Cultural Heritage Resilience in the Face of Extreme Weather: Lessons from the UNESCO Site of Alberobello
Abstract
:1. Introduction
2. Alberobello UNESCO Site
3. Materials and Methods
3.1. ERA5 Model
- For the European region, we calculated the 90th percentile of cp for each pixel and year. Then, we counted how many times this threshold was exceeded in each pixel and year. We computed the trend of these exceedances over time and normalized this by the maximum value. This gave us a map of areas with increasing or decreasing frequency of convective events. Then, we overlaid this map with the UNESCO site map and identified the sites that were located in areas with positive trends. One of them was Alberobello, which had a slight increase in convective events over the period 1980–2020. In this frame, we found that Alberobello and its surroundings were in an area with a high frequency of intense precipitation events. The range of exceedances was between 60 and 80 percent of the maximum observed. This suggested that Alberobello was prone to heavy rainfall during August in the last decade.
3.2. Rain Gauge Data
3.3. NWP Models
3.4. Convection RGB Product
3.5. GNSS Data
3.6. Lightning Data
3.7. Sentinel-1 Data
4. Results
5. Discussion
6. Conclusions
- A detailed description of the UNESCO site of Alberobello and its historical, cultural, and architectural value allowed for greater awareness about its exposure and vulnerability to extreme weather events.
- A climate analysis of the area for recent years using ERA5 model data and identifying the trends and anomalies in temperature and precipitation opens up considerations of climate change-related effects in the Mediterranean Basin;
- Meteorological conditions impacted the analysis, especially the intense thunderstorm that occurred on 12 and 13 August 2022 over the Alberobello site and its surroundings; by using data from the NWP model, rain gauges, the Google Earth Engine analysis of Sentinel 1B data, the GNSS stations, and field observations, the resilience of the trulli was made evident when compared to the surrounding areas;
- The paper illustrates how trulli represent an example of a sustainable building that has adapted to the geography, history, and material availability of the Mediterranean Basin, showing qualities of low environmental impact, thermal efficiency, durability, and adaptability;
- The links between the case study and Goal 13 of the Sustainable Development Goals (SDGs), which aims to take urgent action to combat climate change and its impacts, as well as the importance of the concept of community resilience, as proposed by Haque and Haque (2022) [50], which provides insights into how local communities address the challenges of climate change using indigenous knowledge, social learning, innovative adaptation, and participatory governance, are evident;
- In summary, the work suggests that further studies are needed to explore how to preserve and enhance this heritage in a changing climate and how to draw lessons for sustainable design and construction. It also indicates that the concepts of sustainability and sustainable development need to be interpreted and applied in relation to the context and specific needs of each system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puglia, R. Ortophoto 2019. Available online: www.sit.puglia.it (accessed on 1 October 2023).
- O’Brien, G.; O’keefe, P.; Rose, J.; Wisner, B. Climate change and disaster management. Disasters 2006, 30, 64–80. [Google Scholar] [PubMed]
- Sesana, E.; Gagnon, A.S.; Bertolin, C.; Hughes, J. Adapting cultural heritage to climate change risks: Perspectives of cultural heritage experts in Europe. Geosciences 2018, 8, 305. [Google Scholar]
- Dastgerdi, A.S.; Sargolini, M.; Pierantoni, I. Climate change challenges to existing cultural heritage policy. Sustainability 2019, 11, 5227. [Google Scholar]
- Sardella, A.; Palazzi, E.; von Hardenberg, J.; Del Grande, C.; De Nuntiis, P.; Sabbioni, C.; Bonazza, A. Risk mapping for the sustainable protection of cultural heritage in extreme changing environments. Atmosphere 2020, 11, 700. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e710. [Google Scholar]
- Mascitelli, A.; Prestileo, F.; Stella, E.M.; Aruffo, E.; López Campos, L.I.; Federico, S.; Torcasio, R.C.; Corsi, A.; Di Carlo, P.; Dietrich, S. Impact of Climate Change on the “Trabocchi Coast”(Italy): The Trabocco Turchino Case Study. Sustainability 2023, 15, 10880. [Google Scholar]
- D’Adderio, L.P.; Pazienza, L.; Mascitelli, A.; Tiberia, A.; Dietrich, S. A Combined IR-GPS satellite analysis for potential applications in detecting and predicting lightning activity. Remote Sens. 2020, 12, 1031. [Google Scholar]
- Laviola, S.; Levizzani, V.; Ferraro, R.R.; Beauchamp, J. Hailstorm detection by satellite microwave radiometers. Remote Sens. 2020, 12, 621. [Google Scholar] [CrossRef]
- Marra, A.; Porcù, F.; Baldini, L.; Petracca, M.; Casella, D.; Dietrich, S.; Mugnai, A.; Sanò, P.; Vulpiani, G.; Panegrossi, G. Observational analysis of an exceptionally intense hailstorm over the Mediterranean area: Role of the GPM Core Observatory. Atmos. Res. 2017, 192, 72–90. [Google Scholar]
- Mascitelli, A.; Petracca, M.; Puca, S.; Realini, E.; Gatti, A.; Biondi, R.; Anesiadou, A.; Brocca, L.; Vulpiani, G.; Torcasio, R.C.; et al. Multi-Sensor Data Analysis of an Intense Weather Event: The July 2021 Lake Como Case Study. Water 2022, 14, 3916. [Google Scholar]
- Cassar, M.; Pender, R. The impact of climate change on cultural heritage: Evidence and response. In ICOM Committee for Conservation, Proceedings of the 14th Triennial Meeting, The Hague, The Netherlands, 12–16 September 2005; James & James: London, UK, 2005; Volume 2, pp. 610–616. [Google Scholar]
- Hoeppe, P. Trends in weather related disasters–Consequences for insurers and society. Weather Clim. Extrem. 2016, 11, 70–79. [Google Scholar] [CrossRef]
- Rädler, A.T.; Groenemeijer, P.H.; Faust, E.; Sausen, R.; Púčik, T. Frequency of severe thunderstorms across Europe expected to increase in the 21st century due to rising instability. NPJ Clim. Atmos. Sci. 2019, 2, 30. [Google Scholar]
- Sander, J.; Eichner, J.; Faust, E.; Steuer, M. Rising variability in thunderstorm-related US losses as a reflection of changes in large-scale thunderstorm forcing. Weather Clim. Soc. 2013, 5, 317–331. [Google Scholar] [CrossRef]
- Rädler, A.T.; Groenemeijer, P.; Faust, E.; Sausen, R. Detecting severe weather trends using an additive regressive convective hazard model (AR-CHaMo). J. Appl. Meteorol. Climatol. 2018, 57, 569–587. [Google Scholar]
- Mascitelli, A.; Federico, S.; Fortunato, M.; Avolio, E.; Torcasio, R.C.; Realini, E.; Mazzoni, A.; Transerici, C.; Crespi, M.; Dietrich, S. Data assimilation of GPS-ZTD into the RAMS model through 3D-Var: Preliminary results at the regional scale. Meas. Sci. Technol. 2019, 30, 055801. [Google Scholar] [CrossRef]
- Mascitelli, A.; Federico, S.; Torcasio, R.; Dietrich, S. Assimilation of GPS Zenith Total Delay estimates in RAMS NWP model: Impact studies over central Italy. Adv. Space Res. 2021, 68, 4783–4793. [Google Scholar]
- Biondi, R.; Chkeir, S.; Anesiadou, A.; Mascitelli, A.; Realini, E.; Nisi, L.; Cimarelli, C. Multivariate Multi-Step Convection Nowcasting with Deep Neural Networks: The Novara Case Study. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 6598–6601. [Google Scholar]
- Chkeir, S.; Anesiadou, A.; Mascitelli, A.; Biondi, R. Nowcasting extreme rain and extreme wind speed with machine learning techniques applied to different input datasets. Atmos. Res. 2023, 282, 106548. [Google Scholar]
- Merino, A.; López, L.; Sánchez, J.; García-Ortega, E.; Cattani, E.; Levizzani, V. Daytime identification of summer hailstorm cells from MSG data. Nat. Hazards Earth Syst. Sci. 2014, 14, 1017–1033. [Google Scholar]
- Punge, H.; Bedka, K.; Kunz, M.; Werner, A. A new physically based stochastic event catalog for hail in Europe. Nat. Hazards 2014, 73, 1625–1645. [Google Scholar]
- Van den Besselaar, E.; Klein Tank, A.; Buishand, T. Trends in European precipitation extremes over 1951–2010. Int. J. Climatol. 2013, 33, 2682–2689. [Google Scholar] [CrossRef]
- Maraun, D. When will trends in European mean and heavy daily precipitation emerge? Environ. Res. Lett. 2013, 8, 014004. [Google Scholar]
- Scoccimarro, E.; Villarini, G.; Vichi, M.; Zampieri, M.; Fogli, P.G.; Bellucci, A.; Gualdi, S. Projected changes in intense precipitation over Europe at the daily and subdaily time scales. J. Clim. 2015, 28, 6193–6203. [Google Scholar]
- Ban, N.; Schmidli, J.; Schär, C. Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett. 2015, 42, 1165–1172. [Google Scholar]
- Rajczak, J.; Pall, P.; Schär, C. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J. Geophys. Res. Atmos. 2013, 118, 3610–3626. [Google Scholar]
- Stott, P. How climate change affects extreme weather events. Science 2016, 352, 1517–1518. [Google Scholar] [CrossRef]
- O’Gorman, P.A. Precipitation extremes under climate change. Curr. Clim. Chang. Rep. 2015, 1, 49–59. [Google Scholar]
- Romero, R.; Emanuel, K. Medicane risk in a changing climate. J. Geophys. Res. Atmos. 2013, 118, 5992–6001. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. Mediterranean tropical-like cyclones in present and future climate. J. Clim. 2014, 27, 7493–7501. [Google Scholar]
- Walsh, K.; Giorgi, F.; Coppola, E. Mediterranean warm-core cyclones in a warmer world. Clim. Dyn. 2014, 42, 1053–1066. [Google Scholar]
- Romero, R.; Emanuel, K. Climate change and Hurricane-like extratropical cyclones: Projections for North Atlantic polar lows and medicanes based on CMIP5 models. J. Clim. 2017, 30, 279–299. [Google Scholar]
- Romera, R.; Gaertner, M.Á.; Sánchez, E.; Domínguez, M.; González-Alemán, J.J.; Miglietta, M.M. Climate change projections of medicanes with a large multi-model ensemble of regional climate models. Glob. Planet. Chang. 2017, 151, 134–143. [Google Scholar]
- Scicchitano, G.; Scardino, G.; Monaco, C.; Piscitelli, A.; Milella, M.; De Giosa, F.; Mastronuzzi, G. Comparing impact effects of common storms and Medicanes along the coast of south-eastern Sicily. Mar. Geol. 2021, 439, 106556. [Google Scholar]
- Coletta, V.; Mascitelli, A.; Bonazza, A.; Ciarravano, A.; Federico, S.; Prestileo, F.; Torcasio, R.C.; Dietrich, S. Multi-instrumental analysis of the extreme meteorological event occurred in matera (Italy) on November 2019. In Computational Science and Its Applications, Proceedings of the ICCSA 2021: 21st International Conference, Cagliari, Italy, 13–16 September 2021; Proceedings, Part VIII; Springer: Berlin/Heidelberg, Germany, 2021; pp. 140–154. [Google Scholar]
- Gabriele, M. Dectecting and mapping flash flooding with synthetic aperture radar (SAR) satellite data: The Metaponto plain cultural landscape case study. In Proceedings of the the ARQUEOLÓGICA 2.0-9th International Congress & 3rd GEORES-GEOmatics and pREServation, Valencia, Spain, 26–28 April 2021; pp. 212–222. [Google Scholar]
- Zhang, W.; Villarini, G.; Scoccimarro, E.; Napolitano, F. Examining the precipitation associated with medicanes in the high-resolution ERA-5 reanalysis data. Int. J. Climatol. 2021, 41, E126–E132. [Google Scholar] [CrossRef]
- Prestileo, F.; Mascitelli, A.; Meli, G.; Petracca, M.; Giorgi, C.; Melfi, D.; Puca, S.; Dietrich, S. Resilience of Cultural Heritage in Extreme Weather Conditions: The Case of the UNESCO Villa Romana del Casale Archaeological Site’s Response to the Apollo Medicane in October 2021. In Computational Science and Its Applications, Proceedings of the ICCSA 2022 Workshops, Malaga, Spain, 4–7 July 2022; Proceedings, Part IV; Springer: Berlin/Heidelberg, Germany, 2022; pp. 511–526. [Google Scholar]
- Sonnessa, A.; di Lernia, A.; Oscar Nitti, D.; Nutricato, R.; Tarantino, E.; Cotecchia, F. Integration of multi-sensor MTInSAR and ground-based geomatic data for the analysis of non-linear displacements affecting the urban area of Chieuti, Italy. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103194. [Google Scholar] [CrossRef]
- Bertolin, C.; Perry, J. World Heritage and Climate Change; MDPI: Basel, Switzerland, 2020. [Google Scholar]
- Púčik, T.; Groenemeijer, P.; Rädler, A.T.; Tijssen, L.; Nikulin, G.; Prein, A.F.; van Meijgaard, E.; Fealy, R.; Jacob, D.; Teichmann, C. Future changes in European severe convection environments in a regional climate model ensemble. J. Clim. 2017, 30, 6771–6794. [Google Scholar] [CrossRef]
- Bonazza, A.; Maxwell, I.; Drdáckỳ, M.; Vintzileou, E.; Hanus, C. Safeguarding Cultural Heritage from Natural and Man-Made Disasters: A Comparative Analysis of Risk Management in the EU. 2018. Available online: http://openarchive.icomos.org/id/eprint/2329/ (accessed on 25 September 2023).
- Squintu, A.A.; van der Schrier, G.; Brugnara, Y.; Klein Tank, A. Homogenization of daily temperature series in the European Climate Assessment & Dataset. Int. J. Climatol. 2019, 39, 1243–1261. [Google Scholar]
- Harvey, D.C.; Perry, J. The Future of Heritage as Climates Change: Loss, Adaption, and Creativity; Routledge: London, UK, 2015. [Google Scholar]
- Markham, A.; Osipova, E.; Samuels, K.L.; Caldas, A. World Heritage and Tourism in a Changing Climate; UNESCO Publishing: Paris, France, 2016. [Google Scholar]
- Leifeste, A.; Stiefel, B.L. Sustainable Heritage: Merging Environmental Conservation & Historic Preservation; Routledge: London, UK, 2018. [Google Scholar]
- García, B.M. Resilient cultural heritage for a future of climate change. J. Int. Aff. 2019, 73, 101–120. [Google Scholar]
- O’Brien, G.; O’Keefe, P.; Jayawickrama, J.; Jigyasu, R. Developing a model for building resilience to climate risks for cultural heritage. J. Cult. Herit. Manag. Sustain. Dev. 2015, 5, 99–114. [Google Scholar] [CrossRef]
- Haque, E. Climate Change and Community Resilience; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Bandura, A. Regulation of cognitive processes through perceived self-efficacy. Dev. Psychol. 1989, 25, 729. [Google Scholar] [CrossRef]
- Ormrod, J.E. Human Learning; Merrill: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Rotter, J.B. Social learning theory. In Expectations and Actions: Expectancy-Value Models in Psychology; Routledge: London, UK, 1982; Volume 395. [Google Scholar]
- Center, A.D.R. Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- Hersbach, H. The ERA5 Atmospheric Reanalysis. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 11–15 December 2016; Volume 2016, p. NG33D-01. [Google Scholar]
- Centre, U.W.H. The Trulli of Alberobello. Available online: https://whc.unesco.org/en/list/787 (accessed on 10 July 2023).
- Todisco, L.; Sanitate, G.; Lacorte, G. Geometry and proportions of the traditional trulli of Alberobello. Nexus Netw. J. 2017, 19, 701–721. [Google Scholar] [CrossRef]
- Micelli, F.; Cascardi, A.; Verre, S. Structural Assessment of a Heritage Building in the UNESCO Site of Alberobello. In New Metropolitan Perspectives; Calabrò, F., Della Spina, L., Piñeira Mantiñán, M.J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 2203–2212. [Google Scholar]
- Ambrosi, A.; Panella, R.; Radicchio, G.; Degano, E. Storia e Destino dei Trulli di Alberobello: Prontuario per il Restauro; Schena Editore: Fasano, Italy, 1997. [Google Scholar]
- Ruggiero, G.; Dal Sasso, S. and Loisi, R.V.; Verdiani, G. Characteristics and distribution of trulli constructions in the area of the site of community importance Murgia of Trulli. J. Agric. Eng. 2013, 44, e13. [Google Scholar] [CrossRef]
- Cardinale, N.; Rospi, G.; Stefanizzi, P. Energy and microclimatic performance of Mediterranean vernacular buildings: The Sassi district of Matera and the Trulli district of Alberobello. Build. Environ. 2013, 59, 590–598. [Google Scholar] [CrossRef]
- Merico, A.; Bellopede, R.; Fiorucci, A.; Marini, P. Itria Valley (Apulia, Italy): Comparison of limestones for the construction and restoration of “Trulli” roofing. Resour. Policy 2022, 76, 102630. [Google Scholar]
- Heyman, J. The Stone Skeleton: Structural Engineering of Masonry Structures; Cambridge University Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Huerta-Fernandez, S. The Analysis of Masonry Architecture: A Historical Approach. Archit. Sci. Rev. 2008, 51, 297–328. [Google Scholar]
- Farina, S. Proposals for the sustainable recovery of dry stone buildings in Puglia, Italy. In Proceedings of the HERITAGE 2022—International Conference on Vernacular Heritage: Culture, People and Sustainability, Valencia, Spain, 15–17 September 2022. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019; Volume 145, p. 550. [Google Scholar]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Torcasio, R.C.; Federico, S.; Comellas Prat, A.; Panegrossi, G.; D’Adderio, L.P.; Dietrich, S. Impact of lightning data assimilation on the short-term precipitation forecast over the Central Mediterranean Sea. Remote Sens. 2021, 13, 682. [Google Scholar] [CrossRef]
- Eumetsat. Eumetsat. Available online: http://www.eumetsat.int (accessed on 10 July 2023).
- Service, E.D. EUMETSAT Data Service—EUMETView. Available online: https://view.eumetsat.int/productviewer?v=default (accessed on 10 July 2023).
- Campanelli, M.; Mascitelli, A.; Sanò, P.; Diémoz, H.; Estellés, V.; Federico, S.; Iannarelli, A.M.; Fratarcangeli, F.; Mazzoni, A.; Realini, E.; et al. Precipitable water vapour content from ESR/SKYNET sun–sky radiometers: Validation against GNSS/GPS and AERONET over three different sites in Europe. Atmos. Meas. Tech. 2018, 11, 81–94. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Gatti, A.; Tagliaferro, G.; Realini, E. goGPS free and open source GNSS software for tropospheric delay estimation. In Proceedings of the EGU General Assembly Conference Abstracts, 2018, EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; p. 15590. [Google Scholar]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Kouba, J. Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses. J. Geod. 2009, 83, 199–208. [Google Scholar] [CrossRef]
- Betz, H.D.; Schmidt, K.; Laroche, P.; Blanchet, P.; Oettinger, W.P.; Defer, E.; Dziewit, Z.; Konarski, J. LINET—An international lightning detection network in Europe. Atmos. Res. 2009, 91, 564–573. [Google Scholar] [CrossRef]
- SPIDER, U.N. Recommended Practice: Flood Mapping and Damage Assessment Using Sentinel-1 SAR Data in Google Earth Engine. Available online: https://www.space4water.org/capacity-building-and-training-material/recommended-practice-flood-mapping-and-damage-assessment (accessed on 25 September 2023).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- For Developers, Google Earth Engine Data Catalog. Sentinel-1 SAR GRD: C-Band Synthetic Aperture Radar Ground Range Detected, Log Scaling). Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#description (accessed on 25 September 2023).
- Sentinel Online. The Sentinel-1 Toolbox. Available online: https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1 (accessed on 25 September 2023).
- For Developers, Google Earth Engine Data Catalog. JRC Global Surface Water Mapping Layers, v1.4. Available online: https://developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_4_GlobalSurfaceWater (accessed on 25 September 2023).
- For Developers, Google Earth Engine Data Catalog. WWF HydroSHEDS Hydrologically Conditioned DEM, 3 Arc-Seconds. Available online: https://developers.google.com/earth-engine/datasets/catalog/WWF_HydroSHEDS_03CONDEM (accessed on 25 September 2023).
- For Developers, Google Earth Engine Data Catalog. Object-Based Methods. Available online: https://developers.google.com/earth-engine/guides/image_objects (accessed on 25 September 2023).
- AntennaSud. Maltempo in Puglia. Available online: https://www.antennasud.com/maltempo-in-ApuliaRegion-piogge-e-allagamenti-foto/ (accessed on 10 July 2023).
- Giornale Dell’Agricoltura Italiana, A.I. Maltempo. In Puglia Agricoltra Sott’Acqua tra Vigneti Allagati e Orticole Affogate. Available online: https://www.agricultura.it/2022/08/13/maltempo-in-ApuliaRegion-agricoltra-sottacqua-tra-vigneti-allagati-e-orticole-affogate/ (accessed on 10 July 2023).
- Ruggerio, C.A. Sustainability and sustainable development: A review of principles and definitions. Sci. Total Environ. 2021, 786, 147481. [Google Scholar] [CrossRef]
Extent of the Potentially Flooded Areas | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|
[Ha] | 0 | 6 | 1 | 30 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascitelli, A.; Prestileo, F.; Sonnessa, A.; Federico, S.; Torcasio, R.C.; Ravanelli, R.; Biondi, R.; Dietrich, S. Cultural Heritage Resilience in the Face of Extreme Weather: Lessons from the UNESCO Site of Alberobello. Sustainability 2023, 15, 15556. https://doi.org/10.3390/su152115556
Mascitelli A, Prestileo F, Sonnessa A, Federico S, Torcasio RC, Ravanelli R, Biondi R, Dietrich S. Cultural Heritage Resilience in the Face of Extreme Weather: Lessons from the UNESCO Site of Alberobello. Sustainability. 2023; 15(21):15556. https://doi.org/10.3390/su152115556
Chicago/Turabian StyleMascitelli, Alessandra, Fernanda Prestileo, Alberico Sonnessa, Stefano Federico, Rosa Claudia Torcasio, Roberta Ravanelli, Riccardo Biondi, and Stefano Dietrich. 2023. "Cultural Heritage Resilience in the Face of Extreme Weather: Lessons from the UNESCO Site of Alberobello" Sustainability 15, no. 21: 15556. https://doi.org/10.3390/su152115556
APA StyleMascitelli, A., Prestileo, F., Sonnessa, A., Federico, S., Torcasio, R. C., Ravanelli, R., Biondi, R., & Dietrich, S. (2023). Cultural Heritage Resilience in the Face of Extreme Weather: Lessons from the UNESCO Site of Alberobello. Sustainability, 15(21), 15556. https://doi.org/10.3390/su152115556