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Abstract: The auto-regressive integrated moving average (ARIMA) model has shown promise in
predicting vehicle velocity and road gradient (V–G) for the purpose of constructing power demands
in predictive energy management strategies (PEMS) for electric vehicles (EVs). It offers flexibility,
accuracy, and computational efficiency. However, the performance of a conventional ARIMA model
with fixed structure parameters can be disappointing when the data fluctuate. To overcome this
limitation, a novel and flexible-structure-based ARIMA (FS–ARIMA) is proposed in this paper to
improve online prediction performance. First, the sliding window method was developed to produce
fitting data in real time based on real local historical data, reducing the online computation time.
Secondly, the influence of the sliding window sample size, differencing order, and lag in the model
on the prediction accuracy was investigated. Based on this, an FS–ARIMA was proposed to improve
the prediction accuracy, where an augmented Dickey–Fuller (ADF) test was developed to select the
differencing order in real time and the Bayesian information criterion (BIC) was applied to update
the model and determine its lag under an optimal sample size. Lastly, to validate the proposed
FS–ARIMA, simulations were conducted using two typical driving cycles collected via experiments,
as well as the following three typical driving cycles: the New European Driving Cycle (NEDC), the
Urban Dynamometer Driving Schedule (UDDS), and the Worldwide Harmonized Light Vehicles
Test Cycle (WLTC). The results demonstrated that FS–ARIMA improved prediction accuracy by
approximately 41.63% and 42.19% for the velocity and gradient, respectively. The proposed FS–
ARIMA prediction model has potential applications in predictive energy management strategies for
EVs.

Keywords: ARIMA; velocity and road gradient; short-term prediction; flexible structure; BIC

1. Introduction

In electric vehicles (EVs), a predictive energy management strategy (PEMS) that
considers future driving conditions is considered the most promising approach to achieve
energy savings [1,2]. Among many driving condition items, the accuracy of a vehicle’s
velocity and the road gradient (V–G) are two main issues with constructing the power
demand online [3] that significantly impact the performance of a PEMS. Without accurate
V–G predictions, the performance of a PEMS can be disappointing [4]. However, in real-
world driving situations, knowledge about V–G is often scarce. This is primarily due to the
absence of vehicle–road communications and the lack of high-precision maps, especially in
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the early stages of intelligent transportation systems (ITS). Therefore, finding a solution to
accurately predict V–G in the absence of real-time data and high-precision maps is of great
importance for the effective implementation of a PEMS in an EV.

In recent years, numerous prediction strategies have been proposed to solve the V–G
prediction issue. One such strategy is the autoregressive integrated moving average model
(ARIMA), which offers flexibility, accuracy, and computational efficiency [5]. The key
advantage of the ARIMA model is its ability to ensure online predictions by extracting
internal correlations with local history information, which overcomes the challenge of
the limited availability of typical data for offline training. Consequently, the ARIMA is
suitable for online V–G prediction based on local historical data along a driving route.
However, a conventional ARIMA has lags and fixed differencing orders and, therefore,
offers less adaptability in random conditions, especially when the V–G experience rapid
fluctuations. Therefore, improving an ARIMA model’s prediction accuracy to a certain
extent is meaningful, especially in these early stage of ITS, where there is a lack of typical
data [6,7].

1.1. Literature Review

A PEMS that considered future V–G information was introduced into EVs several
years ago, and has proven to be beneficial for prolonging battery life and minimizing fuel
consumption [8]. In recent years, various strategies have been proposed to predict future
V–G, aiming to improve the efficiency of a PEMS. Typical prediction strategies are artificial
intelligence (AI) and stochastic-based methods [9]. AI-based methods, such as artificial
neural networks (ANNs) and radial basis function neural networks (RBF-NNs), have
demonstrated a strong predictive accuracy through their learning processes [10]. However,
AI-based methods require a large number of representative samples for offline training,
making them less suitable for online applications [11]. Additionally, those numerous
training samples rely on high-accuracy GPS, or onboard radar, which are not widely
available in these early stages of ITS or the automotive industry [6]. Consequently, the
practical implementation of AI-based methods is hindered. Therefore, there is a need to
develop low-cost and easy-to-implement methods that can predict future V–G along a
driving route using local historical information.

Stochastic-based methods, such as Markov chains (MCs) [12] and ARIMA models, es-
tablish relationships between past and future features to enable predictions [13]. In general,
MCs require additional calculations to generate stochastic Markov emissions, making them
more computationally involved than AI-based methods [4]. On the other hand, ARIMA
models are easily implemented and can overcome a lack of data, making them widely
applicable in areas such as energy generation [14], wind-power predictions [15], and other
fields with limited sample data. In recent years, ARIMA models have been introduced
in EVs for online V–G prediction. In a past study [5], an ARIMA-based V–G predictor
was developed and combined into a PEMS. The simulation results demonstrated that the
ARIMA model could achieve reasonable V–G predictions without the need for external
devices. In another study [16], day-ahead traffic flow was predicted using a functional
time series approach that outperformed traditional ARIMA models. Overall, an ARIMA
model is based on the assumption that a process is stationary (i.e., stationary in its differ-
ences), and its prediction accuracy will decay sharply when a series is nonstationary. Thus,
traditional ARIMA models with fixed structures have a poor performance in predicting
driving conditions when the V–G have significant fluctuations. In general, the accuracy of
V–G predictions suffers from two main issues with constructing power demands online,
impacting PEMS performance. Without accurate V–G predictions, the performance of
a PEMS can be disappointing [4]. Therefore, improving an ARIMA model’s prediction
accuracy to align with a PEMS is meaningful.

To improve the prediction accuracy of an ARIMA model, three approaches are com-
monly employed: fitting the data online with an updating technique [17], hybrid ap-
proaches [18], and flexible approaches [10]. The online data fitting updating technique
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involves updating the training data in real time using a sliding window approach [19]. This
technique ensures that the training data reflect the most recent measurements, reducing
the mismatch between the training data and the actual data and improving the prediction
accuracy. For example, [15] proposed a sliding window-based ARIMA for wind speed
forecasting, which reduces the overall RMSE by 75% for daily predictions and 50% for
weekly predictions. In short, the sliding window technique allows for accurate predic-
tions at a minimal computational cost. Hybrid approaches combine ARIMA with other
machine learning methods to compensate for the nonlinear limitations of ARIMA, such as
ARIMA-LSTM [20] and ARIMA-FSVR [21], where LSTM (long short-term memory) and
FSVR (fuzzy support vector regression) are combined with ARIMA, respectively. These
hybrid approaches have led to a significant improvement in prediction accuracy compared
to using ARIMA, LSTM, or FSVR alone. However, it is important to note that hybrid
approaches increase the complexity of the algorithm and may limit practical applications.

Currently, flexible approaches are being widely utilized to optimize strategy struc-
tures and improve adaptability. In [10], an adaptive radial basis function neural network
(ARBF-NN) with flexible width and order was designed to perform online vehicle velocity
prediction via the Akaike information criterion (AIC) and Bayesian information criterion
(BIC). The results show that the adjusted structure in real time could further improve the
prediction accuracy. Generally, AIC and BIC methods are commonly used for online selec-
tion of strategy structures. In [22], the kernel dictionary selection and weight vector were
optimized with AIC in real time to ensure the time series was stationary, thus improving
the prediction performance significantly. These flexible-structure approaches focus on
online parameter updates and ensuring series stationarity, resulting in improved strategy
performance and adaptability. In ARIMA, the differencing order and lags of the model both
belong to the structure parameter, which determines the series stationary and the fitting
order and thus affects the prediction accuracy. Therefore, inspired by the above content,
the sliding window manner and flexible approaches could improve the ARIMA prediction
performance [23]. However, further research is required to explore this more extensively.

1.2. Research Gaps

In this manuscript, a novel flexible-structure-based ARIMA (FS–ARIMA), with a
variable differencing order and lags of the model, was designed to improve the V–G
prediction accuracy. Overall, FS–ARIMA offers the following advantages:

(1) The sliding windows technology is used to generate the fitting data in real time,
ensuring prediction accuracy with less computational effort;

(2) A theoretical structure determination method is provided. The differencing order and
lags of the model have been adjusted adaptively via the augmented Dickey–Fuller
(ADF) test and BIC;

(3) No external devices or massive historical database for offline training are required in
this approach;

(4) The effectiveness of the FS–ARIMA is validated with two actual and typical driving
cycles compared with LSTM, RBF, and ARBF.

The structure of the paper is as follows: Section 2 introduces the mathematical model
of ARIMA with sliding window technology. Section 3 presents the proposed FS–ARIMA
in detail; Section 4 discusses the performance of the FS–ARIMA and provides an overall
evaluation. Finally, Section 5 summarizes the key findings and proposes directions for
future research.

2. Velocity and Road Gradient Prediction with ARIMA
2.1. Actual Driving Cycle Collection

Figure 1 depicts an inertial navigation measurement system used for collecting actual
V–G data. A gyroscope is used to test the velocity data; two external GNSS are used to
obtain the longitudinal and vertical position information, which can be converted into
road gradient data. The iNAV2 is a signal processor within the system, processing with an
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extended Kalman filter to eliminate the measured noise. The system operates at a frequency
of 50 Hz, guaranteeing measurement accuracy and responsiveness to changes in the V–G
data. Finally, 1 s interval data series are processed in an industrial computer and used for
the online prediction afterward.
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Figure 1. The inertial navigation measurement system.

In this study, three different driving cycles were chosen from Beijing, which include
sections of the highway, the third ring road, and the fourth ring road, as shown in Figure 2.
To thoroughly evaluate the performance of the proposed FS–ARIMA algorithm, three
combined driving cycles were chosen, namely Actual 1, Actual 2, and a combination of the
NEDC (New European Driving Cycle), UDDS (Urban Dynamometer Driving Schedule),
and WLTC (Worldwide Harmonized Light Vehicles Test Cycle). Figure 3 provides a
visualization of these combined driving cycles, and more detailed information can be found
in Table 1. These combined cycles were designed to cover a wide range of real-world
driving scenarios and replicate different driving patterns and characteristics. The inclusion
of these combined cycles ensures a comprehensive assessment of the FS–ARIMA algorithm
under various driving conditions.
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Table 1. The combination of actual and typical cycle information and road gradient cycles.

Parameter Cycle Length (s) Describe

V Actual 1 3740 Actual cycle combined with part 3-ring and part 4-ring
V Actual 2 2450 Actual city cycle in daily life: contains an expressway section
V Typical 4003 Combined NEDC, UDDS, and WLTC in a fixed sequential
G Actual 1 3740 Actual cycle combined with part 3-ring and part 4-ring
G Actual 2 2450 Actual city cycle in daily life: contains an expressway section

2.2. ARIMA Formulation

The ARIMA model is a popular choice for time-series forecasting as it provides a
framework to analyze the underlying patterns and trends in stationary data. In this paper,
the ARIMA is selected to predict the V–G. The general form of the ARIMA model is
expressed as ARIMA (p, d, q), where p represents the order of the autoregressive (AR)
model, d represents the order of differencing, and q represents the order of the moving
average (MA) model. The ARIMA can be expressed as

Xt = c + φ1xt−i + · · ·+ φpxt−p + εt + θ1εt−1 + · · ·+ θqεt−q, (1)

where xt is the stationary V–G time series, Xt is the prediction results, φi is the autore-
gressive coefficient of the AR sequence for the response process, θj is the moving average
coefficient of the MA sequence for the stochastic process, and εt is the white noise random
error sequence, which is assumed to be independent and contain identically distributed
variables sampled from a Gaussian distribution with zero means.

In general, the procedure for constructing ARIMA (p, d, q) involves five iterative steps:
First, the stationarity is checked to determine the differencing order of d; second, the lags of
p and q parameters are determined; third, the coefficient of φ and θ is estimated; fourth, the
model diagnosis is checked; finally, the forecast is conducted. The procedure of the ARIMA
construction process is shown in Figure 4.
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In the stationary checking phase, the differencing order d is identified with the offline
manner autocorrelation function (ACF) and partial autocorrelation function (PACF) via
a judgment of autocorrelation function decays [5]. If a time series is nonstationary, the
data need to be transformed by using the method of differencing. The first differencing
procedure can be accomplished by

xt = zt − zt−1, (2)

where zt is the raw data of the V–G series.
If the time series xt is not stationary after the first differencing, the second difference

needs to be determined by

xt = (zt − zt−1) − (zt−1 − zt−2). (3)

When the second differencing does not provide a stationary time series, third or further
differences should be implemented. Generally, the differencing should be lower than a
particular value, because overdifferencing will cause a loss of autocorrelation.

In a stationary time series analysis, we usually define L as the lag operator, which
represents an element of a time series to time the previous element. For the stationary time
series of xt, the L lag operation is

Lxt = xt−1, for all t > 1. (4)

Then, Equation (1) is formulated as follows:

φ(L)xt = c + θ(L)εt, (5)

where
Lixt = xt−i; Liεt = εt−i
φ(L) = 1− φL− φ2L2 − · · · − φpLp

θ(L) = 1 + θL + θ2L2 + · · ·+ θpLq.
Then, the stationary series can be used to determine the p and q parameters, which

are the lags of the model. Generally, the lags of the model can be obtained by examining
the sample ACF and PACF.

Afterward, in the estimation phase, the coefficients of the ARMA, φ and θ, can be esti-
mated by the maximum likelihood estimator with the stationary series. The log-likelihood
function l(β̃; x) of the stationary V–G series xt can be written as follows:

∂

∂σ2
ε

l(β̃; x) = − n
2σ2

ε
+

S(β̃)

2σ4
ε

= 0

∂

∂β̃
l(β̃; x) = −1

2
∂ ln|Ω|

∂β̃
− 1

σ2
ε

∂S(β̃)

2∂β̃
= 0

, (6)

where 

S(β̃) = x′


∞
∑

i=0
G2

i · · ·
∞
∑

i=0
GiGi+n−1

...
...

∞
∑

i=0
GiGi+n−1 · · ·

∞
∑

i=0
G2

i


−1

xt

~
β= (φ1, · · · , φp, θ1, · · · , θq

)T

xt =
{

xt−1, xt−2, · · · xt−p
}

.

Here, G is the Green’s function of ARIMA.
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Then, the goodness-of-fit of the coefficients is examined with LB (Ljung–Box) in the
model diagnosis checking phase, which is also called a white noise test of the residual
sequence [24]. The equation is as follows:

LB = n(n + 2)
p

∑
k=1

(
ρ̃2

k
n− k

), (7)

where ρ̃k is the coefficient of autocorrelation of the samples, and n is the number of serial
periods. Finally, if the fitted model passes the diagnostic check, the model can be used to
make the forecast.

2.3. The Sliding Window Method

V–G data are typically generated as a time series using sensors on board. However,
using the entire V–G data cycle for prediction can be time-consuming. In order to strike a
balance between code execution efficiency and computational effort, the sliding window
technique is employed to extract a new sample from the local history V–G data for online
fitting and prediction. The sliding window technique, as shown in Figure 5, is used to
update the samples in a sequential manner. The procedure can be classified into two steps.
Firstly, the sample size of the window is determined based on the total length of the time
series. Then, a loop is used to slide the window along the time series, computing the results
window by window, with a fixed sample size.
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With the sliding window technique, the updated data include innovations in real time
to eliminate differences between the forecast data and the history series. At t seconds, the
input of ARIMA for autoregression can be represented as follows:

x = {xt−1, xt−2, · · · xt−χ}, (8)

where χ is the sample size of the history series for V–G.

2.4. V–G Stationary Examination

In ARIMA, it is assumed that the time-series data are stationary for accurate prediction.
However, the original V–G series is nonstationary. By using the sliding window technique
in combination with the appropriate differencing order, the series can be made stationary.
Figure 6 shows the variation in the differencing order with different sample sizes. It can be
observed that the optimal value of d changes to maintain stationarity as the sample size of
the sliding window increases. Figure 7 illustrates the variation in the average differencing
order d to ensure the velocity series is stationary. The trend shows that as the sample size
increases, the average d decreases and then stabilizes beyond a specific limit, regardless of
the cycle. This suggests that a larger sample size, combined with a lower differencing order,
ensures stationarity in the V–G series. Excessive differencing can lead to a loss of prediction
accuracy and instability in the original sequence. Therefore, careful consideration and
experimentation are required to determine the optimal values for the sample size and p, d,
and q parameters to ensure effective predictions. In general, the sample size and p, d, and q
have a homologous effect on the V–G series, and only the velocity series is illustrated in the
following explanation.
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Figure 6. The variation in the differencing order d to ensure the series is stationary with different
sample sizes of sliding windows.
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Figure 7. The d statistics feature with sample size in different velocity cycles.

2.5. Determination of Structural Parameters

Two error evaluation factors, the root-mean-square error (RMSE) and average root-
mean-square error (ARMSE), are selected to evaluate the prediction performance. The
functions are

RMSE =

√√√√ 1
p

p

∑
k=1

(Yk
p −Yk

d )
2 (9)

ARMSE =
1
M

M

∑
step=1

RMSE, (10)

where Yk
d is the original data value, Yk

p is the value predicted with predictor, M is the
number of time series, and p is the prediction horizon. Generally, lower values of RMSE
and ARMSE indicate better performance of the forecasting task.

The sample size and p, d, and q have a coupled effect on prediction performance, and
optimal flexible parameters could enhance the ARIMA prediction accuracy. In general,
the parameter q corresponds to the stochastic part (white noise) and could be fixed (q = 1)
without decaying the prediction performance. Thus, only the sample size, d, and p are
considered flexible structural parameters used to analyze the coupling effect on prediction
performance in depth.

The results presented in Figure 8 show the prediction accuracy under different sample
sizes, 500, 1000, and 1500, with varying values of the differencing order d and lags of
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the AR model p. Based on the statistical results, it can be observed that the prediction
accuracy remains excellent when the sample size is larger than 500. With a sample size
of 500, lags in the model p affect the prediction in a particular range, then cooperate with
differencing order d to maintain the prediction accuracy. Generally, the prediction has a
preferable precision when the lags of the model p are higher than 2 and then remain at a
certain level. However, as the differencing order d exceeds 5, the prediction performance
begins to weaken due to excessive differencing, which can destabilize the original series.
Therefore, it is crucial to carefully tune and select appropriate values for both d and p to
ensure accurate predictions. In summary, a relatively larger sample size of 500, along with
a lower number of lags in the model, with p set to 2, is recommended for updating the
series. These parameters strike a balance between prediction accuracy and the stability of
the original sequence.
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Figure 8. The RMSE statistics with different sample sizes under the influence of differencing order
and lags of the AR model.

From the results depicted in Figure 9, it can be observed that, regardless of the pre-
diction method used, the prediction accuracy decreases significantly as the prediction
horizon increases. The accuracy drops sharply when the prediction horizon exceeds 10 s. In
addition, previous studies have also suggested that a prediction horizon of 10 s is beneficial
for PEMS [25]. Therefore, it is reasonable to limit the prediction horizon to 10 s. Taking
into account considerations such as code execution efficiency and calculation time, the
recommended structure parameters are as follows: sample size of 500, d ranging from 2 to 4,
and p ranging from 2 to 4. Figure 10 illustrates the performance of velocity prediction using
the recommended structural parameters. The results indicate that the selected parameters
ensure a superior prediction performance. Therefore, the online update of the structural
parameters for ARIMA is meaningful and necessary.
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3. Flexible-Structure-Based ARIMA Model
3.1. Selecting Differencing Orders with ADF Test

Previous research has demonstrated that a flexible structure can enhance prediction
performance. However, it is important to ensure that the V–G series used for prediction is
stationary, as per the fundamentals of ARIMA. To achieve this, the structural parameters
are adjusted online to ensure stationarity and the consistency of statistical autocorrelation
properties [18]. In this paper, the strict statistical method of the ADF test is used for online
stationary checking. In principle, the inspection quantity τ of stationary series is lower at a
hypothetical level. The function can be expressed as

τ = ρ/S(ρ), (11)

where τ is the inspection quantity and ρ and S(ρ) are the ADF statistical and standard
deviation of the inspection quantity, respectively.

To simplify the statistical calculation, we can judge the characteristic roots by whether
ρ < 0 or not. This technology is also called the ADF unit root test. For the online application
of the ADF unit root test, we rewrite the determining component in Equation (1) as follows:

xt = φ1xt−1 + φ2xt−2 + . . . + φpxt−p + εt. (12)

Then, we can change the V–G stationary sequence xt into differential variables. The
equivalent expression of the differential is

∇xt = ϕxt−1 −
p−1

∑
j

ξ j∇xt−p+1 + εt (13)

i.e.
{

ϕ = φ1 + φ2 + · · ·+ φp − 1
ξ j = φj+1 + φj+2 + · · ·+ φp, j = 1, 2, . . . , p− 1

,

where ∇ is the forward difference of xt and ϕ is the parameters of the statistical ADF
statistical inspection quantity.

During each step of updating the V–G database, the corresponding ADF test statistics
can be obtained to assess the stationarity of the series. Figure 11 presents the ADF statistical
results using a sliding window sample size of 500. To avoid the loss of valid information, the
maximum value of d is set to 4. According to the results, the ADF test statistics are always
lower than the hypothetical level, indicating that the variable differencing order approach
ensures the stationarity of the velocity series in real time. On the other hand, when a fixed
differencing order is used, the constant statistical assumption is violated when the series
exhibits significant fluctuations, despite potentially being higher than the hypothetical level in
most cases. Thus, the variable differencing order approach is effective in ensuring the series
remains stationary and contributes to the improvement of ARIMA prediction performance.
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3.2. Lags of the Model Selection with BIC

The appropriate p and q also have a significant influence on the prediction precision.
From the basics, the AIC and BIC may select the optimal model [26]. BIC is preferred for
a case with a large sample set to prevent overfitting [11]. This study adopts BIC to select
the optimal p online, and the smaller BIC value implies better prediction. The BIC can be
expressed as follows:

BIC = (p + q + 2) ln σ̂2
ε + 2 ln(p + q + 2), (14)

where σ̂2
ε is the maximum likelihood function value corresponding to the ARMSE.

In the ARIMA model, the MA component represents a stochastic process and affects
the estimate less than the AR component. Additionally, most researchers prefer fitting
the AR model rather than the MA model. The number of MA lags is set smaller than the
number of AR lags to strike a balance between prediction accuracy and computational
burden. Thus, the max p and q are set to 4 and 2, respectively. The selection of lag orders
for one step of the AR and MA model is shown in Figure 12. In the current step, we
chose p = 1 and q = 1 due to the minimum BIC being −6158. A comparison of BIC results
along the whole series is presented in Figure 13. Based on these results, variable lags
for the model yield smaller BIC values compared to using constant lags, and a smaller
BIC value indicates a better fitting performance for the model. Specifically, the MA lag is
consistently set at 2, while the AR lag fluctuates between 1 and 2. For the velocity series,
the fixed p value indicates the main part of velocity is the response process, which has
a tight relationship with previous data. Hence, to enhance velocity prediction accuracy,
the stochastic process should be dynamically adjusted in real time. The results consist of
the prediction accuracy with fixed lags of the model having an unsatisfactory prediction
performance when the velocity series has fluctuations. In summary, the variable d ensures
that the data are stationary and the optimal p and q correspond to the prediction accuracy.
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3.3. Overall Strategy Design

This paper proposes an FS–ARIMA approach with flexible structural parameters to
improve short-term V–G prediction accuracy. The flowchart of the FS–ARIMA is shown in
Figure 14. The specific implementation process of the strategy involves the following steps:

(1) New sample update with the sliding window: At time t, new local V–G data are
collected and converted. The sliding window technique is used to update the sample
data for online fitting and prediction. After the update, a new round of the prediction
process begins;

(2) Stationary examination with variable d: The updated sample data undergo an ADF
test, which determines the appropriate differencing order d in an adaptive manner.
The initial value of d is set to 4 to avoid excessive differencing;

(3) Optimal p and q identification: The values of p and q, determined online with BIC via
the stationary samples, are set to 4 and 2, respectively, to balance the fitting accuracy
and computing time;

(4) The model parameter estimation and prediction module: The coefficient is estimated,
and the ARIMA (p, d, q) prediction module is constructed for the forecast. It should be
noted that least-squares regression is employed to estimate the coefficient in this step.
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By following this process, the FS–ARIMA approach enhances the prediction accuracy
of short-term V–G data.

4. Results and Discussion
4.1. Performance of the Proposed FS–ARIMA

A typical prediction horizon of 10 s was selected to illustrate the prediction perfor-
mance of FS–ARIMA. As a benchmark, the conventional ARIMA with fixed structure
parameters was selected. Figure 15 illustrates the original velocity series of Actual 1 and the
differential results with two differencing orders. According to the results, the differential of
the velocity data was intuitively stationary and varied between −0.2 and 0.2. To further
analyze the stationarity of the differential data, the autocorrelation function (ACF) and
partial autocorrelation function (PACF) are examined in Figure 16. The majority of the ACF
and PACF parameters fell within the desired boundaries. This indicates that the differential
of the original Actual 1 velocity data was indeed stationary. Therefore, the ARIMA (2, 2, 1)
model can be utilized for prediction purposes. Similarly, the other cycles were omitted
from consideration as they exhibited similar conditions to the ARIMA (2, 2, 1) model.
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Figure 16. The ACF and PACF results of velocity series after two−order differencing.

Figures 17 and 18 show the performance of FS–ARIMA on V–G prediction compared
with conventional ARIMA. In these figures, the blue and short red lines represent the
forecasted values at each time point. It can be observed that the V–G prediction based on
FS–ARIMA closely aligned with the actual V–G information at each time point, yielding a
smaller RMSE. When the V–G was stationary or exhibited minor fluctuations, FS–ARIMA
demonstrated a monotone-varying characteristic and excelled at capturing the varying
characteristics. In these scenarios, the prediction was nearly perfect, with a relatively low
RMSE—such as the 2000 s to 3500 s highway episode in the “actual 1” velocity series,
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as well as the entire cycle of “actual 2” velocity with traffic. However, when the V–G
suddenly changed its variation trend, particularly when it reached its maximum point and
subsequently declined dramatically, conventional ARIMA struggled to accurately predict
the future road gradient, resulting in a relatively high RMSE. In such cases, the variable
differencing order ensured the data were adaptively stationary, while the variable lags of
the model enhanced the fitting accuracy. Consequently, FS–ARIMA achieved a remark-
able improvement in performance. In summary, the proposed FS–ARIMA outperformed
conventional ARIMA throughout the entire cycle.

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 20 
 

 

 

 
(a) Actual 1 velocity prediction results and RMSE 

 
(b) Actual 2 velocity prediction results and RMSE 

 
(c) Typical velocity prediction results and RMSE 

Figure 17. Comparison of velocity prediction and RMSE results between FS–ARIMA and ARIMA: 
(a) Actual 1, (b) Actual 2, (c) Typical. 
Figure 17. Comparison of velocity prediction and RMSE results between FS–ARIMA and ARIMA:
(a) Actual 1, (b) Actual 2, (c) Typical.



Sustainability 2023, 15, 15639 15 of 18

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 20 
 

 

 
(b) Actual 2 velocity prediction results and RMSE 

(c) Typical velocity prediction results and RMSE 

Figure 17. Comparison of velocity prediction and RMSE results between FS–ARIMA and ARIMA: 
(a) Actual 1, (b) Actual 2, (c) Typical. 

 
(a) Actual 1 road gradient prediction results and RMSE 

 
(b) Actual 2 road gradient prediction results and RMSE 

Figure 18. Comparison of road gradient prediction and RMSE results between FS−ARIMA and
ARIMA: (a) Actual 1, (b) Actual 2.

The prediction accuracy and computational efficiency of V–G with the proposed FS–
ARIMA under different prediction horizons are listed in Table 2. To measure the prediction
performance, ARMSE was used, while the computational efficiency was quantified by the
runtime. The reported time represents the average runtime across the various prediction
horizons. In general, the ARMSE is small with a lower prediction horizon. On the other
hand, it was observed that the prediction performance decreased as the prediction horizon
lengthened. This is consistent with the fundamental laws of prediction, as longer horizons
introduce more uncertainty and make it more challenging to forecast accurately. The com-
putational efficiency varies depending on the duration of the operating cycles. However,
on average, the proposed FS–ARIMA demonstrated an overall efficiency of around 13%
of the total time. This suggests that the model was efficient in terms of the computational
resources required for prediction. To summarize, the proposed FS–ARIMA demonstrated a
good ability to capture the varying characteristics of V–G within the prediction horizon,
thanks to its flexible structure.

Table 2. ARMSE of the FS–ARIMA on V–G prediction.

Accuracy ARMSE(m/s) Time
(s)

Variance
(m/s)4 s 6 s 8 s 10 s

V
Actual 1 0.08 0.13 0.28 0.51 478 0.17
Actual 2 0.02 0.07 0.18 0.38 252 0.09
Typical 0.27 0.53 0.85 1.21 506 0.54

G
Actual 1 0.05 0.13 0.27 0.51 412 0.17
Actual 2 0.06 0.12 0.32 0.65 207 0.11
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4.2. Overall Evaluation

In order to highlight the performance of the FS–ARIMA, additional methods have
been included for comparison. These methods are the modified online velocity prediction
method ARBF-NN [27], conventional RBF-NN, and LSTM. For all the methods, the pre-
diction horizon was set to 10 s. The dominant structures of ARBF-NN and RBF-NN were
specified as 50 and 30, respectively. It is important to note that ARBF-NN is an adaptive
RBF-NN with flexible structural parameters. In the case of LSTM, there were 1486 samples
available for offline training, and 136 test samples were used. As a benchmark, conven-
tional ARIMA (2, 2, 1) was set and its performance was represented as 100% normalized
ARMSE. The comparison results under different prediction horizons are listed in Table 3.
The ARMSE indicates the average accuracy of the three velocity cycles and two actual road
gradient cycles.

Table 3. The comparison of the FS−ARIMA for the whole cycles of V–G prediction via different
approaches.

Horizon
ARMSE (m/s) Accuracy

(%)
Improvement

(%)
Time

(s)
Variance

(m/s)4 s 6 s 8 s 10 s

V

FS–ARIMA 0.12 0.24 0.44 0.70 58.37 41.63 412 0.27
ARIMA 0.28 0.49 0.76 0.96 100 X 378 0.56

ARBF-NN 0.48 0.61 0.93 1.06 −124.63 −24.63 325 0.68
RBF-NN 0.79 0.99 1.18 1.36 −173.49 −73.49 345 0.91

LSTM 0.55 1.11 1.25 1.57 −179.91 −79.91 435 0.92

G

FS–ARIMA 0.04 0.09 0.17 0.33 57.81 42.19 370 0.14
ARIMA 0.11 0.21 0.32 0.45 100 X 354 0.28

ARBF-NN 0.12 0.16 0.33 0.45 97.248 2.752 361 0.24
RBF-NN 0.18 0.25 0.49 0.65 −144.03 −44.03 325 0.37

LSTM 0.16 0.32 0.51 0.78 −162.38 −62.38 445 0.42

The results demonstrate that FS−ARIMA achieved an excellent prediction accuracy
while maintaining an acceptable computational efficiency, for both velocity and road
gradient prediction. In general, ARIMA−based prediction has an identical performance
to AI-based and stochastic-based methods. For the velocity prediction, the ARMSE of
FS–ARIMA is 0.12 m/s when the prediction horizon is 4 s, outperforming the ARIMA of
0.28 m/s, the ARBF−NN of 0.48 m/s, the RBF−NN of 0.79 m/s, and the LSTM of 0.55 m/s.
The flexible structure of the proposed FS−ARIMA has a significant impact on the prediction
accuracy, especially for shorter prediction horizons. As the prediction horizon increases, the
accuracy of all the methods tends to diminish. However, FS−ARIMA showed a remarkable
improvement compared to the other methods. In the prediction horizon of 10 s, the ARMSE
of FS−ARIMA was 0.70 m/s, the ARIMA was 0.96 m/s, the ARBF-NN was 1.06 m/s, the
RBF−NN was 1.36 m/s, and the LSTM was 1.57 m/s. According to the results, ARBF−NN
was an improvement compared with RBF−NN, and this is consistent with the FS−ARIMA.
That is because, with the variable differencing order and lags of models, the prediction
is also noteworthy, despite a slight increase in runtime. The average prediction is highly
improved when the data fluctuate. The improvement in road gradient runtime increases
from 378 to 412 due to the online determination of the differencing order and lags of the
model, representing a 9.6% increase, which is still acceptable.

Overall, the average prediction performance of FS−ARIMA improved by 41.63%
for velocity and 42.19% for road gradient series compared with conventional ARIMA.
Furthermore, FS−ARIMA demonstrated the smallest variance among the methods. In
summary, FS−ARIMA significantly improved prediction accuracy while maintaining
acceptable computational efficiency, particularly when dealing with data fluctuations. It
surpassed conventional ARIMA as well as other AI-based and stochastic-based methods.
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5. Conclusions and Future Work
5.1. Conclusions

The accuracy of V–G prediction is crucial for improving the performance of PEMS
in EVs. A conventional ARIMA model with fixed structural parameters may not always
be suitable for online prediction when dealing with data fluctuations. To address this
limitation, a novel FS–ARIMA model was developed, incorporating variable differencing
orders and lags to enhance V–G prediction accuracy. The sliding window method was
utilized to produce the V–G time series in real time. By continuously updating the se-
ries, the impact of differencing orders and lags on prediction accuracy was thoroughly
investigated. It was observed that the fixed structure of the conventional ARIMA model
lacked adaptability in online prediction. By introducing a differencing order and lags of
the model determination method with the ADF test and the BIC, FS–ARIMA was designed
to further improve the prediction accuracy. The effectiveness of the proposed FS–ARIMA
model was validated through simulations using actual and typical driving cycles. The
results demonstrated an approximate improvement of 41.63% and 42.19% in V–G series
prediction accuracy, respectively. Furthermore, the FS–ARIMA model did not require
extensive historical or numerous typical databases for offline training, making it useful for
early-stage ITS applications related to PEMS in EVs.

5.2. Future Work

The work reported in this paper is only one step toward the development of an FS–
ARIMA with a flexible structure for online V–G predictions. It can improve prediction
accuracy. In future work, we will carry out research in the following areas: (1) Balance
the structure to extend ARIMA applications, such as velocity and trajectory prediction for
self-driving. (2) Consider the variables of sample size and prediction horizon to further
balance the prediction accuracy and the calculation time. (3) Develop a more advanced
optimization algorithm to obtain the optimal structure and improve the computational
efficiency.
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