Effect of Drying Methods on Chemical Profile of Chamomile (Matricaria chamomilla L.) Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth and Drying Methodology
- drying in the sun (temperature around 30 °C for 4 days)—SUN;
- drying in the shade (average temperature of 20–25 °C for 7 days)—SH;
- drying in the dryer (Memmert, model UNE 200) (temperature of 105 °C for 24 h)—D;
- drying in the climatic chamber (Memmert, model ICH L eco) (temperature of 60 °C for 48 h)—KK60.
2.2. Polyphenols and Antioxidant Activity Measurements
2.3. Gas Chromatography–Mass Spectrometry (GC/MS) Analysis of Essential Oils and n-Hexane Chamomile Extracts
2.4. Statistics
3. Results and Discussion
3.1. Dried Sample Characteristics
3.2. Polyphenols and Antioxidant Activity
3.3. Essential Oils
3.4. Volatile Compounds Extracted by n-Hexane
3.5. Relationship between Drying Methods and Metabolomics Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chauhan, R.; Singh, S.; Kumar, V.; Kumar, A.; Kumari, A.; Rathore, S.; Kumar, R.; Singh, S. A Comprehensive Review on Biology, Genetic Improvement, Agro and Process Technology of German Chamomile (Matricaria chamomilla L.). Plants 2022, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Kolanos, R.; Stice, S.A.; Gupta, R.C.; Lall, R.; Srivastava, A. German Chamomile in Nutraceuticals, 2nd ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 757–772. [Google Scholar]
- Schilcher, H.; Imming, P.; Goeters, S. Pharmacology and toxicology. In Chamomile Industrial Profiles; Franke, R., Schilcher, H., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 251–265. [Google Scholar]
- Silva, N.; Barbosa, L.; Seito, L.; Fernandes, A., Jr. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Nat. Prod. Res. 2012, 26, 1510–1514. [Google Scholar] [CrossRef] [PubMed]
- Carnat, A.; Carnat, A.P.; Fraisse, D.; Ricoux, L.; Lamaison, J.L. The aromatic and polyphenolic composition of Roman camomile tea. Fitoterapia 2004, 75, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, P. Complementary, holistic, and integrative medicine: Chamomile. Pediatr. Rev. 2007, 28, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Sebai, H.; Jabri, M.A.; Souli, A.; Rtibi, K.; Selmi, S.; Tebourbi, O. Antidiarrheal and antioxidant activities of chamomile (Matricaria recutita L.) decoction extract in rats. J. Ethnopharmacol. 2014, 152, 327–332. [Google Scholar] [CrossRef]
- Patel, D.; Shukla, S.; Gupta, S. Apigenin and cancer chemoprevention: Progress, potential and promise. Int. J. Oncol. 2007, 30, 233–245. [Google Scholar] [CrossRef]
- Martens, D. Chamomile: The herb and the remedy. J. Chiropr. Acad. Homeopathy 1995, 6, 15–18. [Google Scholar]
- Awang, D.V.C. Tyler’s Herbs of Choice: The Therapeutic Use of Phytomedicinals; Taylor and Francis Group: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2006; p. 292. [Google Scholar]
- Sándor, Z.; Mottaghipisheh, J.; Veres, K.; Hohmann, J.; Bencsik, T.; Horváth, A. Evidence supports tradition: The in vitro effects of roman chamomile on smooth muscles. Front. Pharmacol. 2018, 9, 323. [Google Scholar] [CrossRef]
- Dai, Y.-L.; Li, Y.; Wang, Q.; Niu, F.-J.; Li, K.-W.; Wang, Y.-Y.; Wang, J.; Zhou, C.-Z.; Gao, L.-N. Chamomile: A Review of Its Traditional Uses, Chemical Constituents, Pharmacological Activities and Quality Control Studies. Molecules 2023, 28, 133. [Google Scholar] [CrossRef]
- Raal, A.; Orav, A.; Püssa, T.; Valner, C.; Malmiste, B.; Arak, E. Content of essential oil, terpenoids and polyphenols in commercial chamomile (Chamomilla recutita L. Rauschert) teas from different countries. Food Chem. 2012, 131, 632–638. [Google Scholar] [CrossRef]
- Maschi, O.; Dal Cro, E.; Galli, G.V.; Caruso, D.; Bosisio, E.; Dell Agli, M. Inhibition of human cAMP-Phosphodiesterase as a mechanism of the spasmolytic effect of Matricaria recutita L. J. Agric. Food Chem. 2008, 56, 5015–5020. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, J.K.; Gupta, S. Extraction characterization stability and biological activity of flavonoids isolated from chamomile flowers. Mol. Cell. Pharmacol. 2009, 1, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, J.; Timothy, D.; Durance, T.D.; Wang, R. Porous scaffold of gelatin–starch with nanohydroxyapatite composite processed via novel microwave vacuum drying. Acta Biomater. 2008, 4, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Ferdinand, V.; Siow, L.-S. Effect of drying methods on yield, physicochemical properties, and total polyphenol content of chamomile extract powder. Front. Pharmacol. Sec. Ethnopharmacol. 2022, 13, 1–8. [Google Scholar] [CrossRef]
- Žlabur, J.Š.; Žutić, I.; Radman, S.; Pleša, M.; Brnčić, M.; Barba, F.J. Effect of different green extraction methods and solvents on bioactive components of chamomile (Matricaria chamomilla L.) flowers. Molecules 2020, 25, 810. [Google Scholar] [CrossRef]
- Abbas, A.M.; Seddik, M.A.; Gahory, A.-A.; Salaheldin, S.; Soliman, W.S. Differences in the aroma profile of chamomile (Matricaria chamomilla L.) after different drying conditions. Sustainability 2021, 13, 5083. [Google Scholar] [CrossRef]
- Abutaleb, M.; Ragab, T.I.; Abdeldaim, Y.; Mohamed, A. Effect of new solar-drying designs for chamomile essential oil yield and its chemical constituents in Egypt. Arab Univ. J. Agric. Sci. 2021, 29, 375–385. [Google Scholar] [CrossRef]
- Molnar, M.; Mendešević, N.; Šubarić, D.; Banjari, I.; Jokić, S. Comparison of various techniques for the extraction of umbelliferone and herniarin in Matricaria chamomilla processing fractions. Chem. Cent. J. 2017, 11, 78. [Google Scholar] [CrossRef]
- Borsato, A.V.; Doni-Filho, L.; Ahrens, D.C. Drying of chamomile [Chamomilla recutita (L.) Raeuchert] under five air temperatures. Rev. Bras. De Plantas Med. 2005, 7, 77–85. [Google Scholar]
- Hamrouni-Sellami, I.; Wannes, W.A.; Bettaieb, I.; Berrima, S.; Chahed, T.; Marzouk, B. Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods. Food Chem. 2011, 126, 691–697. [Google Scholar] [CrossRef]
- Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Zhou, Y. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared. Radiation. LWT Food Sci. Technol. 2015, 64, 759–766. [Google Scholar] [CrossRef]
- Stockdale, E.A.; Lampkin, N.H.; Hovi, M. Agronomic and environmental implications of organic farming systems. Adv. Agron. 2001, 70, 261–327. [Google Scholar]
- Lee, L. Sustainability: Living within one‘s own ecological means. Sustainability 2009, 1, 1412–1430. [Google Scholar]
- Beckford, C.; Campbell, D.; Barker, D. Sustainable Food Production Systems and Food Security: Economic and Environmental Imperatives in Yam Cultivation in Trelawny, Jamaica. Sustainability 2011, 3, 541–561. [Google Scholar] [CrossRef]
- Japundžić-Palenkić, B.; Benković, R.; Benković-Lačić, T.; Antunović, S.; Japundžić, M.; Romanjek Fajdetić, N.; Mirosavljević, K. Pepper Growing Modified by Plasma Activated Water and Growth Conditions. Sustainability 2022, 14, 15967. [Google Scholar] [CrossRef]
- Benković-Lačić, T.; Japundžić Palenkić, B.; Mirosavljević, K.; Rakić, M.; Obradović, V.; Japundžić, M.; Benković, R. Morphological, pomological, and nutritional value of wild and cultivated rosehip (Rosa canina L.) genotypes in Slavonia, Croatia. Acta Agrobot. 2022, 75, 1–19. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics witphosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 4th ed.; Council of Europe: Strasbourg, France, 2004; pp. 2377–2378. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Cavar Zeljkovic, S.; Komzakova, K.; Siskova, J.; Karalija, E.; Smekalova, K.; Tarkowski, P. Phytochemical variability of selected basil genotypes. Ind. Crops Prod. 2020, 157, 112910. [Google Scholar] [CrossRef]
- Harbourne, N.; Jacquier, J.C.; O’Riordan, D. Optimisation of the extraction and processing conditions of chamomile (Matricaria chamomilla L.) for incorporation into a beverage. Food Chem. 2009, 115, 15–19. [Google Scholar] [CrossRef]
- Salamon, I.; Ibraliu, A.; Kryvtsova, M. Essential Oil Content and Composition of the Chamomile Inflorescences (Matricaria recutita L.) Belonging to Central Albania. Horticulturae 2023, 9, 47. [Google Scholar] [CrossRef]
- Aćimović, M.; Lončar, B.; Kiprovski, B.; Stanković Jeremić, J.; Todosijević, M.; Pezo, L.; Jeremić, J. Chamomile essential oil quality after postharvest separation treatments. Rataratvo I Povrtlarstvo 2021, 58, 72–78. [Google Scholar] [CrossRef]
- Satyal, P.; Shrestha, S.; Setzer, W.N. Composition and Bioactivities of an (E)-β-Farnesene Chemotype of Chamomile (Matricaria chamomilla) Essential Oil from Nepal. Nat. Prod. Commun. 2015, 10, 1453–1457. [Google Scholar] [CrossRef]
- Hajaji, S.; Sifaoui, I.; López-Arencibia, A. Leishmanicidal activity of α-bisabolol from Tunisian chamomile essential oil. Parasitol. Res. 2018, 117, 2855–2867. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Babaeian Jelodar, N.; Modarresi, M.; Bagheri, N.; Jamali, A. Increase of Chamazulene and α-Bisabolol Contents of the Essential Oil of German Chamomile (Matricaria chamomilla L.) Using Salicylic Acid Treatments under Normal and Heat Stress Conditions. Foods 2016, 5, 56. [Google Scholar] [CrossRef]
- Franz, C.; Voemel, A.; Hoelzl, J. Variation in the essential oil of Matricaria chamomilla depending on plant age and stage of development. Acta Hortic. 1978, 73, 229–238. [Google Scholar] [CrossRef]
- Kumar, S.; Das, M.; Singh, A.; Ram, G.; Mallavarapu, G.R.; Ramesh, S. Composition of the essential oils of the flowers, shoots and roots of two cultivars of Chamomilla recutita. J. Med. Aromat. Plant Sci. 2001, 23, 617–623. [Google Scholar]
- Yoshinari, T.; Yaguchi, A.; Takahashi-Ando, N.; Kimura, M.; Takahashi, H.; Nakajima, T.; Sugita-Konishi, Y.; Nagasawa, H.; Sakuda, S. Spiroethers of German chamomile inhibit production of aflatoxin G and trichothecene mycotoxin by inhibiting cytochrome P450 monooxygenases involved in their biosynthesis. FEMS Microbiol. Lett. 2008, 284, 184–190. [Google Scholar] [CrossRef]
- Azizi, M.; Rahmati, M.; Ebadi, T.T.; Hasanzadeh, M. The effects of different drying methods on weight loss rate, essential oil and chamazolene contents of chamomile (Matricaria recutita) flowers. Iran. J. Med. Aromat. Plants 2009, 25, 192–201. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benković-Lačić, T.; Orehovec, I.; Mirosavljević, K.; Benković, R.; Ćavar Zeljković, S.; Štefelová, N.; Tarkowski, P.; Salopek-Sondi, B. Effect of Drying Methods on Chemical Profile of Chamomile (Matricaria chamomilla L.) Flowers. Sustainability 2023, 15, 15373. https://doi.org/10.3390/su152115373
Benković-Lačić T, Orehovec I, Mirosavljević K, Benković R, Ćavar Zeljković S, Štefelová N, Tarkowski P, Salopek-Sondi B. Effect of Drying Methods on Chemical Profile of Chamomile (Matricaria chamomilla L.) Flowers. Sustainability. 2023; 15(21):15373. https://doi.org/10.3390/su152115373
Chicago/Turabian StyleBenković-Lačić, Teuta, Iva Orehovec, Krunoslav Mirosavljević, Robert Benković, Sanja Ćavar Zeljković, Nikola Štefelová, Petr Tarkowski, and Branka Salopek-Sondi. 2023. "Effect of Drying Methods on Chemical Profile of Chamomile (Matricaria chamomilla L.) Flowers" Sustainability 15, no. 21: 15373. https://doi.org/10.3390/su152115373
APA StyleBenković-Lačić, T., Orehovec, I., Mirosavljević, K., Benković, R., Ćavar Zeljković, S., Štefelová, N., Tarkowski, P., & Salopek-Sondi, B. (2023). Effect of Drying Methods on Chemical Profile of Chamomile (Matricaria chamomilla L.) Flowers. Sustainability, 15(21), 15373. https://doi.org/10.3390/su152115373