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Abstract: The exponential growth of the Internet of Things has precipitated a revolution in Intelligent
Transportation Systems, notably in urban environments. An ITS leverages advancements in com-
munication technologies and data analytics to enhance the efficiency and intelligence of transport
networks. At the same time, these IoT-enabled ITSs generate a vast array of complex data classified
as Big Data. Traditional data analytics frameworks need help to efficiently process these Big Data
due to its sheer volume, velocity, variety, and significant data privacy concerns. Federated Learning,
known for its privacy-preserving attributes, is a promising technology for implementation within
ITSs for IoT-generated Big Data. Nevertheless, the system faces challenges due to the variable nature
of devices, the heterogeneity of data, and the dynamic conditions in which ITS operates. Recent
efforts to mitigate these challenges focus on the practical selection of an averaging mechanism during
the server’s aggregation phase and practical dynamic client training. Despite these efforts, exist-
ing research still relies on personalized FL with personalized averaging and client training. This
paper presents a personalized architecture, including an optimized Federated Averaging strategy
that leverages FL for efficient and real-time Big Data analytics in IoT-enabled ITSs. Various person-
alization methods are applied to enhance the traditional averaging algorithm. Local fine-tuning
and weighted averaging tailor the global model to individual client data. Custom learning rates
are utilized to boost the performance further. Regular evaluations are advised to maintain model
efficacy. The proposed architecture addresses critical challenges like real-life federated environment
settings, data integration, and significant data privacy, offering a comprehensive solution for modern
urban transportation systems using Big Data. Using the Udacity Self-Driving Car Dataset foe vehicle
detection, we apply the proposed approaches to demonstrate the efficacy of our model. Our empirical
findings validate the superiority of our architecture in terms of scalability, real-time decision-making
capabilities, and data privacy preservation. We attained accuracy levels of 93.27%, 92.89%, and
92.96% for our proposed model in a Federated Learning architecture with 10 nodes, 20 nodes, and
30 nodes, respectively.

Keywords: big data analytics; federated learning; internet of things; smart transportation; intelligent
transportation systems

1. Introduction

The Internet of Things has become a cornerstone in the evolution of a digitally con-
nected world, enabling various sectors to collect and analyze data in real time [1]. By
embedding sensors and software in physical objects, IoT technologies allow for unprece-
dented levels of monitoring and automation, paving the way for more innovative and
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efficient systems [2]. One of the most impactful applications of IoT is in the domain of
Intelligent Transportation Systems. An IoT-enabled ITS aims to optimize traffic flow, im-
prove road safety, and enhance the overall transportation experience for individuals and
logistics providers [3] through interconnected sensors, vehicles, and traffic management
tools. These systems are becoming particularly crucial in urban environments, where man-
aging complex, congested networks is a growing challenge [4]. One of the most formidable
challenges and opportunities posed by IoT-enabled Intelligent Transportation Systems is
generating voluminous and highly complex data, often called Big Data [5]. These systems
employ interconnected sensors, vehicles, traffic lights, and other IoT devices that contin-
uously collect and transmit real-time data. The data can range from vehicle speed and
location to weather conditions, road quality, and driver behavior [6]. The diversity of data
types, including structured, semi-structured, and unstructured data, adds another layer
of complexity.

The data is generated at an unprecedented velocity, requiring rapid processing for
actionable insights. Given the velocity, volume, and variety, which are the three Vs of Big
Data, it becomes evident that traditional data processing systems must be equipped to
handle the complexities of data flow and analytics in an IoT-enabled ITS [7]. This enormous
scale and complexity of data not only necessitate more advanced Big Data analytics but also
makes it imperative to address challenges related to data storage, privacy, integration, and
real-time processing [8]. IoT-enabled ITSs inherently generate colossal amounts of data due
to the continuous real-time collection and transmission of various types of information [9].
This ever-growing mountain of data falls under the category of Big Data, characterized
by its high velocity, volume, and variety [10]. While Big Data provides opportunities for
deep analytics and insights, it also presents many challenges. Traditional data processing
frameworks often need to be revised to handle this data’s sheer scale and complexity, which
requires real-time analysis for actionable insights [11]. Furthermore, integrating disparate
data types and sources adds a layer of complication to the analytical processes. One of the
most pressing challenges in dealing with Big Data from IoT-enabled ITSs is the issue of
data privacy.

Since individual vehicles and devices contribute sensitive information, these data’s
centralized collection and processing raise significant privacy and security concerns [12].
Federated Learning (FL) offers a novel approach to tackling data privacy challenges. In
a federated model, machine learning algorithms are trained across multiple decentral-
ized devices or servers holding local data samples without exchanging them [13]. This
allows for practical model training and ensures that the data remain on the local device,
thereby maintaining individual privacy. FL is a machine learning paradigm where multi-
ple decentralized devices or servers collaboratively train a shared model while keeping
their data locally stored. Unlike the traditional centralized machine learning approach,
FL ensures data privacy by transmitting only model updates, rather than raw data, be-
tween participating entities. This decentralized approach addresses significant privacy
and security concerns, especially in domains with sensitive data. Its core benefit lies in
enabling machine learning on edge devices, preserving data ownership, and minimizing
data transmission overheads.

Big Data analytics using FL offers a transformative approach that addresses critical
challenges like data privacy, scalability, and real-time analysis. By allowing machine
learning models to be trained across multiple decentralized devices or servers, FL eliminates
the need to move data to a central location. This ensures privacy compliance, optimizes
resource usage, and enhances model robustness. Moreover, FL can handle real-time data
analytics, non-IID data distributions, and data imbalance and heterogeneity, making it a
promising solution for future Big Data analytics [14]. FL emerges as a potent solution for
handling Big Data analytics in the context of Big Data produced in the IoT-enabled ITS
environment. ITS produces a wealth of data from various IoT sensors embedded in the
transportation infrastructure and vehicles. FL offers a decentralized approach to model
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training, allowing these devices to perform localized analytics without sending sensitive or
voluminous data to a central server [15].

This addresses data privacy concerns and adds a layer of efficiency and real-time
responsiveness crucial for transportation systems. The localized analytics provided by
FL can lead to more accurate and personalized models, better traffic management, and
enhanced safety measures, positioning FL as a critical enabler for more innovative and
more secure IoT-based ITSs. One well-known constraint in Federated Learning is the
network bandwidth that limits the rate at which local updates from different organizations
can be combined in the cloud. To mitigate this, Fedavg uses local data for gradient descent
optimization before conducting a weighted average aggregation of the models uploaded
by each client. The algorithm proceeds iteratively, updating the global model in each
training round based on the contributions from participating organizations. Given the
challenges mentioned earlier and the opportunities, this paper proposes an improved Big
Data analytics architecture incorporating FL for IoT-enabled ITS. Using FL, our architecture
aims to provide robust, real-time analytics while preserving user privacy. This approach
will lead to more efficient data management in ITS, providing a scalable and effective
solution for modern urban transportation systems. The contributions of this work include:

1. We introduce a Big Data analytics architecture that synergizes FL and IoT-enabled
ITS to address critical issues such as data integration, data processing, and privacy,
offering comprehensive solutions within the architecture.

2. Diverging from conventional Federated Averaging techniques, we introduce a more
personalized algorithm.

3. Various personalization methods are introduced to enhance the FedAvg algorithm,
including local fine-tuning and weighted averaging to tailor the global model to
individual client data; custom learning rates are utilized to boost the performance
further, and regular evaluations are advised to maintain model efficacy.

4. In personalized Federated Averaging, individual contributions from clients are weighted
based on their data volume to utilize the Big Data features and model performance. We
improve the FedProx with FedAvg, which is used for robust aggregation, accounting
for system heterogeneity and stragglers. We deploy advanced adaptive aggrega-
tion techniques that factor in the attributes of client updates for a better-informed
global update.

5. We execute a broad range of tests using real-world data to prove the efficacy of our
suggested strategies.

The remainder of this paper is structured as follows: Section 2 reviews related works
in ITS, Big Data analytics, and Federated Learning. Section 3 describes the proposed
architecture. Section 4 presents our empirical findings. Section 5 provides a discussion on
findings, and Section 6 concludes the paper while providing directions for future research.

2. Literature Review

Big Data analytics involves examining, cleaning, transforming, and modeling data to
discover useful information, draw conclusions, and support decision making. With the
increasing importance of data privacy and distributed data sources, FL is emerging as a
powerful tool that complements traditional Big Data analytics. Utilizing FL techniques
in Big Data analytics allows for decentralized model training across a myriad of data
sources without the need for central data aggregation. This provides an efficient and
privacy-preserving mechanism for harnessing insights from vast amounts of data scattered
across multiple locations or organizations. Unlike traditional machine learning, FL enables
model training across multiple decentralized nodes without requiring raw data to be shared
centrally, thus ensuring data privacy and reducing data movement [16]. One of the main
challenges in Big Data analytics is data privacy. FL stands out as a privacy-preserving
method since it enables model training without requiring raw data to be transferred to a
central server, aligning with privacy regulations like GDPR and HIPAA [17]. Big Data is
often characterized by its enormous volume and the speed at which it is generated. The
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scalability of FL allows it to handle the challenges of Big Data efficiently by facilitating
decentralized training across multiple nodes.

The architecture of FL enables real-time data analytics as data is analyzed at the source,
and no latency is involved in sending the data to a centralized location for processing.
This feature is crucial for applications requiring immediate insights [18]. Traditional Big
Data analytics often requires the assumption that data are independently and identically
distributed (IID). FL can handle non-IID data distributions, enabling more personalized
and accurate model training. Data transfer over the network is resource-intensive [19].
FL alleviates this issue by localizing the data and reducing the need to send data over
the network. Instead, model updates are the only information exchanged, conserving
computational resources [20]. In Big Data analytics, one of the goals is to generalize findings
across diverse and complex datasets. FL contributes to model robustness by aggregating
learning from diverse data sources. The issue of imbalanced and heterogeneous data is
also present in Big Data analytics. FL can adapt to these challenges due to its flexible and
distributed architecture. Federated Learning presents a promising avenue for tackling the
challenges of Big Data analytics, offering solutions for data privacy, scalability, real-time
analysis, and more [21]. Its features complement the goals of Big Data analytics, paving the
way for more secure and efficient data analysis techniques.

The exponential growth of the IoT has precipitated a revolution in ITS, notably in
urban environments. IoT has been a driving force behind significant advancements in
ITS, especially within urban settings. ITS leverages advancements in communication
technologies and data analytics to enhance the efficiency and intelligence of transport
networks. This fusion aims to elevate the intelligence and efficiency of transportation
networks, making them more responsive to the needs of modern urban environments. One
of the groundbreaking integrations in ITS is the incorporation of FL. By leveraging FL, ITS
can enable vehicles and transportation infrastructure to engage in collaborative learning.
This collaboration is pivotal in optimizing traffic flow, enhancing safety protocols, and
improving the overall efficiency of travel routes, as cited in [22]. A standout feature of this
approach is its emphasis on data privacy. Unlike traditional systems, FL ensures that data
generated by individual vehicles or sensors is not required to be sent to a central repository.
Instead, learning and model improvements occur at the edge, ensuring data remains
decentralized. All this is accomplished while ensuring data privacy, as the data generated by
individual vehicles and sensors does not have to be centrally collected to build and improve
the predictive models. The ITS model envisages a network of interconnected vehicles that
communicate with each other and intelligent infrastructure [23]. The envisioned model for
ITS is a highly interconnected network where vehicles are not isolated entities. They are
part of a larger ecosystem, communicating continuously with each other and with smart
infrastructure components. However, implementing such a vision is not without challenges.
These challenges can be broadly categorized into four main areas:

1. System complexity: The intricate nature of ITSs, with multiple components interacting
simultaneously, adds layers of complexity to the system.

2. Model performance: The dynamic and ever-changing environment of ITSs presents
challenges in maintaining consistent model performance. Models that rely solely on
static local intelligence often find adapting to these dynamic changes challenging,
resulting in performance degradation [23].

3. Privacy concerns: Ensuring user and data privacy becomes paramount with the
increasing interconnectivity and data sharing. The dynamic nature of ITSs further
amplifies these concerns. These obstacles are primarily clustered into four critical ar-
eas: system complexity, model performance, privacy concerns, and data management.
The dynamic nature of ITS environments poses a significant hurdle regarding privacy
concerns [24].

4. Data management: As the ITS network expands, so does the number of nodes capable
of processing data. This growth necessitates efficient data management strategies,
especially given the constraints of roadside units. Traditional machine learning tech-
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niques might face difficulties when applied in such scenarios, particularly during
the training phase. The limited data storage capacities of roadside units can hamper
the effectiveness of these techniques. Models built on static local intelligence need
more flexibility to adapt to such changes, leading to a sharp decline in performance.
The growing number of network nodes with data processing capabilities makes data
management a significant concern [25]. Since roadside units have limited resource
availability, special attention must be paid to efficient data storage strategies. Tradi-
tional localized ML techniques may be handicapped during the training phase due to
the constraints in data storage capacity at the roadside units.

Related Work

FedGRU, an algorithm that combines Federated Learning with Gated Recurrent Unit
(GRU) networks, is proposed for privacy-focused traffic flow prediction [26]. This approach
excels in both preserving privacy and prediction accuracy while employing Federated Aver-
aging to reduce communication overhead. In contrast, another study integrates Federated
Learning and blockchain technology to maintain data privacy and integrity in Intelligent
Transport Systems (ITSs), using a blockchain-based smart contract to securely aggregate
threat-detection models trained on individual vehicles securely [27]. However, this ap-
proach shows a slight trade-off with a 7.1% decrease in detection accuracy and precision. A
survey offers a comprehensive overview of combining blockchain and Federated Learning
to address data privacy and security in the Internet of Vehicles (IoVs), identifying key
challenges and future research directions [28]. Similarly, a blockchain-based asynchronous
Federated Learning scheme called DBAFL is introduced for intelligent public transporta-
tion systems [29]. This scheme balances efficiency, reliability, and learning performance
using a committee-based consensus algorithm and a dynamic scaling factor.

A thorough review of Federated Learning applications in Connected and Automated
Vehicles (CAVs) analyzes data modalities, evaluates various applications, and outlines fu-
ture research directions [30]. Another study proposes a contextual client selection pipeline
for Federated Learning in transportation systems, using Vehicle-to-Everything (V2X) mes-
sages to predict latency and select clients accordingly [31]. A Federated Learning framework
designed for autonomous controllers in CAVs is introduced, presenting a novel algorithm
called Dynamic Federated Proximal (DFP) that outperforms traditional machine learning
solutions in various traffic scenarios [32]. Transformation of the Internet of Vehicles into
Intelligent Transportation Systems through advancements like 5G networks is discussed,
identifying key challenges such as scalability and data privacy while proposing Federated
Learning as a solution [33]. A study addresses the non-identical data distribution across
clients in Federated Learning systems, introducing a new FedOT scheme based on the
Optimal Transport theory [34]. Lastly, communication challenges in Federated Learning
within dynamic and dense vehicular networks are addressed, introducing a Communica-
tion Framework for Federated Learning (CF4FL) that reduces training convergence time
by 39% [35].

Federated Optimal Transport (FedOT) is introduced to address data distribution is-
sues in Federated Learning, validated through numerical tests [36]. Selective Federated
Reinforcement Learning (SFRL) aims to improve the efficiency and adaptability of Con-
nected Autonomous Vehicles through a unique selection process, confirmed by extensive
simulations [37]. FedSup employs Bayesian Convolutional Neural Networks for fatigue de-
tection in the Internet of Vehicles, showcasing reduced communication costs and improved
training [38]. Federated Transfer-Ordered-Personalized Learning (FedTOP) is tailored for
driver monitoring, demonstrating improved accuracy, efficiency, and scalability across two
real-world datasets [39,40]. A Hybrid Federated and Centralized Learning (HFCL) frame-
work merges the advantages of federated and centralized learning, achieving up to 20%
higher accuracy and 50% less communication overhead [41]. Driver Activity Recognition
(DAR) is explored through a Federated Learning model, showing competitive performance
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in centralized and decentralized settings while considering data privacy and computational
resources [42].

While the existing body of literature extensively covers various aspects of Big Data
using FL in IoT-enabled ITS, it primarily focuses on privacy and data distribution. However,
a notable gap remains in exploring FL systems’ real-time adaptability and resilience to
dynamic changes in performance and data distribution in vehicular settings. It generally
needs to offer an integrated, IoT-enabled Big Data architecture that addresses data integra-
tion and real-time processing while maintaining data privacy. Moreover, current studies
often rely on generic Federated Averaging techniques, needing a personalized approach
tailored to the unique data characteristics of individual clients in a vehicular network.
Our work fills these critical gaps by introducing a Big Data analytics architecture that
synergizes FL and IoT technologies for a more robust ITS. We diverge from conventional
Federated Averaging techniques by introducing a personalized algorithm enhanced by
local fine-tuning, weighted averaging, and custom learning rates. Custom learning rates
refer to adjusting the learning rate during training rather than using a fixed rate. The
learning rate is a hyperparameter that controls how much to change the model in response
to the estimated error each time the model weights are updated. FL involves training
on multiple decentralized devices or servers (clients) and aggregating the updates on
a central server. The learning rate can be crucial in both the client and server updates.
Additionally, we employ transfer and ensemble learning strategies to optimize pre-existing
models for specialized tasks, thereby improving prediction accuracy. These contributions
are empirically validated through a comprehensive suite of tests using real-world data,
thereby advancing the field by addressing these unmet needs.

3. Proposed Framework

Our proposed architecture is designed to seamlessly equip Big Data analytics with FL
in an IoT-enabled ITS. The proposed approach is a personalized FL approach used to tailor
the global aggregation and averaging for improved performance. Various personalization
methods are utilized to enhance the Federated Averaging (FedAvg) algorithm. Local fine-
tuning and weighted averaging tailor the global model to individual client data. Custom
learning rates are utilized to boost the performance further. Regular evaluations are
advised to maintain model efficacy. Overall, these approaches offer a robust strategy for
personalizing FedAvg. The architecture comprises five major modules or layers, each
addressing specific requirements to ensure robust, real-time analytics while preserving user
privacy. The architecture leverages ensemble techniques to enhance model performance.
The proposed model is depicted in Figure 1.

3.1. Big Data Preprocessing

The first layer of our architecture serves a crucial role in preprocessing the extensive
volume of Big Data generated by IoT-enabled ITSs. In real-world scenarios, data often
comes with a lot of ’noise’ that can adversely affect the performance of machine learning
models. Hence, this step is crucial for maintaining the dataset’s integrity. It is worth
noting that these preprocessing techniques were tailored explicitly for our dataset, which
contained numerous missing values and needed modification to suit the problem of vehicle
detection. These comprehensive preprocessing steps have been vital for preparing the
dataset for further analytics, ensuring quality and making it amenable to solving complex
problems like vehicle detection. This layer consists of four integral sub-modules designed
to address specific challenges:

1. The Missing Values Management sub-module employs a sophisticated imputation
algorithm to address the issue of data gaps. Given that our dataset had many missing
values, this sub-module ensures that the dataset remains comprehensive and reliable
for further analysis.

2. The Data Reduction sub-module comes into play to make the dataset more man-
ageable in size and computational complexity. We utilize advanced techniques like
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Principal Component Analysis (PCA), which reduce the data’s dimensionality and
retain the most critical features and relationships within the dataset. This is particu-
larly important in Big Data analytics, where computational resources could become
a bottleneck.

3. The Data Filtration sub-module is designed to enhance the data quality by using
statistical methods to identify and remove noise and outliers.

4. Data encoding is a critical preprocessing technique in Big Data analytics and machine
learning. It involves converting raw data into a format easily ingested and analyzed
by data algorithms. The primary aim is to transform the data into a form that reduces
complexity and size while retaining the essential features and relationships within the
data. In Big Data, which often involves massive and heterogeneous datasets, encoding
is vital for reducing storage space, improving computational efficiency, and enabling
faster data processing.

IoT-enabled Intelligent Transportation System

Sensors GPSCameras LIDAR Unit

Big Data Repository

Big Data Framework

Radar

MVs Management Data Reduction Encoding Data Filtration

Federated Data Preparation

Federated File Generation Partitions Generation TFF Formation
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Simulating Collaborative Learning Environment
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Figure 1. Proposed Framework.

3.2. Federated Data Preparation

Federated Learning requires data to be in a specific format. This layer transforms the
pre-processed data into a format suitable for FL. The transformation includes data tokeniza-
tion, batching, and serialization. In our methodological framework, we have emphasized
the creation of meta-files, the arrangement of directories, and the strategic segmentation
of data, among other vital activities. Initially, we produced metadata to assist with effi-
cient data mapping processes. Subsequently, our image directories were systematically
organized for effortless data retrieval. With a focus on effective data handling, we divided
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our dataset into discrete ‘shards’ to facilitate experimental operations. We established
ordered dictionaries to guarantee consistent data access. In addition, our dataset was cus-
tom formatted to support Federated Averaging, which is a vital element in FL. Federated
Averaging allows for the aggregation of local model updates from multiple devices in a
decentralized manner, ensuring efficient global model training without compromising data
privacy. Given its significance in FL, our dataset was specifically custom-formatted to align
with the requirements of Federated Averaging, ensuring seamless integration and optimiza-
tion for our FL-based analysis. Beyond that, we constructed a comprehensive directory
hierarchy for image categorization, which aids in more evenly disseminating data across
client devices. Such a structured approach optimizes the dataset and enhances the training
milieu, allowing machine learning algorithms to discern class-specific features better. This
degree of meticulous structuring, whereby images are sorted into separate class-specific
directories, contributes to a decrease in classification errors, ultimately elevating the overall
accuracy and effectiveness of the model. The federated data preparation, including client
map generation, is described as Algorithm 1.

Algorithm 1 Generate Clients Map for Federated Learning

1: procedure GEN_CLIENTS_MAP(train_ds, size, alias)
2: Initialize train_iter as iterator from train_ds
3: Initialize empty ordered dictionary clients_map
4: Compute batch_from_ds = length(train_ds) / size
5: for index_ in 0 to size - 1 do
6: Initialize empty lists data_list, label_list
7: for each batch in batch_from_ds do
8: Retrieve image, label from train_iter.next()
9: Convert label, image to numpy arrays

10: Append image to data_list
11: Append label to label_list
12: end for
13: Create ordered dictionary data with keys ’pixels’ and ’label’
14: Add data to clients_map with key client_alias_index_
15: Clear Keras session
16: end for
17: return clients_map
18: end procedure

3.3. Simulating Collaborative Learning Environment

To mimic real-world applications, a collaborative learning environment is simulated.
This involves:

• The creation of various clients: Various nodes or clients are created to simulate a
distributed environment. A dynamic algorithm is proposed to vary the number of
clients for multiple experiments and verification.

• Data distribution: Data that have been pre-processed and formatted are allocated
across these clients to mimic real-world conditions. A dynamic algorithm is also
introduced to distribute the data among various nodes, allowing for varying data
sizes and samples to be held by different nodes.

Within our FL procedure, we load directories pre-configured with positive, normal,
and overall image data into memory for either the training or testing phase. These direc-
tories serve multiple roles, such as facilitating label assignment, determining batch size,
resizing images, shuffling data, and managing color channels. This ensures optimized
resource use while mitigating the risk of memory overload. By organizing images into
batches for training, we align with FL’s standard practices for data segmentation and enable
targeted performance evaluations, which are vital when dealing with classes of varying
or imbalanced attributes. For the node-mapping aspect of FL, the dataset of images is
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transformed into an ordered dictionary, which allows TensorFlow objects to facilitate the
partitioning of nodes, each receiving a distinct subset of the entire dataset. This function
iterates through the dataset, dividing it into smaller batches that are subsequently allocated
to simulated client nodes. This mimics a dispersed transportation data setting where each
vehicle can access only a fraction of the collective dataset. By disseminating data among
multiple nodes, our methodology replicates authentic FL conditions and supports decen-
tralized model training. Each node conducts training on its specific data subset; afterward,
improvements to the global model are synthesized from all the updates received from the
nodes. This enhances the FL process as a whole. Furthermore, our proposed algorithm has
unique dynamic node creation and data allocation capabilities. The number of nodes can be
dynamically generated through the algorithm, offering flexibility in creating a scalable and
adaptable collaborative learning environment. The process of creating the collaborators is
depicted in Algorithm 2.

Algorithm 2 Creating Collaborators for Federated Learning Round

1: procedure CREATING_COLLABORATORS(dataset, client_data)
2: Initialize Sample Size:
3: Calculate sample_size as half of the total number of client IDs in client_data
4: Sample Clients:
5: Randomly select sample_size number of client IDs without replacement
6: Store these in sampled_clients_ids
7: Generate Sampled Client Datasets:
8: for each client_id in sampled_clients_ids do
9: Generate a TF dataset

10: end for
11: Preprocess Datasets:
12: Preprocess each dataset using preprocess() function
13: Store the preprocessed datasets in sampled_clients_data
14: return sampled_clients_data
15: end procedure

3.4. Client Model Training

Machine learning models, such as MLP, CNN, and VGG16, are deployed for training
within each client. The system’s architecture incorporates two key strategies. First, it
utilizes Transfer Learning by fine-tuning pre-existing models like VGG16 to better suit
the specialized task. Second, it employs Ensemble Learning by integrating the outputs
from multiple models, thereby enhancing the overall prediction accuracy. We employed
Multi-Layer Perceptrons (MLPs) as a foundational algorithm to rigorously validate our
hypotheses. Often referred to as a class of artificial neural networks, an MLP consists of
at least three layers of nodes or neurons: an input layer, one or more hidden layers, and
an output layer. As a supervised learning model, MLPs are trained using labeled data
for tasks like prediction and classification. Each neuron within a layer is interconnected
with every neuron in the following layer via weighted connections. To optimize global
accuracy, we explored a variety of algorithms for different client nodes. We strategically
deployed MLPs in specific client scenarios where we assessed they would yield favorable
outcomes. In parallel, we also implemented other models, like CNN and VGG16, to
enrich our proposed FL framework. Each client model is trained on a local dataset during
the FL collaborative environment simulation, specifically allocated to that client node. By
generating a diverse set of clients, we could closely emulate real-world scenarios. It explains
how these different algorithms perform in a Federated Learning context. Each client’s
learning rates are personalized based on their local loss landscapes. Some nodes benefit
from a faster learning rate, while others might need a slower one for better convergence.
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3.5. Proposed Personalized Server/Global Aggregation

One well-known constraint in FL is the network bandwidth that limits the rate at
which local updates from different organizations can be combined in the cloud. To mit-
igate this, FedAvg uses local data for gradient descent optimization before conducting
a weighted average aggregation of the models uploaded by each node. The algorithm
proceeds iteratively, updating the global model in each training round based on the con-
tributions from participating organizations. Traditional centralized learning approaches
merge data from different organizations into a single database. This results in considerable
communication costs and risks to data privacy. To tackle these challenges, we introduce a
privacy-preserving module equipped with a prediction algorithm for vehicle detection. Our
solution starts by leveraging the FedAvg algorithm for parameter aggregation, collecting
gradient data from various nodes. We then introduce an enhanced version of FedAvg to
minimize communication overhead and perform efficient aggregation. This is particularly
beneficial for large-scale and distributed prediction tasks.

The server layer aggregates the trained models from all clients to create a comprehen-
sive global model. This is carried out using:

• Individual contributions from clients are weighted based on their data volume and
model performance.

• An improvised Federated Proximal algorithm with Federated Averaging is used for
robust aggregation, accounting for system heterogeneity and stragglers.

• Instead of simple averaging, we used weighted averaging, where the weights are
determined based on each client’s data distribution, quality, or performance metrics.
This will give more influence to clients with more relevant or high-quality data.

• In place of straightforward averaging, we deploy advanced aggregation techniques
that factor in the statistical attributes of client updates, such as variance or confidence
intervals, for a better-informed global update.

The aim of using weighted averaging is to consider data’s uneven distribution and
quality across clients. By doing so, we prevent clients with minimal or low-quality data
from dominating the global model update. Instead of uniformly averaging the model
updates from each client, we assigned weights to each client’s update. The weights were
calculated based on the client’s data distribution, quality, and training performance.

Weight Calculation: For client i, let di be its data size, qi represent the quality score
(based on internal metrics), and pi represent its training performance. The weight wi for
the client can be formulated as:

wi = λ × di

∑N
j=1 dj

+ µ × qi + (1 − λ − µ)× pi (1)

wi = λ ×
∑N

j=1 dj

di
+ µ × qi + (1 − λ − µ)× pi (2)

where λ and µ are hyperparameters determining the significance of data size and data
quality, respectively.

The idea behind adaptive aggregation is to consider the variations in model updates
from different clients. By accounting for these attributes, we ensure a robust global model
update. Instead of naive averaging, we integrated the statistical attributes of client updates
to formulate the global update. This method ensures that outliers or divergent updates do
not adversely impact the global model.

Aggregation Formula: Let ui be the model update from client i, and vi be its variance.
The aggregated update U is then computed as:

U =
∑N

i=1 ui

1 + γ × vi
(3)
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U =
∑N

i=1 ui

1 + γ × vi
(4)

where γ is a hyperparameter determining the influence of variance on the aggregation.
Our proposed algorithm for model aggregation combines the client updates to con-

struct a unified global model. This guarantees a well-balanced and precise representation
of data from all collaborating clients. During each communication round, each device
calculates a local update, which is then transmitted to a central server for aggregation. This
loop persists until the model converges or a predefined number of communication rounds
is met. Metrics like training loss and accuracy are diligently tracked in every round. The
FedAvg algorithm not only amalgamates these local updates but also refines the global
model by considering the volume and quality of each client’s data. The study follows
a cyclical training protocol, where each round selectively chooses client data subsets for
training and modifies the server’s status accordingly. Performance indicators like accuracy
are continuously logged, offering a dynamic snapshot of how the model fares over time.
This strategy promotes decentralized and cooperative model training, achieving fairness
and comprehensive data representation. Alongside the standard FedAvg, we also experi-
mented with an optimized version of FedAvg to yield personalized and optimal outcomes.
Additionally, we implemented an advanced version of FedProx to refine global accuracy
further. This allows for a more nuanced and compelling Federated Learning process. The
proposed algorithm is depicted in Algorithm 3.

Algorithm 3 Personalized Federated Averaging Algorithm

1: procedure PERSONALIZED_ALGORITHM(node_data, num_rounds)
2: Initialize Metrics and Optimizers:
3: Define Client and Server optimizer functions
4: Specify Model Input:
5: input_spec = get_input_spec(node_data)
6: Build Federated Averaging Process:
7: Build the federated averaging process using TFF
8: Perform weighted averaging for global model customization
9: Initialize Federated Averaging:

10: Initialize state for federated averaging
11: for round_num in range(num_rounds) do
12: Create federated_train_data
13: Update state and metrics
14: end for
15: Local Fine-Tuning:
16: Fine-tune model locally, utilize custom learning rates
17: Regularly evaluate model for efficacy
18: Clear Session:
19: Clear Keras session
20: return losses, accuracy
21: end procedure

4. Results
4.1. Dataset and Experimental Setup Detail

We employ the re-labeled Udacity Self-Driving Car Dataset provided by Roboflow
for the initial training phase of our models. This dataset comprises 15,000 images of
1280 × 1280 resolution and contains 97,942 annotations across 11 categories. The annota-
tions are designed to be compatible with YOLO formatting and include details such as the
object’s class ID, the coordinates for the center of the object in both X and Y dimensions, and
the dimensions of the bounding box. In our study, we chose the Udacity Self-Driving Car
Dataset due to its comprehensive array of features pertinent to ITSs [43–45]. The dataset’s



Sustainability 2023, 15, 15333 12 of 19

meticulous structure and substantial size make it exceptionally suited for exploring so-
phisticated FL techniques, including Federated Learning algorithms, specifically in vehicle
recognition. We subjected our architectural framework to an exhaustive set of tests to assess
its performance, scalability, and resilience under different conditions. For computational
resources, our setup included an Intel(R) Core (TM) i9 processor operating at 3.20 GHz,
supplemented by 64 GB of RAM and running on a Windows Operating System. Some
computations were also done on Google Collab to corroborate our findings further. Our
experiments were designed within the TensorFlow Federated (TFF) environment, enabling
us to simulate real-world collaborative learning settings for scrutinizing FL algorithms.
All coding tasks were performed in Python, utilizing Jupyter Notebook as our integrated
development environment.

4.2. Experiments and Results

The results from Table 1 are compelling, demonstrating the superior performance
of our proposed personalized approach compared to the standard FedAvg method. In a
simulated real-world collaborative environment featuring 10 nodes, the model’s accuracy
using our proposed approach reached 93.27%, significantly outpacing the standard FedAvg
method, which achieved 87.35% over 50 communication rounds. The results of communi-
cation rounds are depicted in Figure 2. Furthermore, the training loss is also depicted in
Figure 3.

The results presented in Table 2 further validate the effectiveness of our proposed
approach, this time in a more complex federated environment involving 20 nodes. Again,
over 50 communication rounds, our tailored Federated Averaging algorithm significantly
outperforms the standard FedAvg method. While FedAvg achieves an accuracy rate of
87.30%, our proposed approach raises the bar by attaining an accuracy of 92.89%. The
advancement in accuracy is consistent with the objectives in the abstract and previous
findings with 10 nodes. It accentuates the architecture’s scalability, indicating that the
proposed architecture remains robust, efficient, and highly accurate as we increase the
number of nodes participating in the FL system. This scalability is particularly vital for
IoT-enabled ITS, where the number of edge devices and the volume of data they generate
can be highly variable and massive. The accuracy for all communication rounds and the
training loss are depicted in Figure 4 and Figure 5, respectively.

Figure 2. FedAvg vs. proposed model accuracy (10 nodes).
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Figure 3. FedAvg vs. proposed model training loss (10 nodes).

Table 1. Accuracy using 10 Nodes.

Nodes/Collaborators Communication Rounds Approach Accuracy

10 50
FedAvg 87.35%

Proposed 93.27%

Table 2. Accuracy using 20 nodes.

Nodes/Collaborators Communication Rounds Approach Accuracy

20 50
FedAvg 87.30%

Proposed 92.89%

Figure 4. FedAvg vs. proposed model accuracy (20 nodes).
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Figure 5. FedAvg vs. proposed model training loss (20 nodes).

This outcome is statistically significant and practically impactful, especially given the
real-world complexity and privacy concerns embedded in ITS. The improved accuracy with
more clients indicates that the system can adapt to increased complexity and heterogeneity
in the data, typical conditions in expansive urban ITS networks. Our computational setup,
which features robust hardware and advanced data analytics tools, is an ideal test bed for
such multi-node, real-time applications.

The data shown in Table 3 takes our evaluation further by extending the FL environ-
ment to include 30 nodes. Like the previous configurations with 10 and 20 clients, this
scenario also incorporates 50 communication rounds. The proposed Federated Averag-
ing approach again outshines the standard model. FedAvg clocks an accuracy of 87.25%,
whereas our approach leaps forward, achieving an accuracy of 92.96%. The accuracy for all
communication rounds and the training loss using 30 nodes are depicted in Figure 6 and
Figure 7, respectively.

Figure 6. FedAvg vs. proposed model accuracy (30 nodes).
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Table 3. Accuracy using 30 nodes.

Nodes/Collaborators Communication Rounds Approach Accuracy

30 50
FedAvg 87.25%

Proposed 92.96%

Figure 7. FedAvg vs. proposed model training Loss (30 nodes).

In a compelling advancement to our research, we did not just scale the number of
nodes; we also upped the ante by extending the number of communication rounds to
robustly substantiate the efficiency of our groundbreaking model across a more extensive
range of interaction cycles. Table 4 illuminates an intriguing pattern: as we ramp up the
communication rounds our avant-garde model’s accuracy elevates significantly. When
we implemented 30 nodes and conducted 100 communication rounds, the FedAvg model
achieved an accuracy of 87.27%. In contrast, our pioneering approach delivered an impres-
sive accuracy of 93.09%. In a head-to-head comparison, our novel personalized averaging
mechanism for FL outperforms traditional FL algorithms, reinforcing our claim of superior
accuracy. Figures 8 and 9 comprehensively show the accuracy and training loss metrics
across all communication rounds.

Figure 8. FedAvg vs. proposed model accuracy using 100 rounds (30 nodes).



Sustainability 2023, 15, 15333 16 of 19

Table 4. Accuracy using 30 nodes with 100 communication rounds.

Nodes/Collaborators Communication Rounds Approach Accuracy

30 100
FedAvg 87.27%

Proposed 93.09%

Figure 9. FedAvg vs. proposed model training loss using 100 rounds (30 nodes).

This result adds credibility to the architecture’s performance and scalability, demon-
strating that the system maintains high accuracy even as the network complexity grows.
Notably, the accuracy rate remains consistently high across varying numbers of clients: 10,
20, and 30. This demonstrates that the algorithm’s performance remains consistent with
increased network size, a commonly seen pitfall in FL implementations.

5. Discussion

This research aimed to address the challenges arising from the heterogeneity of de-
vices, the dynamic conditions of ITSs, and data privacy concerns in the Big Data landscape.
Our proposed architecture leverages an optimized Federated Averaging strategy to address
these issues effectively, offering a robust solution in terms of scalability, real-time decision
making, and data privacy preservation. Our empirical findings are aligned with these
objectives. The accuracy of 93.27% underscores the model’s proficiency in real-time Big
Data analytics and highlights its capability in a real-life federated environment. This result
further substantiates our claim that personalized approaches to Federated Averaging are
effective and practical for modern ITS utilizing big data. In our study, the primary focus
has been on the accuracy and robustness of the proposed architecture. Our personalized
Federated Averaging method consistently achieved higher accuracy levels compared to
the standard FedAvg, with the top performance being 93.27% accuracy using 30 nodes.
This accentuates the model’s proficiency in real-time Big Data analytics within a federated
environment. In terms of efficiency and convergence speed, our method incorporates
personalization techniques, which, while enhancing accuracy, can occasionally introduce
slightly extended convergence times compared to the standard FedAvg. Nevertheless, the
benefits of the improved accuracy outweigh the marginal increase in training time, espe-
cially when considering the critical nature of decision making in real-world ITS scenarios.
The testing phase for our proposed approach remained comparable in speed to the standard
FedAvg, ensuring timely decision making. Our model balances accuracy and efficiency,
making it a promising solution for modern ITSs utilizing Big Data. Concerning stability, it
is essential to distinguish between brief variations and sustained stability. Although our
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technique shows increased short-term variations post-convergence, its overarching trend
suggests sustained performance dominance over extended durations. The tailored strategy
guarantees that the overarching model stays resilient, even when there is diversity in data
distributions across individual nodes. Notably, the fluctuations we observed are within a
range of 4–5%, without any significant deviations.

The proposed model shows more pronounced fluctuations in loss and accuracy after
convergence compared to the standard FedAvg. This is because of the following factors:

• Personalized learning approach: Our approach diverges from standard Federated
Averaging by incorporating personalized techniques. While this results in better-
tailored models for individual nodes, it can also introduce variability in the global
model, especially when individual client models differ significantly.

• Local fine-tuning and weighted averaging: We employ local fine-tuning and weighted
averaging mechanisms that result in diverse local updates, contributing to oscillations
during global model updates.

• Custom learning rates: As mentioned in the manuscript, we leverage custom learning
rates, which can sometimes lead to more pronounced fluctuations, especially when
the learning rate is not optimally set for some training rounds.

6. Conclusions

This paper tackles the burgeoning challenges posed by the intersection of Big Data
analytics, the Internet of Things (IoT), and ITS. With data volume, variety, and velocity
becoming increasingly formidable, traditional data analytics frameworks must be revised.
Our research fills a significant gap by introducing a comprehensive Big Data analytics archi-
tecture tailored for an IoT-enabled ITS. Leveraging FL, we address pressing data integration
issues, real-time analytics, and privacy concerns. Departing from conventional Federated
Averaging methods, we champion a more personalized approach that refines global models
to suit individual client data better. This personalization is achieved through innovative
techniques, including local fine-tuning, weighted averaging, and custom learning rates.
Transfer and ensemble learning approaches further amplify the model’s accuracy and
robustness. Empirical validations using the Udacity Self-Driving Car Dataset underline
the efficacy of our architecture in terms of scalability, real-time decision making, and data
privacy preservation. Overall, this work advances the state of the art in FL and ITS. It
sets a new standard for how personalized, real-time Big Data analytics can be effectively
conducted in complex, dynamic urban transportation environments. We attained accuracy
levels of 93.27%, 92.89%, and 92.96% for our proposed model in a Federated Learning
architecture with 10 nodes, 20 nodes, and 30 nodes, respectively. This is particularly note-
worthy given the consistently high accuracy maintained across different client counts, be
it 10, 20, or 30, showcasing the algorithm’s resilience even as the network’s complexity
escalates. This constancy in performance, even with an expanding network size, signifies
a remarkable deviation from typical pitfalls observed in FL systems. The architecture we
present, fortified by an optimized Federated Averaging strategy, offers a potent solution for
data privacy.
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