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Abstract: Increases in urban temperature affect the urban ecological environment and human health
and well-being. In urban morphology, building characteristics are important factors affecting the
land surface temperature (LST). Contemporary research focuses mainly on the effects of land use,
urban tissue configuration, and street networks on the LST, and the effects of building characteristics
on the LST need to be further understood. The mean LST and the urban morphology indicators of a
single grid were calculated via a remote sensing inversion and a spatial analysis, and a geographically
weighted regression (GWR) model was established to explore the influence of the building coverage
ratio (BCR), mean building height (BH_mean), floor area ratio (FAR), and mean sky view factor
(SVF_mean) on the LST. The results show that the correlations between the urban morphology
indicators and the LST at a scale of 100~500 m are of different degrees, and the correlations are more
significant at a scale of 200 m. Therefore, the optimal spatial scale for studying the influence of urban
morphology indicators on the LST is 200 m. The fitting effect of the GWR model is significantly better
than that of the ordinary least squares (OLS) method, and the effects of each indicator on the thermal
environment have spatial non-stationarity. The BCR, BH_mean, FAR, and SVF_mean differ in their
ability to raise and lower the temperature in different spatial zones, and the order of influence is
as follows: BCR > SVF_mean > FAR > BH_mean. This study will provide a reference for the urban
planning of Urumqi.

Keywords: urban morphology; land surface temperature; mono-window algorithm; GWR; Urumqi

1. Introduction

The United Nations Human Settlements Programme (UN-Habitat), in the context of
the topic of climate change, states that the effects of urbanization and climate change are
converging in dangerous ways. Global warming is likely to reach 1.5 ◦C between 2030
and 2052 and will reach approximately 3 ◦C in 2100 based on current national government
commitments [1]. Changes in land use due to urbanization represent one of the main
causes of global warming [2]. In the process of urbanization, natural surfaces are replaced
by impervious surfaces, which reduce latent heat flux and increase heat absorption in
urban areas. The morphology of the urban surface leads to an increase in roughness, which
reduces the urban ventilation performance of the city. In addition, the release of heat from
human activities increases the accumulation of heat. The combined effect of these factors
results in the urban heat island (UHI) effect [3,4]. Serious UHIs will threaten the sustainable
development of cities, reduce thermal comfort, affect the health of urban residents, reduce
urban air quality, and exacerbate urban ecological problems [5–7]. As the largest developing
country in the world, China’s urbanization rate is significantly higher than that of other
developing countries [8], increasing from 17.92% in 1978 to 65.22% in 2022, and is expected
to reach 80% by 2050 [9]. The UHI effect, triggered by the explosion in growth of the
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urban population and massive development and construction, has become a major problem
affecting the ecological environment and sustainable development in China [10]. Therefore,
exploring influencing factors and strategies for mitigating UHI is crucial for improving
residents’ outdoor comfort, reducing energy consumption, minimizing air pollution and
promoting healthy and low-carbon urban development.

Urban morphology refers to the physical characteristics of urban forms, such as the
spatial layout of buildings and the urban landscape and its transformations [11]. Zhang
et al. [12] classified urban morphology indicators into six categories: urban tissue configu-
ration, street networks, building plot characteristics, land use, natural features, and urban
growth. The current research focuses more on urban tissue configuration, street networks,
and land use; research on land use with respect to these three aspects began earlier, and the
results are more abundant. Some examples include the variability in LSTs of different land-
cover-types [13–15] or the effects of landscape patterns on LSTs, referring to quantitative
land-cover-type proportions and structures [16,17]. These previous studies have neglected
the importance of building plot characteristics. Building plot characteristics are important
physical characteristics of urban morphology, and factors such as building density, orienta-
tion, and height affect local and city-scale surface energy balance processes and air flow,
change the thermal environment within the city, and may exacerbate the UHI effect [18].
Chen et al. [19] assessed the influence of urban spatial pattern indicators on the LST from
three dimensions and found that mean building height (MAH) has a cooling effect on the
LST, and the relationship between patch density (PD), the landscape shape index (LSI),
Shannon’s diversity index (SHDI), the contagion index (CONTAG), people density (POD),
FAR, and the LST varies with the seasons. The degree of influence on the LST can be ranked
as follows: building morphology > landscape pattern > social development. Liu et al. [20]
explored the effects of the BCR, building volume density (BVD), and frontal area index (FAI)
on the LST and found that the BCR is an important urban morphology indicator affecting
the LST, followed by BVD and FAI. Zhang et al. [21] showed that three-dimensional (3D)
building forms had a significant effect on the LST, with BD being the most important factor
influencing the LST, and the hierarchy of effects on the LST was as follows: building form
> landscape type > land cover type > social development. Qiao et al. [22] established an
urban ventilation network model (UVNM) to explore the effects of urban morphology and
building height on urban ventilation. The results showed that considering the direction and
frequency of wind in urban design based on urban morphology and building height can
effectively optimize ventilation and adjust urban environmental problems. He et al. [23]
verified that the morphological characteristics of a compact, high-rise gridiron precinct
had strong modification effects on the precinct’s ventilation. The precinct’s ventilation
performance under the influence of a sea breeze could significantly mitigate the UHI and
improve the relative humidity and then significantly improve outdoor thermal comfort.
It has been shown that 3D building plot characteristics are important factors affecting the
LST, but the current research on 3D building plot characteristics is still relatively limited,
and the existing studies mainly focus on subtropical monsoon climate zones and temperate
monsoon climate zones, e.g., Shanghai, Beijing, Guangzhou, etc., while less attention has
been paid to cities in temperate continental arid climate zones.

The Landsat series of satellites has become one of the most effective sources of remote
sensing data in the study of monitoring the state of the land’s surface and changes in the
surface over a long period of time due to the high spatial resolution and spectral information
of the data, as well as its many advantages, such as the continuous observation of the Earth.
The thermal infrared band is also widely used in the monitoring of changes in the LST
because it is sensitive to the thermal radiation information of ground objects [24]. Scholars
have proposed different algorithms for LST inversion, which mainly include the single-
channel method [25], the mono-window algorithm [26], the split-window algorithm [27],
and the atmospheric correction method based on the radiative transfer equation [28]. Some
scholars have proven that the accuracy and inversion precision of the mono-window
algorithm is higher compared to other algorithms [29,30]. Therefore, in this paper, we
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refer to the study by Hu et al. [31] for the LST inversion of the 10th band of the Landsat
OLI/TIRS instruments using the mono-window algorithm.

The research methods for the association between urban morphology and LST include
global linear regression analysis as well as spatial regression analysis. The most commonly
used global linear model is OLS, e.g., Su et al. [32] used a linear regression model to
explore the effects of urban morphology on LST in 266 cities, and the results showed that,
nationwide, LST (in summer) was negatively correlated with urban compactness, boundary
complexity and urban shape, but positively correlated with proximity correlation, and these
effects are different between cities. In recent years, some studies have shown that there
is spatial autocorrelation in LST, the effects of urban morphology indicators on LST vary
spatially, and global linear regression analysis is invalid. Many scholars now use spatial
regression analysis models for research, such as Yin et al. [33], who compared a spatial error
model (SEM) and a spatial lag model (SLM) and found that the parameters of the SEM
model were better than the SLM model. Zhang et al. [34] used least squares with GWR to
assess the relationship between LST and 3D urban morphology at the community level in
Phoenix, Arizona, USA, and demonstrated that GWR further improves compared to OLS
regression model fitting. Spatial regression modeling can reveal the spatial heterogeneity of
urban morphology elements on LST, and therefore, spatial analysis is a more mainstream
approach for such studies.

Based on this, this paper uses remote sensing inversion to decipher the LST in the
central urban area of Urumqi, quantifies the characteristics of urban morphology using
GIS and establishes a GWR model to explore the influence of urban morphology on LST,
with the following research objectives: (1) To use Urumqi, an oasis city in the arid zone of
temperate continental climate, as an example for the inversion of the LST of the central
urban area and the analysis of the characteristics of the spatial distribution of LST in Urumqi
by combining the elements of urban morphology. (2) To find the optimal spatial scale for
the study of the correlation between urban morphology and LST in Urumqi by comparing
the different spatial scales and exploring the spatial distribution of the urban morphology
based on the optimal study scale. (3) To use the GWR model to analyze how the impact
of urban morphology indicators on LST varies spatially. Understanding the influence of
urban morphology on LST at the urban scale will help city managers and planners optimize
the urban thermal environment and promote sustainable urban development.

2. Methods
2.1. Study Area

The city Urumqi (86◦37′33′′~88◦58′24′′ E, 42◦45′32′′~44◦08′00′′ N) is located in the
northern foothills of the middle section of the Tianshan Mountains and the southern edge
of the Junggar Basin and is the capital of the Xinjiang Uygur Autonomous Region, China,
as well as one of the largest arid-zone oasis cities of Central Asia. In terms of climatic
conditions, the city has a mid-temperate continental arid climate with scarce rainfall,
average annual precipitation of 236 mm, short spring and fall seasons, long summer and
winter seasons, and average temperatures of −15.2 ◦C (January) and 25.7 ◦C (July). June,
July, and August are summer months, and the north and northwest winds prevail in the
built-up areas in summer. The Urumqi area is surrounded by mountains on three sides,
with an average elevation of 800 m above sea level, and is now under the jurisdiction of
seven districts and one county: Toutunhe district, Xinshi district, Midong district, Shayibake
district, Shuimogou district, Tianshan district, Dabancheng district, and Urumqi County,
with a total area of 13,800 km2, of which the built-up area is 522 km2. Over the past
20 years, Urumqi has experienced a rapid urbanization process, with GDP increasing from
CNY 315 × 108 in 2001 to CNY 3691.57 × 108 in 2021, and the number of residents in the
populations increasing rapidly from 169.03 × 104 to 407 × 104 during the same period. The
substantial increase in population size, the replacement of natural surfaces with a large
number of impervious surfaces, and the anthropogenic heat generated by human activities
have led to an increase in the overall level of thermal emissions in the city, resulting in
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a series of derivative problems in the thermal environment. The study selected a more
densely built-up area in the center of Urumqi, covering an area of approximately 111.3 km2

(Figure 1), including parts of the Xinshi district, the Midong district, the Shuimogou district,
the Shayibake district, and the Tianshan district.
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2.2. Data Sources and Pre-Processing

The administrative boundary and road network data used in this paper are from the
National Catalogue Service for Geographic Information and Digital Elevation Model (DEM)
data from the Geospatial Data Cloud website. This paper uses Landsat 8 OLI/TIRS image
data sets from the official website of USGS. We selected three images covering the central
urban area of Urumqi on 15 July 2020, 1 July 2021, and 4 July 2022, with transit times of
04:55:47, 04:55:49, and 04:56:10, and Beijing times of 12:55:47, 12:55:49, and 12:56:10, path:
143, row: 29, and the spatial resolution is 30 m. All Landsat images were radiometrically
calibrated and cropped by ENVI 5.3 for predominantly LST inversion. The building vector
data in the center of Urumqi city were obtained from Tianditu (including building height
attributes). ArcGIS 10.2.0.3348 was used to add fields in the data attribute table, and the
footprint area of each building was calculated using the computational geometry tool.
Assuming that the floor height of each building is 3 m, the field calculator is used to
calculate the number of floors of each building and is mainly used to calculate the urban
morphology indicators (Table 1).
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Table 1. List of databases and sources used for this study.

Data Sets Data Resources Spatial Resolution

Administrative boundaries https://www.webmap.cn/ (accessed on 20 January 2023) -
DEM https://www.gscloud.cn/ (accessed on 20 January 2023) 30 m

Road data sets https://www.webmap.cn/ (accessed on 20 January 2023) -
Landsat 8 OLI/TIRS data sets https://earthexplorer.usgs.gov/ (accessed on 15 March 2023) 30 m

Building data sets https://www.tianditu.gov.cn/ (accessed on 27 August 2022) -

2.3. LST Inversion and Grading
2.3.1. Top of Atmosphere (TOA) Spectral Radiance

Radiometric calibration of the thermal infrared band using radiance correction factors
was used to convert DN values to TOA spectral radiances, i.e.,:

Lλ = ML ×Qcal + AL, (1)

where Lλ is the top of atmosphere spectral radiance (W·m−2·sr−1·µm−1) in band λ; ML is
the gain parameter; Qcal is the image DN value (i.e., the gray value); and AL is the offset
parameter, where the ML and AL parameters can be obtained directly from the image
metadata file.

2.3.2. TOA Brightness Temperature

Using the value of the thermal constant in the metadata file, the radiant luminance
was converted to luminance temperature according to Planck’s law, i.e.,:

Tb =
K2

ln
(

K1
Lλ

+ 1
) , (2)

where Tb is theTOA brightness temperature (K); and K1 and K2 are constants. For TIRS
sensor Band 10, K1 = 774.89 (W·m−2·sr−1·µm−1) and K2 = 1321.08 K.

2.3.3. Calculation of Surface-Specific Emissivity

A simpler method of estimating the composition ratio of mixed image elements was
used to determine the surface composition ratio using empirical formulas for the calculation
of surface ratio [35]. For urban areas, we simply categorized them into three types, water
bodies, natural surfaces, and built-up surfaces, so the surface ratio radiance was estimated
for the mixed image scale by the following equation:

ε = PvRvεv + (1− Pv)Rmεm + dε, (3)

where ε is the surface-specific emissivity of the hybrid image element; Pv is the vegetation
cover; Rv is the temperature ratio of the vegetation; Rm is the temperature ratio of the
building surface; εv is the surface-specific emissivity of the vegetation, for the OLI/TIRS
10th band data, εv = 0.98672 and εm = 0.96767; and dε is the radiative correction term,
obtained from the empirical equation:

dε = 0.0038Pv. (4)

Using the results of Qin et al. [36], the temperature-specific emissivity of vegetation
and building surfaces is:

Rv = 0.09332 + 0.585Pv, (5)

Rm = 0.9886 + 0.1287Pv, (6)

https://www.webmap.cn/
https://www.gscloud.cn/
https://www.webmap.cn/
https://earthexplorer.usgs.gov/
https://www.tianditu.gov.cn/
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where the vegetation cover, Pv, can be calculated from the normalized vegetation index
NDVI:

Pv = (NDVI − NDVIS)/(NDVIV − NDVIS). (7)

In the formula, the empirical values of NDVIV = 0.70 and NDVIS = 0.05 from Qin
et al. [33] were used for estimation.

2.3.4. Determination of Atmospheric Transmittance

The atmospheric transmittance was calculated with the website (https://atmcorr.gsfc.
nasa.gov/ accessed on 15 July 2023), using the following procedure: the upper atmospheric
contours utilize the mid-latitude summer standard atmosphere; enter the time of Landsat
8 transit (to the minute), latitude and longitude, temperature (◦C), relative humidity (%),
altitude (km), and barometric pressure (mb) into the website; click on “Calculate” to obtain
the atmospheric transmittance, τ = 0.84 for this study area.

2.3.5. Calculation of the Mean Atmospheric Temperature

Under conditions where the weather is clear and there is no obvious atmospheric
vertical vortex, the mean atmospheric temperature can be approximately calculated from
the surface air temperature. The study area is located in the mid-latitude region, and the
image acquisition time is summer, so we chose:

Ta = 16.0110 + 0.92621T0, (8)

where Ta is the mean atmospheric temperature (K) and T0 is the surface air temperature (K).

2.3.6. LST Calculations

According to Qin et al. [26], the LST in degrees Celsius can be extracted from Landsat
8 OLI/TIRS data as follows:

LST =

{
a× (1− C− D + [b× (1− C− D) + C + D]× Tb − D× Ta)

C

}
− 273.15, (9)

C = τ × ε, (10)

D = (1− τ)[1 + τ(1− ε)], (11)

where a and b are constants, a = −67.355351 and b = 0.458606; Tb is the brightness tempera-
ture (K); Ta is the mean atmospheric temperature (K); τ is the atmospheric transmittance; ε
is the surface specific emissivity; and C and D are calculated for atmospheric transmittance,
τ, and surface specific emissivity, ε.

2.3.7. LST Classification

In order to express the temporal and spatial distribution patterns of the surface heat
field in the study area more intuitively, this paper adopts the standard deviation classifica-
tion method [37] to classify the LST into six levels: low LST zone (LLZ), relatively low LST
zone (RLLZ), medium LST zone (MLZ), relatively high LST zone (RHLZ), high LST zone
(HLZ), and extremely high LST zone (EHLZ). The three-year summer mean LST value is
39.89 ◦C, with a standard deviation of 4.12 ◦C. The specific classification and calculations
are shown in Table 2.

https://atmcorr.gsfc.nasa.gov/
https://atmcorr.gsfc.nasa.gov/
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Table 2. Classification of LST based on standard deviation classification.

Grade Grading Standard Calculation Result

Low LST zone Ts ≤ Tm − 2.5Tstd 6.95 < Ts ≤ 28.82
Relatively low LST zone Tm − 2.5Tstd < Ts ≤ Tm − 1.5Tstd 28.82 < Ts ≤ 32.94

Medium LST zone Tm − 1.5Tstd < Ts ≤ Tm − 0.5Tstd 32.94 < Ts ≤ 37.06
Relatively high LST zone Tm − 0.5Tstd < Ts ≤ Tm + 0.5Tstd 37.06 < Ts ≤ 41.18

High LST zone Tm + 0.5Tstd < Ts ≤ Tm + 1.5Tstd 41.18 < Ts ≤ 45.30
Extremely high LST zone Tm + 1.5Tstd < Ts ≤ Tm + 2.5Tstd 45.30 < Ts ≤ 48.85

Ts represents LST, Tm represents mean LST, Tstd represents standard deviation of LST.

2.4. Selection and Calculation of Indicators

In this study, four urban morphology indicators were selected with reference to the
existing literature [38,39], as well as being based on urban planning regulation, specifically
including BCR, BH_mean, FAR, and SVF_mean within a unit grid (Table 3). These indicators
cover the attribute characteristics of buildings in four aspects, density, height, intensity of
spatial development, and openness of view, and more comprehensively characterize the
built morphology within the city, both horizontally and vertically. Fishnets were created
with the help of ArcGIS 10.2.0.3348 software, calculations were performed with a unit
grid as the smallest study unit, and urban morphology indicators within each grid were
calculated by the field calculator.

Table 3. Definition and calculation formula of urban morphological indicators.

Indicator Definition Computing Formula Description

Building coverage ratio (BCR)
The ratio of total building
footprint area in a unit grid to
unit grid area

BCRi =
Mi
A

Where i is the ith unit grid; M
is the total area of building
footprint in a unit grid; A is
the area of a unit grid(%)

Mean building height
(BH_mean)

The mean height of buildings
in a unit grid BH_meani =

Hi
j

Where H is the sum of the
height of buildings in the ith
unit grid; j is the number of
buildings in a unit grid(m)

Floor area ratio (FAR) The ratio of total floor area to
unit grid area FARi =

∑n
j=1 (E j×Fj

)
A

Where j is the jth building in a
unit grid; E is the floor area of
a building in a unit grid; F is
the number of floors of a
building in a unit grid(%)

Mean sky view factor
(SVF_mean)

The ratio between the
radiation received by a planar
surface and the entire
hemispheric radiating
environment

SVFi = 1−
N
∑

i=1
sin2β

( ai
360◦

)
SVF_meani =

SVFi
n

Where N is the total number
of sectors in the sky
hemisphere that are obscured
by obstacles; βi is the angle of
maximum building height of
each sector; ai is the azimuthal
angle of each sector(%)

2.5. Geographically Weighted Regression Model

GWR is a modeling method proposed by Brunsdon et al. [40] for the spatial non-
stationarity of variables, and it is a more commonly used spatial analysis technique. Based
on nonparametric local weighted regression, the GWR model establishes a local regression
equation at each spatial position in the study area and reflects the changes of dependent
variables at each spatial position through regression coefficients. To a large extent, the GWR
model solves the spatial heterogeneity problem ignored by traditional regression models
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when performing LST downscaling, and it reveals the spatial location differences of local
models [41]. The model equation is:

Yi = β0 (ui, vi) + ∑n
k=1 β(ui, vi) xik + εi (12)

where: Yi denotes the mean LST at the ith position; β0 (ui vi) is a constant term; n represents
the number of urban spatial pattern indicators; xik denotes the value of each urban spatial
pattern indicator at the ith position; βk (ui, vi) is the regression coefficient of each urban
spatial pattern indicator at the ith point; and εi is the random error term at the ith position.

Finally, the workflow framework of this study is shown in Figure 2.
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3. Results
3.1. Selection of Optimal Spatial Scale

In order to find the best spatial scale for the relationship between urban morphology
and LST, we refer to the existing studies and create 100-m, 200-m, 300-m, 400-m, and 500-m
fishnets based on the basal area of the urban buildings, calculate the urban morphology
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indicators in the grids of each scale, and then extract the mean value of the LST of the three
years in the grids. Then, Pearson’s correlation analysis of the five spatial scales for the
urban morphology indicators and the mean LST are carried out (Figure 3). At the 300-m
scale, the correlation between BCR, FAR, and LST is the largest, but the correlation between
SVF_mean is weaker. At the 400-m scale, the correlation between BH_mean, SVF_mean,
and LST is the largest, but the correlation between BCR and FAR is at the back of five
scales, although the correlation between each indicator and LST at 200 m is not the most
significant, but the correlation between four indicators and LST are all significant, so this
paper chose 200 m as the best spatial scale.
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3.2. Distribution Characteristics of LST and Urban Morphology Indicators
3.2.1. Characterization of the LST Spatial Distribution

According to the standard deviation method, the summer LST in the central urban area
of Urumqi was graded and the spatial distribution pattern of LST was analyzed. In summer,
the EHLZ (45.30~48.85 ◦C) accounts for 2.21% of the total area and is distributed piecemeal
(Figure 4). The EHLZ is dominated by low-rise buildings with steel-colored roofs or lighter
colors, densely packed buildings, and less green areas. The HLZ (41.18~45.30 ◦C) accounts
for 26.08% of the total area and is distributed in a piecemeal manner, which consists of large
areas of impermeable surface as well as densely packed medium- to low-rise buildings,
which form fewer shadows under solar irradiation due to limited height, low vegetation
cover, and a large amount of anthropogenic heat emissions. The RHLZ (37.06~41.18 ◦C)
accounts for 53.01% of the total area, which is dominated by medium-rise and high-rise
buildings, mostly in neighborhoods with high levels of greenery, and high-rise buildings
that form shadows under solar irradiation, which reduces the LST to a certain extent. MLZ
(32.94~37.06 ◦C) and RLLZ (28.82~32.94 ◦C) accounted for 12.42% and 2.88% of the total
area, respectively, and were distributed around the LLZ, which is mostly high-rise buildings
with a large spacing of buildings and high level of greenery or well-greened scenic areas.
The LLZ (6.95–28.82 ◦C) accounts for 3.4% of the total area and is mainly found in botanical
gardens and parks, etc., such as Ertong Park, Renmin Park, and Yamalike mountain in the
Shayibake district; Hongshan Park and Shuimogou Park in the Shuimogou district; South
Park in the Tianshan district; and Honghu Campus of Xinjiang University, etc. These areas
are mainly urban parks, squares, and scenic spots, with a high level of greenery, and urban
bodies of water, which indicates that vegetation and water bodies have an obvious cooling
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effect. In general, the summer LST in Urumqi ranges from 6.95 ◦C to 48.85 ◦C, with a wide
temperature range. The summer LST in the central urban area is high, with 81.29% of the
area in the RHLZ and above, and a smaller area in the MLZ, RLLZ, and LLZ.
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3.2.2. Characteristics of the Spatial Distribution of Urban Morphology Indicators

Figure 5 shows the BCR, BH_mean, FAR, and SVF_mean in the central urban area of
Urumqi at a spatial scale of 200 m. The BCR, BH_mean, and FAR show the distribution
characteristics of “high in the middle and low in the surroundings” and the SVF_mean
shows the distribution of “low in the middle and high in the surroundings”. The high BCR
values (>0.57) are mainly distributed in Hualing Mall on the right side of the Hetan road in
the Shuimogou district and on the north and south sides of the outer ring road in the Xinshi
district. Meanwhile, the low BCR values (<0.27) are distributed in the outermost layer,
which is mostly a large area of open spaces, mountains, and farmland, etc. The BH_mean
high values (>22 m) are centrally distributed around the right side of the Hetan road in
Tianshan district and the right side of Baoshan road around the South Railway Station in
Shayibake district, with a large number of high-rise office and residential buildings, and
there are also some high-value distributions in the Xinshi district, which is dominated
by high-rise residential areas; the low BH_mean values (<14 m) are mainly distributed in
the Xinshi, Shayibake, and Midong districts. The FAR high-value (>3.01) area is mainly
distributed in the Tianshan district, and also scattered in the Shayibake district, Shuimogou
district, and Xinshi district, where the buildings are dense and the mean height is high and
the land development intensity is high. The low values (<1.00) are mainly distributed in the
Midong district, Xinshi district, and Shayibake district; the low SVF_mean values (<0.79)
are mainly distributed on both sides of the Hetan road at the border between the Shayibake
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and Tianshan districts, which is mainly a central commercial and residential area; and the
high SVF_mean values (>0.87) are distributed in the fringe zones in the Xinshi district,
Midong district, and Shayibake district. In general, at the 200-m spatial scale, the BCR
in the central urban area of Urumqi is relatively dense; BH_mean is generally low, with
mainly low- and medium-rise buildings; the intensity of land development is strong; and
the SVF_mean is high in most areas and smaller in some areas of the central commercial
area and old residential areas, with an overall trend of a gradual increase from the center to
the surroundings.
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3.3. Analysis of the Impact of Urban Morphology Indicators on LST
3.3.1. Comparison of the OLS and the GWR Model

Using the 100~500-m resolution grid mean LST as the dependent variable and the
urban morphology indicators as the independent variables, the OLS regression model
and the GWR model were established, and the fitting degree of the two models was
compared. Firstly, the OLS model calculates the influence of four urban morphology
indicators on LST, and the variance inflation factor (VIF) is used to determine whether there
is multicollinearity among the variables and whether the VIF values of the independent
variables are all less than 7.5, which indicates that there is no significant multicollinearity
between the independent variables. As can be seen from Table 4, the adjusted R2 of both the
OLS model and the GWR model first increases and then decreases with the increase in the
spatial scale, in which the OLS model achieves the maximum value of 0.119 at a spatial scale
of 400 m. From a global perspective, the variables’ explanatory power of the LST is only
11.9%, and the AICc is larger, which is not a desirable fitting effect. Before establishing the
GWR model, the LST was tested for the existence of spatial autocorrelation, and the global
Moran’s index of the LST was calculated to be 0.432 using ArcGIS 10.2.0.3348 and significant
at the 1% level, which indicates that the grid mean LST has strong spatial autocorrelation
and meets the conditions for carrying out GWR analyses. The R2 of the GWR model
adjusted on the 200-m spatial scale reached a maximum value of 0.396, indicating that the
GWR model has stronger explanatory power than the OLS model, and again indicating
that 200 m is the best spatial scale. By comparing the local regression coefficients of each
urban morphology indicator in the regression results of the GWR model, the results show
that the median and mean of the local regression coefficients take similar values and have
the same sign, which indicates that the effects of the four urban morphology indicators on
LST are more consistent in most regions; at the same time, the changes in of the regression
coefficients reflect the differences and imbalances of the effects of the urban morphology
indicators on LST in the space (Table 5).

Table 4. Comparison between OLS and GWR model.

Scale
OLS GWR

AdjR2 AICc AdjR2 AICc

100 m 0.06 53,203.39 0.380 49,373.13
200 m 0.105 14,669.77 0.396 13,688.73
300 m 0.107 6676.82 0.325 6353.53
400 m 0.119 3763.88 0.284 3629.37
500 m 0.084 2590.84 0.183 2540.70

Table 5. GWR results for mean LST and urban morphology indicators at the 200-m scale.

Indicator Mean Median Min Max S.D.

BCR 6.524 4.837 −6.109 28.442 5.665
BH_mean −0.312 −0.104 −0.523 0.313 0.143

FAR 0.032 0.021 −2.529 3.524 1.047
SVF_mean −1.005 −1.086 −14.660 10.106 4.075

3.3.2. Analysis Based on GWR Models

The visualization of regression coefficients (Figure 6) shows that the effects of BCR,
BH_mean, FAR, and SVF_mean on surface temperature are spatially unstable, and all four
indicators have a certain ability to increase and decrease the temperature and show the
spatial distribution characteristics of agglomeration. According to the regression coefficient,
it can be seen that the degree of influence of the four indicators on LST is BCR > SVF_mean
> FAR > BH_mean. Combining the Baidu map, the distribution characteristics of the urban
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morphology indicators, and the distribution characteristics of LST, we analyze the influence
of the four indicators on LST individually.
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Figure 6. Spatial distribution of regression coefficients of GWR model: (a) regression coefficients
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The BCR showed a significant warming effect in more than 66% of the area, and the
areas with large regression coefficients and strong warming effects were concentrated in
the area around the timber factory overpass in the Xinshi district, east of Aletai road, both
sides of the Hetan road at the junction of the Shayibake and Tianshan districts, and both
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sides of the Kexi road in the Shuimogou district, with a regression coefficient of 18.51,
suggesting that a 1% increase in the BCR within a 200-m grid would result in the grid mean
LST increasing by more than 0.18 ◦C (regression coefficient > 18.51). These areas consist of
densely packed buildings with little distance between them (narrow streets). Any wind
speed in the narrow street will be reduced by the buildings in the surrounding area, so the
air circulation efficiency in the area will be reduced and the LST will be increased to some
extent. Secondly, this area has low vegetation coverage, low reflectance, high heat capacity,
high thermal conductivity, and increased LST. The high traffic flow in this area, the large
amount of vehicle exhaust, human-generated heat, and the inability to diffuse over time are
also reasons for the increase in the LST. Less than 34% of the area has a negative correlation
between BCR and LST, mainly in the north of the outer ring road in the Xinshi district, the
border zone between Shayibake and Shuimogou districts, and the southeast of Tianshan
district, which are characterized by two types of buildings: in the first type, the buildings
are more densely spaced but also have a larger area of greenery, which mitigates a certain
amount of LST; in the second type, the buildings are less densely spaced but have less
greenery, with a high proportion of impermeable surfaces, which caused an elevated LST.

The BH_mean has a significant attenuating effect on the LST, which is due to the
fact that high-rise buildings form larger shadows under the sun’s irradiation, and these
shadows cover the ground surface and reduce the LST. Approximately 91% of the areas
show the feature that the higher the building is, the lower the LST is; for example, both
sides of the airport highway in the Xinshi district, west of the Hetan road, east of the Hetan
Road in Shuimoqou district, and the junction between Shayibake district and Tianshan
district. Approximately 9% of the areas show the phenomenon of warming, such as in the
Shuimoqou district and most of the Xinshi district, which is probably due to the fact that
the areas are mainly populated with low-rise buildings that do not form large shadows,
and the area receiving solar radiation is larger, resulting in a higher LST.

According to the regression coefficient, the FAR has a bidirectional regulating effect on
LST, and the FAR is positively correlated with LST in 54% of the region, such as around the
Botanical Garden and Meiju in the Xinshi district, Hualing in the Shuimogou district, and
around the South Railway Station in the Shayibake district, which is probably due to the fact
that the areas with high building intensities have more buildings, contain more population,
and have more human activities and anthropogenic heat releases, and the higher buildings
used for cooling or heating produce more energy consumption, thus generating a higher
LST. In 46% of the areas, FAR and LST are negatively correlated, probably because, where
the building intensity is not high, there are fewer human activities and less anthropogenic
heat release, e.g., the northwest of Yingbin road in the Xinshi district and the Shuimogou
district. On the other hand, it could also be because the higher the building height in the
area with a larger plot ratio, the larger the shadow area that is formed. Consequently, this
reduces the LST, such as around the Nanmen in the Xinshi district.

For the SVF_mean, approximately 60% of the region’s SVF_mean is negatively corre-
lated with LST and approximately 40% of the region’s SVF_mean is positively correlated
with LST. The impact of SVF_mean on LST is mainly manifested in two ways. First, the
higher the SVF_mean is, the lower the surface temperature is. This is because the more
open the urban buildings are, which is conducive to air flow, the more LST will be reduced.
Second, the higher the SVF_mean, the higher the surface temperature. A higher SVF_mean
indicates that BCR and impervious surfaces are both higher, and more solar radiation
reaches the surface. For example, near the outer ring line of the Shayibake district, the
buildings are dense and the impervious ground area is large and can therefore receive a
large amount of solar radiation, resulting in a high LST.

4. Discussion
4.1. Two Approaches to Optimal Spatial Scale Selection

In the study of the relationship between urban morphology indicators and LST, spatial
scale selection is an important prerequisite. Currently, scholars determine the spatial scale in
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two ways. One method is by establishing multiple resolution fishnets, calculating the mean
LST and urban morphology indicator values in individual grids, and by comparing the
Pearson correlation coefficients between the mean LST and urban morphology indicators
in individual grids, selecting the grid scale where the correlation between the LST and
all the indicators is the largest. By comparing other studies, the optimal spatial scales for
the study of urban morphology and LST are different for different cities; for example, this
study found that 200 m is the optimal scale for the correlation between urban morphology
indicators and LST in Urumqi by comparing five types of resolution grids. Guo et al. [38]
chose ten spatial grid scales (30~570 m), with intervals of 60 m. By comparing the grid
scales of the urban morphology indicators with the mean LST, it was found that 510 m was
the best spatial scale for the correlation between urban morphology indicators and LST in
Chongqing city. By comparing six spatial scales (90~540 m), Yuan et al. [39] found that 450
m was the best scale to study the urban building morphology and LST in Nanjing city. Han
et al. [42] found that 270 m was the best scale to study the urban morphology and LST of
Beijing. Firstly, this may be due to the differences in BCR and BH in each city, which have
different economic levels, and secondly, the topographic and climatic background of the city
may also contribute to the differentiation of the study results. There are also some studies
that show that, even in the same city with different spatial scales, the influence of urban
morphology indicators on LST is different. For example, when Tianjin city is divided into a
120-m scale grid, water body percentage, green land rate, and BH are negative contribution
indicators, while impermeability, SVF, and BCR are positive contribution indicators. FAR
has a bidirectional regulating effect on LST, while when Tianjin city is divided into a 600-
m scale grid, BCR, FAR, and LST are positively correlated. BH and SVF are negatively
correlated with LST [43,44]. This may be due to the fact that, at the 120-m scale, the taller
buildings in some grids block solar radiation, which puts some of the buildings in shadow
and is not conducive to demonstrating more spatial variations in LST. As the spatial scale
increases, the changes caused by spatial variations in the 3D morphology of buildings are
relatively smaller and the buildings are able to demonstrate more spatial variations in LST.
Compared with first-tier cities such as Chongqing, Beijing, and Tianjing, Urumqi has a
sparser BCR and a lower mean BH, so the optimal study scale is smaller than that of the
above cities. The second approach is to explore the relationship between urban morphology
and LST with the community or planning management unit as the smallest research
unit. The planning management unit is the basic unit of urban construction, controlling
land use and development intensity, and plays a very important role in supervising the
implementation management of policies in the planning process [13,45]. The conclusions
obtained by using the planning management unit as a research scale can better guide
urban planning and construction, but the disadvantage is that it is difficult to obtain the
administrative map of the planning and management unit. There are no reports in the
literature as yet to prove which of these two approaches is better, and which should be the
direction for future research.

4.2. Differential Impact of Urban Morphology Indicators on LST in Different Cities

A large number of studies have quantified urban morphology into different indicators
to explore its impact on LST, and the results are different due to the different study areas. In
this paper, we found that all four indicators have different degrees of warming and cooling
effects on LST, such as BCR and FAR having more significant warming effects, while FAR
and SVF show obvious cooling effects in most regions. Zeng et al. [46] found that mean
architecture height, BCR, high-building ratio, vegetation coverage ratio, and architecture
height standard deviation are the main indicators affecting LST, with relative contributions
of 24.8%, 14.9%, 14.7%, 8.2%, and 7.6%, respectively. This is similar to the findings of this
paper. Sun et al. [47] found that, in summer, BCR, BH_mean, mean architecture height
standard deviation (AHSD), and mean architecture projection area (MAPA) were the most
influential factors, which is consistent with some of the findings of this study. The reason
for this is because, in general, the higher the BCR and BH, the poorer the urban ventilation
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performance of the city; it is not easy to emit heat, and when the BH is higher, the SVF
is generally smaller, the FAR value is larger, and the building produces a larger shadow
area under the sun’s irradiation, which reduces the LST. However, there are some pieces
of research that show that the effects of BH, SVF, and FAR, as indicators for LST, are
different from those in this paper. For example, Guo et al. [38] showed that the correlation
between FAR and LST was not significant in Chongqing, which may be due to the fact
that different building plots have the same FAR values, and furthermore, open high-rise
buildings have larger shadows in sunlight, which makes the relationship between FAR and
LST insignificant. Guo et al. [5] found that medium SVF values produce the lowest LST,
while maximum and minimum SVF values produce the highest LST in Guangzhou. The
above studies show that the same urban morphology indicators have different impacts on
the LST in different cities, which is due to different background conditions, such as climatic
conditions, economic levels, and the population size of each city, which leads to different
levels of urban development. The second reason arises on the basis of the first one: the
building layouts of each city are very complex and different, with varying building areas,
heights, and densities, as well as green space areas, impervious surface areas, and other
elements that are combined into a different morphology. Even if the indicators are the same,
the values within the statistical units are different, leading to the variability in the results.

5. Conclusions and Outlook

In this paper, the LST of the central urban area of Urumqi is taken as the study area,
the mono-window algorithm is used to invert the LST of the study area, and the standard
deviation method is used to classify the LST to explore its spatial distribution pattern. It
is found that the LST of Urumqi in summer ranges from 6.95 to 48.85 ◦C, with a large
span of temperature difference, and the LST of the central urban area is on the high side
in summer. The mean LST and urban morphology indicators were calculated by creating
five kinds of resolution grids, from 100 m to 500 m. By comparing Pearson’s correlation
coefficients, it was found that 200 m was the optimal spatial scale for the study of LST and
urban morphology in Urumqi. Based on the OLS model and GWR model to analyze the
relationship between BCR, BH_mean, FAR, SVF_mean, and LST, it is found that the LST
has spatial heterogeneity, the OSL model is not able to reflect the spatial instability of the
urban morphology indicators in relation to the LST, and the GWR model is more suitable
for the study of urban morphology’s influence on the LST. The regression coefficients
of the GWR model show that the four indicators have different warming and cooling
abilities in relation to the LST in different spatial regions. Among them, BCR, FAR, and
SVF_mean have a warming effect on the LST in most areas, and BH_mean has a negative
correlation with the LST and has a cooling effect in most areas. According to the above
results, we have proposed some possible planning suggestions for mitigating the UHI effect
in Urumqi. First, the BCR around Times square in the Tianshan district, Nanhu square in
the Shuimogou district, and Mucaichang market in the Xinshi district should be specially
reduced to promote the circulation and dissipation of anthropogenic heat. Second, in
future urban planning, the shading function of buildings should be effectively used around
Hualing Automobile market in the Shuimogou district and near the botanical garden in the
Xinshi district, thereby appropriately increasing BH and reducing SVF to obtain greater
surface shading and alleviating the UHIs. Finally, in future urban planning, the proportion
of ecological cooling sources, such as water bodies and green spaces, should be reasonably
allocated in high-density building areas such as Youhao road in the Shayibake district and
Renmin square in the Tianshan district, so as to reduce the heat cycle between buildings
and the surrounding landscape and reduce the surrounding temperature. In addition, the
orientation of buildings should be rationally planned with reference to the wind direction
and solar radiation of Urumqi to create a suitable urban ventilation corridor.

In this paper, we studied the effects of BCR, BH_mean, FAR, and SVF_mean on LST
and have drawn some meaningful conclusions, but there are some limitations: (1) this
paper only considers the effect of urban morphology on the summer daytime LST and does
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not consider other seasons; (2) we only selected four urban morphological parameters and
ignored the impact of quantifying urban ventilation performance on LST; (3) we did not
consider the vertical typology based on different combinations or precinct ventilation zone
typology on the basis of the LCZs scheme. These are the directions of potential studies and
need to be further advanced in future work.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/su152115255/s1. Table S1: values of LST_mean, building density,
building height, floor area ratio, and sky view factor at 100-m to 500-m spatial scale.
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