Production and Evaluation of Pleurotus spp. Hybrids Cultivated on Ecuadorian Agro-Industrial Wastes: Using Multivariate Statistical Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Activation of Fungal Strains
2.2. Recovery of Neohaplonts by Dedikaryotization of Fungal Strains
2.3. Identification of the Compatibility Types of Neohaplonts and Pleurotus spp. Hybrid Strains Production
2.4. Substrate Preparation and Induction of Fungal Fruiting
2.5. Mushroom Productivity Parameters
2.6. Nutritional Composition of Mushrooms
2.7. Color Determination of Carpophores
2.8. Statistical Analysis
Biplot Graph
3. Results and Discussion
3.1. Formation of Hybrid Strains
3.2. Productivity Parameters
Principal Component Analysis
3.3. Chemical Composition of Fruiting Bodies
Principal Component Analysis
3.4. Color of Fruiting Bodies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haque, F.; Fan, C.; Lee, Y.-Y. From Waste to Value: Addressing the Relevance of Waste Recovery to Agricultural Sector in Line with Circular Economy. J. Clean. Prod. 2023, 415, 137873. [Google Scholar] [CrossRef]
- Bhatt, R.; Giang, A.; Kandlikar, M. Incentivizing Alternatives to Agricultural Waste Burning in Northern India: Trust, Awareness, and Access as Barriers to Adoption. Environ. Syst. Decis. 2023, 43, 358–370. [Google Scholar] [CrossRef]
- Shinde, R.; Shahi, D.K.; Mahapatra, P.; Naik, S.K.; Thombare, N.; Singh, A.K. Potential of Lignocellulose Degrading Microorganisms for Agricultural Residue Decomposition in Soil: A Review. J. Environ. Manag. 2022, 320, 115843. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Ayesha, S.; Pavithra, K.P.; Malsawmtluangi, M.M. Growth and Nutritional Indices of Oyster Mushroom (Pleurotus ostreatus) on Different Substrates. Curr. Trends Biotechnol. Pharm. 2021, 15, 365–372. [Google Scholar] [CrossRef]
- Sánchez, C. Cultivation of Pleurotus ostreatus and Other Edible Mushrooms. Appl. Microbiol. Biotechnol. 2010, 85, 1321–1337. [Google Scholar] [CrossRef]
- Salazar-Cerezo, S.; de Vries, R.P.; Garrigues, S. Strategies for the Development of Industrial Fungal Producing Strains. J. Fungi 2023, 9, 834. [Google Scholar] [CrossRef]
- Miles, P.G.; Raper, J.R. Recovery of the Component Strains from Dikaryotic Mycelia. Mycologia 1956, 48, 484–494. [Google Scholar] [CrossRef]
- Eger, G.; Eden, G.; Wissig, E. Pleurotus ostreatus—Breeding Potential of a New Cultivated Mushroom. Theoret. Appl. Genet. 1976, 47, 155–163. [Google Scholar] [CrossRef]
- Zied, D.C.; Caitano, C.E.C.; Pardo-Gimenez, A.; Dias, E.S.; Zeraik, M.L.; Pardo, J.E. Using of Appropriated Strains in the Practice of Compost Supplementation for Agaricus subrufescens Production. Front. Sustain. Food Syst. 2018, 2, 26. [Google Scholar] [CrossRef]
- Zied, D.C.; Prado, E.P.; Dias, E.S.; Pardo, J.E.; Pardo-Gimenez, A. Use of Peanut Waste for Oyster Mushroom Substrate Supplementation—Oyster Mushroom and Peanut Waste. Braz. J. Microbiol. 2019, 50, 1021–1029. [Google Scholar] [CrossRef]
- Sánchez, C. Lignocellulosic Residues: Biodegradation and Bioconversion by Fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Levanon, D.; Rothschild, N.; Danai, O.; Masaphy, S. Bulk Treatment of Substrate for the Cultivation of Shiitake Mushrooms (Lentinus edodes) on Straw. Bioresour. Technol. 1993, 45, 63–64. [Google Scholar] [CrossRef]
- INEC. 2018: Seis Cultivos con Mayor Producción en Ecuador; Instituto Nacional de Estadística y Censos: Quito, Ecuador, 2019. Available online: https://www.ecuadorencifras.gob.ec/2018-seis-cultivos-con-mayor-produccion-en-ecuador/ (accessed on 10 August 2023).
- CINCAE. Utilización de Subproductos de la Caña de Azúcar y de la Industria Alcoholera Ecuatoriana para uso en la Fertilización en los Cultivos de Caña; Centro de Investigación de la Caña de Azúcar del Ecuador: El Triunfo, Ecuador, 2013; Available online: https://cincae.org/utilizacion-de-subproductos-de-la-cana-de-azucar-y-de-la-industria-alcoholera-ecuatoriana-para-uso-en-la-fertilizacion-en-los-cultivos-de-cana/ (accessed on 10 August 2023).
- Vera-Rodríguez, J.H.; Medranda-Parraga, T.L.; Siguencia-Chuya, J.A.; Mendieta-Franco, R.A.; Pérez-Guallpa, M.J. Caracterización nutricional de los residuos orgánicos en la caña de azúcar del cantón La Troncal. Hombre Cienc. Tecnol. 2021, 25, 110–119. [Google Scholar]
- Statista. Banana Production Volume in Ecuador. 2021. Available online: https://www.statista.com/statistics/1054054/ecuador-banana-production-volume/ (accessed on 10 August 2023).
- Motta, G.E.; Angonese, M.; Ayala Valencia, G.; Ferreira, S.R.S. Beyond the Peel: Biorefinery Approach of Other Banana Residues as a Springboard to Achieve the United Nations’ Sustainable Development Goals. Sustain. Chem. Pharm. 2022, 30, 100893. [Google Scholar] [CrossRef]
- Marín, A.; Carías, D.; Cioccia, A.M.; Hevia, P. Valor nutricional de los follajes de musa paradisiaca y clitoria ternatea como diluyentes de raciones para pollos de engorde. Interciencia 2003, 28, 50–56. [Google Scholar]
- Leal-Lara, H.; Eger-Hummel, G. A Monokaryotization Method and Its Use for Genetic Studies in Wood-Rotting Basidiomycetes. Theor. Appl. Genet. 1982, 61, 65–68. [Google Scholar] [CrossRef]
- Arita, I. The Mechanism of Spontaneous Dedikaryotization in Hyphae of Pholiota Nameko. Mycologia 1979, 71, 603. [Google Scholar] [CrossRef]
- Guadarrama-Mendoza, P.C.; del Toro, G.V.; Ramírez-Carrillo, R.; Robles-Martínez, F.; Yáñez-Fernández, J.; Garín-Aguilar, M.E.; Hernández, C.G.; Bravo-Villa, G. Morphology and Mycelial Growth Rate of Pleurotus spp. Strains from the Mexican Mixtec Region. Braz. J. Microbiol. 2014, 45, 861–872. [Google Scholar] [CrossRef]
- Valencia del Toro, G.; Leal-Lara, H. Fruit Body Color in Pleurotus spp. Hybrid Strains Obtained by Matings of Compatible Neohaplonts. In Proceedings of the 4th International Conference on Mushroom Biology and Mushroom Products, Cuernavaca, Mexico, 20–23 February 2002; pp. 151–159. [Google Scholar]
- Valencia del Toro, G.; Ramírez-Ortiz, M.E.; Flores-Ramírez, G.; Costa-Manzano, M.R.; Robles-Martínez, F.; Garín-Aguilar, M.E.; Leal-Lara, H. Efecto Del Bagazo de Yucca Schiedigera En El Sustrado Del Hongo Ostra Sobre Los Parámetros de Cultivo y La Calidad de Los Cuerpos Fructifero. Rev. Mex. Ing. Quim. 2018, 17, 835–846. [Google Scholar] [CrossRef]
- Salmones, D.; Gaitán-Hernández, R.; Pérez, R.; Guzmán, G. Estudios sobre el género Pleurotus. VIII. Interacción entre crecimiento micelial y productividad. Rev. Iberoam. Micol. 1997, 14, 173–176. [Google Scholar]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Lau, O. Methods of Chemical Analysis of Mushrooms. In Tropical Mushrooms. Biological Nature and Cultivation Methods; Chang, S.T., Quimio, T.H., Eds.; The Chinese University Press: Hong Kong, China, 1982; pp. 87–116. [Google Scholar]
- Aït-Aissa, A.; Zaddem, M.; Aïder, M. Red–Green–Blue (RGB) Colour System Approach to Study the Segregation and Percolation in a Mixture of White Wheat Flour and Bleached Wheat Bran. Int. J. Food Sci. Technol. 2018, 53, 254–261. [Google Scholar] [CrossRef]
- Cobos, D.P.; Aguilar, M.E.; Hernández, A.S.; Lara, H.L.; Toro, G.V. Production of Hybrid Strains among Pleutorus and Lentinula and Evaluation of Their Mycelial Growth Kinetics on Malt Extract Agar and Wheat Grain Using the Gompertz and Hill Models. Emir. J. Food Agric. 2018, 927–935. [Google Scholar] [CrossRef]
- Gabriel, K.R. The Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika 1971, 58, 453–467. [Google Scholar] [CrossRef]
- Gabriel, K.R.; Odoroff, C.L. Biplots in Biomedical Research. Stat. Med. 1990, 9, 469–485. [Google Scholar] [CrossRef]
- Galindo, M.P.; Cuadras, C.M. Una Extensión Del Método Biplot a Su Relación Con Otras Técnicas. Publicaciones Bioestadística Biomatemática 1986, 17. [Google Scholar]
- Vicente Villardon, J.L. MULTBIPLOT: A Package for Multivariate Analysis Using Biplots; Universidad de Salamanca: Salamanca, Spain, 2010. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.r-project.org/ (accessed on 10 August 2023).
- Alpuche-González, C.; Ornelas-García, B.; Leal-Lara, H.; Villanueva-Arce, R.; Gómez y Gómez, Y.; Franco-Hernández, M.O.; Garín-Aguilar, M.E.; Valencia del Toro, G. Optimization of Pleurotus eryngii Culture Parameters and Development of Improved Strains by Mating of Compatible Neohaplonts. Rev. Mex. Ing. Quim. 2023, 22, Bio3007. [Google Scholar] [CrossRef]
- Nieuwenhuis, B.P.S.; Debets, A.J.M.; Aanen, D.K. Sexual Selection in Mushroom-Forming Basidiomycetes. Proc. R. Soc. B Biol. Sci. 2010, 278, 152–157. [Google Scholar] [CrossRef]
- Tagavi, G.; Motallebi-Azar, A.; Panahandeh, J. Characteristics of Interspecific Hybrids between Pleurotus ostreatus and P. eryngii. Russ. Agricult. Sci. 2016, 42, 230–235. [Google Scholar] [CrossRef]
- Rosnina, A.G.; Tan, Y.S.; Abdullah, N.; Vikineswary, S. Morphological and Molecular Characterization of Yellow Oyster Mushroom, Pleurotus citrinopileatus, Hybrids Obtained by Interspecies Mating. World J. Microbiol. Biotechnol. 2016, 32, 18. [Google Scholar] [CrossRef]
- Selvakumar, P.; Rajasekar, S.; Babu, A.G.; Periasamy, K.; Raaman, N.; Reddy, M.S. Improving Biological Efficiency of Pleurotus Strain through Protoplast Fusion between P. ostreatus Var. florida and P. djamor Var. roseus. Food Sci. Biotechnol. 2015, 24, 1741–1748. [Google Scholar] [CrossRef]
- Dhitaphichit, P.; Pornsuriya, C. Protoplast Fusion between Pleurotus ostreatus and P. djamor. Songklanakarin J. Sci. Technol. 2005, 27, 975–982. [Google Scholar]
- Barh, A.; Sharma, V.P.; Annepu, S.K.; Kamal, S.; Sharma, S.; Bhatt, P. Genetic Improvement in Pleurotus (Oyster Mushroom): A Review. 3 Biotech 2019, 9, 322. [Google Scholar] [CrossRef] [PubMed]
- Maheswari, S.; Rajarajan, P.; Pandian, P.M.; Krishnan, B.B. Yield Performance of Mushroom (Pleurotus ostreatus) on Different Treatment of Sugarcane Bagasse and Saw Dust and Its Nutrient Analysis. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 7–13. [Google Scholar]
- Saidan, N.H.; Ridzuan Hamil, M.S.; Pahirul Zaman, K.A.K.; Zakaria, N.N.A.; Fadzil, N.S.; Abdul Rahman, K.A.M. The Effect of Different Lignocellulose Biomass-Based Substrates on the Enhancement of Growth, Yield, and Nutritional Composition of Grey Oyster Mushrooms. Pertanika J. Trop. Agric. Sci. 2023, 46, 783–797. [Google Scholar] [CrossRef]
- Hoa, H.T.; Wang, C.-L.; Wang, C.-H. The Effects of Different Substrates on the Growth, Yield, and Nutritional Composition of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 423–434. [Google Scholar] [CrossRef]
- Zakil, F.A.; Sueb, M.S.M.; Isha, R.; Kamaluddin, S.H. Efficiency of Charcoal as Supporting Growth Material in Pleurotus ostreatus Mushroom Cultivation on Various Agricultural Wastes Mixed with Rubber Tree Sawdust (SR). Chem. Eng. Trans. 2021, 89, 415–420. [Google Scholar]
- Zhou, Y.; Li, Z.; Xu, C.; Pan, J.; Zhang, H.; Hu, Q.; Zou, Y. Evaluation of Corn Stalk as a Substrate to Cultivate King Oyster Mushroom (Pleurotus eryngii). Horticulturae 2023, 9, 319. [Google Scholar] [CrossRef]
- Bernardi, E.; Martins, L.; Garcia de Melo, L.; Soares do Nascimento, J. Productivity, Biological Efficiency and Bromatological Composition of Pleurotus Sajor-Caju Growth on Different Substrates in Brazil. Agric. Nat. Resour. 2019, 53, 99–105. [Google Scholar]
- Phonemany, M.; Thongklang, N. Nutritional Analysis of Cultivated Pleurotus giganteus in Agricultural Waste as Possible Alternative Substrates. Curr. Res. Environ. 2023, 13, 92–103. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, W.; Wu, X.; Huang, C.; Chang, M.; Zhang, J. Inheritance Study on Fruiting Body Color of Pleurotus djamor (Rumph. Ex Fr.) Boedijn. Biotechnol. Bull. 2019, 35, 70. [Google Scholar] [CrossRef]
Formation of Hybrid Strains by Mating of Compatible Neohaplonts | ||||||
---|---|---|---|---|---|---|
Strains | P2 | |||||
Strains | Neohaplonts | 1 | 2 | 3 | 4 | 5 |
P1 | 1 | − | − | − | − | − |
2 | − | + | − | − | − | |
3 | − | − | − | − | − | |
4 | − | − | − | − | − | |
5 | − | − | + | − | − | |
+ | Positive pairing = dikaryon | |||||
− | Negative mating = incompatible neohaplonts |
Strains | Type of Strains | Substrates | Biological Efficiency (%) | Production Rate (%) | Performance (%) |
---|---|---|---|---|---|
P1 | Parental 1 | M1 | 74.93 ± 4.85 a | 2.19 ± 0.02 a | 23.87 ± 4.39 a |
M2 | 83.85 ± 8.71 A | 2.74 ± 0.18 B | 27.98 ± 5.087 A | ||
P2 | Parental 2 | M1 | 95.66 ± 2.92 b | 2.53 ± 0.40 a | 30.40 ± 8.25 a |
M2 | 72.95 ± 14.71 A | 2.60 ± 0.23 A | 33.16 ± 4.19 A | ||
H1 | Hybrid 1 | M1 | 88.35 ± 3.97 a | 2.52 ± 0.40 a | 28.33 ± 7.25 a |
M2 | 87.50 ± 10.82 A | 2.68 ± 0.37 B | 26.92 ± 5.82 A | ||
H2 | Hybrid 2 | M1 | 86.78 ± 13.72 a | 2.84 ± 0.15 b | 24.60 ± 2.61 a |
M2 | 85.93 ± 14.75 A | 2.18 ± 0.08 A | 26.93 ± 8.68 A |
Strains | Types of Strains | Substrates | %Fat | % Crude Protein | % Ash | % Crude Fiber | % Carbohydrates |
---|---|---|---|---|---|---|---|
OS | Parental (P1) | M1 | 2.28 ± 0.13 a | 28.59 ± 0.88 a | 9.04 ± 0.40 b | 10.21 ± 1.50 a | 49.87 ± 1.32 a |
M2 | 1.38 ± 0.30 A | 27.63 ± 2.19 A | 4.72 ± 0.37 A | 9.93 ± 1.66 B | 56.34 ± 2.97 A | ||
DJ | Parental (P2) | M1 | 2.46 ± 0.40 b | 26.82 ± 2.01 a | 7.72 ± 0.73 b | 10.96 ± 0.50 b | 52.04 ± 0.65 b |
M2 | 1.87 ± 0.09 A | 25.77 ± 2.71 A | 4.40 ± 0.12 A | 10.59 ± 0.85 C | 57.41 ± 3.42 A | ||
OS2 X DJ2 | Hybrid 1 (H1) | M1 | 2.67 ± 0.14 b | 25.18 ± 3.46 a | 8.37 ± 0.72 b | 8.75 ± 0.09 a | 55.03 ± 3.18 b |
M2 | 1.83 ± 0.44 A | 24.22 ± 4.08 A | 6.30 ± 1.21 B | 7.54 ± 1.59 B | 60.10 ± 3.96 A | ||
OS5 X DJ3 | Hybrid 2 (H2) | M1 | 1.77 ± 0.46 a | 23.32 ± 3.91 a | 5.70 ± 1.47 a | 9.16 ± 1.05 a | 60.05 ± 2.85 c |
M2 | 2.35 ± 0.33 B | 26.07 ± 1.90 A | 8.52 ± 0.24 C | 5.01 ± 0.69 A | 58.04 ± 2.52 A |
Strains | Type of Strains | Substrates | Color |
---|---|---|---|
P1 | Parental 1 | M1 | Pale yellow |
M2 | Pale yellow | ||
P2 | Parental 2 | M1 | Pink |
M2 | Pink | ||
H1 | Hybrid 1 | M1 | Light yellowish brown |
M2 | Pale yellow | ||
H2 | Hybrid 2 | M1 | Pink |
M2 | Pale pink |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela-Cobos, J.D.; Guevara-Viejó, F.; Grijalva-Endara, A.; Vicente-Galindo, P.; Galindo-Villardón, P. Production and Evaluation of Pleurotus spp. Hybrids Cultivated on Ecuadorian Agro-Industrial Wastes: Using Multivariate Statistical Methods. Sustainability 2023, 15, 15546. https://doi.org/10.3390/su152115546
Valenzuela-Cobos JD, Guevara-Viejó F, Grijalva-Endara A, Vicente-Galindo P, Galindo-Villardón P. Production and Evaluation of Pleurotus spp. Hybrids Cultivated on Ecuadorian Agro-Industrial Wastes: Using Multivariate Statistical Methods. Sustainability. 2023; 15(21):15546. https://doi.org/10.3390/su152115546
Chicago/Turabian StyleValenzuela-Cobos, Juan Diego, Fabricio Guevara-Viejó, Ana Grijalva-Endara, Purificación Vicente-Galindo, and Purificación Galindo-Villardón. 2023. "Production and Evaluation of Pleurotus spp. Hybrids Cultivated on Ecuadorian Agro-Industrial Wastes: Using Multivariate Statistical Methods" Sustainability 15, no. 21: 15546. https://doi.org/10.3390/su152115546
APA StyleValenzuela-Cobos, J. D., Guevara-Viejó, F., Grijalva-Endara, A., Vicente-Galindo, P., & Galindo-Villardón, P. (2023). Production and Evaluation of Pleurotus spp. Hybrids Cultivated on Ecuadorian Agro-Industrial Wastes: Using Multivariate Statistical Methods. Sustainability, 15(21), 15546. https://doi.org/10.3390/su152115546