callus induction of carrot via Multilayer Perceptron-Single point discrete GA and radial basis function. BMC Biotechnol. 2022, 22, 34. [Google Scholar] [CrossRef]
- Amin, N.; Khattak, M.; Ahmad, I.; Ara, N.; Alam, A.; ALI, M. Corm and cormel size of gladiolus greatly influenced growth and development of subsequent corm production. Pak. J. Bot. 2013, 2013, 1407–1409. [Google Scholar]
- Walker, K.A.; Sato, S.J. Morphogenesis in callus tissue of Medicago sativa: The role of ammonium ion in somatic embryogenesis. Plant Cell Tissue Organ Cult. 1981, 1, 109–121. [Google Scholar] [CrossRef]
- Sarropoulou, E.; Sundaram, A.Y.M.; Kaitetzidou, E.; Kotoulas, G.; Gilfillan, G.D.; Papandroulakis, N.; Mylonas, C.C.; Magoulas, A. Full genome survey and dynamics of gene expression in the greater amberjack Seriola dumerili. GigaScience 2017, 6, gix108. [Google Scholar] [CrossRef] [PubMed]
- Salem, J.; Hassanein, A.; El-Wakil, D.A.; Loutfy, N. Interaction between Growth Regulators Controls In Vitro Shoot Multiplication in Paulownia and Selection of NaCl-Tolerant Variants. Plants 2022, 11, 498. [Google Scholar] [CrossRef] [PubMed]
- Chmielarz, P.; Kotlarski, S.; Kalemba, E.M.; Martins, J.P.R.; Michalak, M. Successful In Vitro Shoot Multiplication of Quercus robur L. Trees Aged up to 800 Years. Plants 2023, 12, 2230. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.P.R.; Santos, E.R.; Rodrigues, L.C.A.; Gontijo, A.B.P.L.; Falqueto, A.R. Effects of 6-benzylaminopurine on photosystem II functionality and leaf anatomy of in vitro cultivated Aechmea blanchetiana. Biol. Plant. 2018, 62, 793–800. [Google Scholar] [CrossRef]
- Blakesley, D.; Weston, G.D.; Hall, J.F. The role of endogenous auxin in root initiation: Part I: Evidence from studies on auxin application, and analysis of endogenous levels. Plant Growth Regul. 1991, 10, 341–353. [Google Scholar] [CrossRef]
- Marhavý, P.; Montesinos, J.C.; Abuzeineh, A.; Van Damme, D.; Vermeer, J.E.M.; Duclercq, J.; Rakusová, H.; Nováková, P.; Friml, J.; Geldner, N.; et al. Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation. Genes Dev. 2016, 30, 471–483. [Google Scholar] [CrossRef]
- Hazarika, B.N. Acclimatization of tissue-cultured plants. Curr. Sci. 2003, 85, 1704–1712. [Google Scholar]
- Faria, R.T.D.; Rodrigues, F.N.; Oliveira, L.D.V.R.; Müller, C. In vitro Dendrobium nobile plant growth and rooting in different sucrose concentrations. Hortic. Bras. 2004, 22, 780–783. [Google Scholar] [CrossRef]
- Teixeira Da Silva, J.A.; Hossain, M.M.; Sharma, M.; Dobránszki, J.; Cardoso, J.C.; Zeng, S. Acclimatization of in Vitro-derived Dendrobium. Hortic. Plant J. 2017, 3, 110–124. [Google Scholar] [CrossRef]
- Ziv, M. In vitro hardening and acclimatization of tissue culture plants. In Plant Tissue Culture and its Agricultural Applications; Withers, L.A., Alderson, P.G., Eds.; Butterworths: London, UK, 1986; pp. 187–203. [Google Scholar]
- Miller, D. Weaning and growing-on of micropropagated plants. Proc. Intern. Plant Prop. Soc. 1983, 33, 253–256. [Google Scholar]
- Pocock, S. Procedures and problems associated with the transfer of tissue-cultured plants. Proc. Intern. Plant Prop. Soc. 1983, 33, 316–320. [Google Scholar]
- Short, K.C.; Wardle, K.; Grout, B.W.W.; Simpkins, I. In vitro physiology and acclimatization of aseptically cultured plantlets. In Plant Tissue and Cell Culture Application to Crop Improvement; Novák, F.J., Havel, L., Doležel, J., Eds.; Institute of Experimental Botany of the Czech Academy of Sciences: Prague, Czech Republic, 1984; pp. 475–486. [Google Scholar]
- Wardle, K.; Dobbs, E.B.; Short, K.C. In Vitro Acclimatization of Aseptically Cultured Plantlets to Humidity. J. Am. Soc. Hort. Sci. 1983, 108, 386–389. [Google Scholar] [CrossRef]
- Iliev, I. Techniques for Acclimatization of In Vitro Propagated Plants. Bogdanov, B., Denkova, S., Alexandrov, P., Zhelev, P., Eds.; Propagation of Ornamental Plants; Ministry of Education and Science Publishing House: Sofia, Bulgaria, 1994. [Google Scholar]
Acacia Selection | Height (m) | Diameter at a Height of 1.3 m | Volume (m3) | Height at Which the First Lateral Branch Appears (m) |
---|---|---|---|---|
S1 | 24 | 52 | 2.103 | 17 |
S2 | 22 | 50 | 1.780 | 15 |
S3 | 19 | 46 | 1.310 | 13 |
S4 | 20 | 48 | 1.494 | 14 |
Culture Media Composition | ||||
---|---|---|---|---|
Micro-Elements (mg/L) | Murashige–Skoog | Chée–Pool | Anderson | DKW |
CoCl2·6H2O | 0.025 | 0.025 | 0.025 | |
CuSO4·5H2O | 0.025 | 0.025 | 0.025 | 0.25 |
FeNaEDTA | 36.70 | 36.70 | 73.40 | 44.63 |
H3BO3 | 6.20 | 6.20 | 6.20 | - |
KI | 0.83 | - | 0.30 | 4.80 |
MnSO4·H2O | 16.90 | 0.85 | 16.90 | 33.80 |
Na2MoO4·2H2O | 0.25 | 0.25 | 0.25 | 0.39 |
ZnSO4·7H2O | 8.60 | 8.60 | 8.60 | 17.0 |
Macro-Elements (mg/L) | ||||
Ca(NO3)2 | - | 492.30 | - | - |
KH2PO4 | 170.00 | 170.00 | - | 265.0 |
KNO3 | 1900.00 | 1900.00 | 480.0 | - |
MgSO4 | 180.54 | 180.54 | 180.54 | 361.49 |
NH4NO3 | 1650.00 | 1650.00 | 400.0 | 1416.0 |
CaCl2 | 332.02 | - | 332.02 | 112.50 |
NaH2PO4 | - | - | 330.60 | - |
Ca(NO3)2·2H2O | - | - | - | 1664.64 |
K2SO4 | - | - | - | 1559.0 |
Medium | Acacia Selection | Initiation (%) | Proliferation (%) | Callus Formation (%) | Root Formation (%) |
---|---|---|---|---|---|
Murashige–Skoog | S1 | 85 ± 1.84 a | 28 ± 2.73 bc | 71 ± 3.26 a | - |
S2 | 85 ± 2.34 a | 21 ± 1.23 b | 71 ± 2.24 a | 7 ± 0.23 bc | |
S3 | 85 ± 3.42 a | 21 ± 1.24 b | 64 ± 1.82 a | 14 ± 1.12 ac | |
S4 | 92 ± 2.24 a | 42 ± 2.36 b | 42 ± 2.24 a | 7 ± 0.14 bc | |
Anderson | S1 | 78 ± 2.11 a | 28 ± 3.09 b | 50 ± 2.38 a | - |
S2 | 85 ± 3.12 a | 28 ± 2.12 b | 64 ± 2.12 a | - | |
S3 | 92 ± 2.16 a | 21 ± 2.02 b | 71 ± 3.24 a | - | |
S4 | 92 ± 4.14 a | 42 ± 3.46 b | 64 ± 2.46 a | 7 ± 0.48 bc | |
Chée–Pool | S1 | 78 ± 2.53 a | 50 ± 2.97 b | 35 ± 2.77 b | 21 ± 2.12 ac |
S2 | 85 ± 3.18 a | 57 ± 1.46 b | 28 ± 1.86 b | 21 ± 1.60 ac | |
S3 | 85 ± 1.26 a | 42 ± 3.21 b | 35 ± 2.44 bc | 28 ± 1.60 ac | |
S4 | 92 ± 4.42 a | 64 ± 2.48 a | 42 ± 3.12 ac | 21 ± 1.22 ac | |
DKW | S1 | 85 ± 3.45 a | 78 ± 2.11 a | 42 ± 3.45 b | 21 ± 2.08 ac |
S2 | 85 ± 2.62 a | 85 ± 2.08 a | 21 ± 3.42 b | 28 ± 0.68 ac | |
S3 | 92 ± 4.20 a | 78 ± 1.68 a | 64 ± 4.12 a | 35 ± 1.68 ac | |
S4 | 92 ± 3.26 a | 92 ± 2.82 a | 21 ± 2.42 b | 42 ± 2.24 a |
Variant DKW | AP(mg/L) 1 | AIB (mg/L) 2 | NAA(mg/L) 3 | IAA (mg/L) 4 | |
---|---|---|---|---|---|
Multiplication | T1 | 0.5 | 0.04 | - | - |
T2 | 0.5 | - | 0.04 | - | |
T3 | 0.5 | - | - | 0.04 | |
T4 | 0.5 | - | - | - | |
Rooting | R1 | - | 0.05 | - | - |
R2 | - | 0.1 | - | - | |
R3 | - | - | 0.05 | - | |
R4 | - | - | 0.1 | - |
Phytohormonal Variant (mg/L) | Selection | % of Explants Exhibiting Shoot Proliferation | Average Number of Shoots | Average Height of Shoots (cm) |
---|---|---|---|---|
T1 BAP (0.5 mg/mL) + AIB (0.04 mg/mL) | S1 | 94 ± 3.30 | 3.8 ± 0.12 | 2.6 ± 0.8 |
S2 | 89 ± 2.42 | 4.7± 0.28 | 2.8 ± 0.2 | |
S3 | 92 ± 2.02 | 4.1 ± 0.13 | 2.4± 0.2 | |
S4 | 91 ± 3.32 | 5.2 ± 0.18 | 3.5 ±0.12 | |
Mean T1 | 91.5 ± 2.24 a | 4.45 ± 0.18 a | 2.82 ± 0.42 b | |
T2 BAP (0.5 mg/mL) + NAA (0.04 mg/mL) | S1 | 80 ± 2.40 | 2.8 ± 0.34 | 3.8 ± 0.08 |
S2 | 86 ± 2.37 | 3.4 ± 0.32 | 3.8 ± 0.3 | |
S3 | 88 ± 3.82 | 3.2 ± 0.22 | 3.5 ± 0.22 | |
S4 | 90 ± 2.02 | 3.6 ± 0.21 | 4.2 ± 0.13 | |
Mean T2 | 86 ± 1.86 b | 3.25 ± 0.06 b | 3.82 ± 0.58 a | |
T3 BAP (0.5 mg/mL) + IAA (0.04 mg/mL) | S1 | 92 ± 2.32 | 1.5 ± 0.08 | 2.7 ± 0.08 |
S2 | 90 ± 3.12 | 2.2 ±0.22 | 2.4 ± 0.16 | |
S3 | 91 ± 2.32 | 1.8 ± 0.16 | 2.6 ± 0.2 | |
S4 | 90 ± 1.39 | 2.8 ± 0.14 | 3.2 ± 0.03 | |
Mean T3 | 90.75 ± 1.92 a | 2.07 ± 0.12 c | 2.72 ± 0.08 bc | |
T4 BAP (0.5 mg/mL) | S1 | 78 ± 2.22 | 1.5 ± 0.15 | 1.8 ± 0.2 |
S2 | 74 ± 2.80 | 1.2 ± 0.16 | 2.1 ± 0.12 | |
S3 | 80 ± 2.12 | 1.4 ± 0.14 | 2.4 ±0.23 | |
S4 | 82 ± 2.79 | 1.6 ± 0.04 | 2.4 ± 0.14 | |
Mean T4 | 78.5 ± 2.02 c | 1.42 ± 0.02 d | 2.17 ± 0.12 d |
Phytohormonal Variant (mg/L) | Selection | % of Explants Exhibiting Shoot Proliferation | Average Number of Roots/Explant | Average Length of Roots (cm) |
---|---|---|---|---|
R1 AIB (0.05 mg/L) | S1 | 70 ± 2.02 | 4.5 ± 0.16 | 3.8 ± 0.16 |
S2 | 68 ± 3.12 | 5.0 ± 0.15 | 4.6 ± 0.14 | |
S3 | 82 ± 2.22 | 5.8 ± 0.18 | 3.8 ± 0.05 | |
S4 | 90 ± 2.80 | 5.8 ± 0.11 | 4.2 ± 0.25 | |
Mean R1 | 77.5 ± 2.54 a | 5.27 ± 0.15 a | 4.1 ± 0.15 b | |
R2 AIB (0.1 mg/mL) | S1 | 67 ± 2.02 | 4.6 ± 0.16 | 2.2 ± 0.06 |
S2 | 60 ± 3.32 | 3.8 ± 0.15 | 2.8 ± 0.17 | |
S3 | 86 ± 1.32 | 3.4 ± 0.28 | 2.5 ± 0.14 | |
S4 | 72 ± 3.62 | 3.8 ± 0.14 | 2.9 ± 0.25 | |
Mean R2 | 71.25 ± 2.57 a | 3.9 ± 0.18 b | 2.6 ± 0.15 c | |
R3 NAA (0.05 mg/mL) | S1 | 68 ± 2.38 | 4.7 ± 0.26 | 4.5 ± 0.05 |
S2 | 71 ± 2.52 | 4.6 ± 0.05 | 4.7 ± 0.15 | |
S3 | 67 ± 2.82 | 5.8 ± 0.19 | 4.2 ± 0.2 | |
S4 | 76 ± 1.62 | 5.6 ± 0.09 | 4.8 ± 0.24 | |
Mean R3 | 70.5 ± 2.33 a | 5.17 ± 0.14 a | 4.55 ± 0.12 a | |
R4 NAA 0.1 (mg/mL) | S1 | 68 ± 2.02 | 4.4 ± 0.18 | 4.5 ± 0.14 |
S2 | 66 ± 3.12 | 3.8 ± 0.04 | 4.9 ± 0.25 | |
S3 | 69 ± 1.02 | 4.6 ± 0.12 | 4.4 ± 0.05 | |
S4 | 68 ± 1.82 | 5.1 ± 0.13 | 5.0 ± 0.15 | |
Mean R4 | 67.75 ± 2.32 a | 4.47 ± 0.11 b | 4.7 ± 0.14 a |
PC | Eigenvalue | Cumulative Eigenvalues Explained by Each PC Percentage of Variance | Percentage of Variance Explained by Each PC (%) | Cumulative Percentage of Variance (%) |
---|---|---|---|---|
1 | 3.115 | 3.115 | 77.867 | 77.867 |
2 | 0.442 | 3.557 | 11.052 | 88.919 |
3 | 0.332 | 3.889 | 8.2959 | 97.215 |
4 | 0.111 | 4.000 | 2.7848 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budău, R.; Bei, M.; Onet, C.; Agud, E.; Mintas, O.S.; Timofte, A.I.; Rosan, C.A.; Laslo, V.; Vicas, S.I. In Vitro Propagation of Several Valuable Selections of Robinia pseudoacacia L. as a Fast and Sustainable Source for Wood Production. Sustainability 2023, 15, 15243. https://doi.org/10.3390/su152115243
Budău R, Bei M, Onet C, Agud E, Mintas OS, Timofte AI, Rosan CA, Laslo V, Vicas SI. In Vitro Propagation of Several Valuable Selections of Robinia pseudoacacia L. as a Fast and Sustainable Source for Wood Production. Sustainability. 2023; 15(21):15243. https://doi.org/10.3390/su152115243
Chicago/Turabian StyleBudău, Ruben, Mariana Bei, Cristian Onet, Eliza Agud, Olimpia Smaranda Mintas, Adrian Ioan Timofte, Cristina Adriana Rosan, Vasile Laslo, and Simona Ioana Vicas. 2023. "In Vitro Propagation of Several Valuable Selections of Robinia pseudoacacia L. as a Fast and Sustainable Source for Wood Production" Sustainability 15, no. 21: 15243. https://doi.org/10.3390/su152115243
APA StyleBudău, R., Bei, M., Onet, C., Agud, E., Mintas, O. S., Timofte, A. I., Rosan, C. A., Laslo, V., & Vicas, S. I. (2023). In Vitro Propagation of Several Valuable Selections of Robinia pseudoacacia L. as a Fast and Sustainable Source for Wood Production. Sustainability, 15(21), 15243. https://doi.org/10.3390/su152115243