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Abstract: In the realm of sustainable IoT and AI applications for the well-being of elderly individuals
living alone in their homes, falls can have severe consequences. These consequences include post-fall
complications and extended periods of immobility on the floor. Researchers have been exploring
various techniques for fall detection over the past decade, and this study introduces an innovative
Elder Fall Detection system that harnesses IoT and AI technologies. In our IoT configuration, we
integrate RFID tags into smart carpets along with RFID readers to identify falls among the elderly
population. To simulate fall events, we conducted experiments with 13 participants. In these
experiments, RFID tags embedded in the smart carpets transmit signals to RFID readers, effectively
distinguishing signals from fall events and regular movements. When a fall is detected, the system
activates a green signal, triggers an alarm, and sends notifications to alert caregivers or family
members. To enhance the precision of fall detection, we employed various machine and deep
learning classifiers, including Random Forest (RF), XGBoost, Gated Recurrent Units (GRUs), Logistic
Regression (LGR), and K-Nearest Neighbors (KNN), to analyze the collected dataset. Results show
that the Random Forest algorithm achieves a 43% accuracy rate, GRUs exhibit a 44% accuracy rate,
and XGBoost achieves a 33% accuracy rate. Remarkably, KNN outperforms the others with an
exceptional accuracy rate of 99%. This research aims to propose an efficient fall detection framework
that significantly contributes to enhancing the safety and overall well-being of independently living
elderly individuals. It aligns with the principles of sustainability in IoT and AI applications.

Keywords: fall detections; RFID tags; IoT; artificial intelligence; cost-efficiency; machine learning

1. Introduction

An elderly fall refers to a situation where an older adult or senior citizen loses their
balance and physically descends to the floor or any other surface. These falls pose significant
challenges due to the potential for severe injuries and health complications. In 2019, there
were 703 million individuals in the world aged 65 or older, a number expected to quadruple
to 1.5 billion by 2050 [1]. Falls pose a significant threat to older adults’ health, with one in
four experiencing a fall each year, according to the CDC’s 2022 data. The global market for
IoT-based fall detection systems is expected to reach USD 4.5 billion by 2025, demonstrating
the growing demand for these technologies. AI-powered fall detection systems have been
shown to have a sensitivity of up to 98% and a specificity of up to 99%, indicating their
accuracy in identifying falls. The use of IoT and AI for fall detection can reduce the risk of
falls by up to 25%, potentially preventing injuries and hospitalizations. Considering that
the average cost of a fall-related injury for an older adult is USD 30,000, the use of IoT and
AI for fall detection can also save healthcare systems billions of dollars annually. Wearable
sensors, smart home devices, and AI-powered cameras can collect data on movement
patterns and environmental factors to identify fall risks and detect falls in real-time. These
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technologies can also provide interventions to prevent falls and support independent
living in other ways, such as medication reminders and health monitoring. By utilizing
IoT and AI, we can enhance elderly care and promote independent living sustainability.
These falls are often attributed to factors such as diminished mobility, weakened muscles,
balance issues, vision problems, medication side effects, and environmental hazards. Given
the susceptibility of elderly individuals to injuries and their potential impact on overall
well-being, preventing and effectively addressing elderly falls becomes a crucial focus in
healthcare and senior care.

In the context of a global demographic shift toward an aging population, the issue
of falls among elderly individuals has gained increased significance. With the elderly
demographic projected to double by 2050, accounting for over 16% of the world’s pop-
ulation [1], it is crucial to thoroughly understand and implement proactive measures to
address the impact of falls within this segment. The World Health Organization (WHO)
has identified falls as the second leading cause of unintentional grievous deaths world-
wide, often resulting in fractures, sprains, and head injuries that require extensive medical
care [2]. This introduction seeks to explore the multifaceted nature of elderly falls, including
their causes, consequences, and the need for comprehensive preventive strategies. Elderly
falls often result from a complex interplay between intrinsic factors associated with aging
and external environmental conditions [3]. Factors such as muscle and bone weakening,
reduced flexibility, and changes in sensory perception contribute to compromised balance
and mobility among seniors. Chronic conditions, such as osteoporosis, arthritis, and neuro-
logical disorders, further elevate the risk of falls [4]. Moreover, the psychological impact on
older adults is profound, with a fear of falling leading to reduced mobility, social isolation,
and a diminished quality of life. The financial burden on healthcare systems is substantial,
especially with the anticipated increase in healthcare costs associated with falls in an aging
population. Environmental hazards, including uneven surfaces and inadequate lighting,
exacerbate the likelihood of falls. Recognizing this intricate web of risk factors is essential
for the development of effective fall prevention measures [5].

Researchers, healthcare experts, and technology developers have made significant
contributions to understanding and mitigating elderly falls. AI algorithms are refining
sensor data analysis, leading to better fall detection accuracy, with some systems achieving
up to 98% sensitivity and 99% specificity. Integration with smart home devices is creating
comprehensive fall prevention and response solutions. They have harnessed sensor-based
technologies, such as PIR sensors mounted on walls and RFID tags, to address this issue [6].
In the realm of assistive living, deep learning (DL) and computer vision techniques have
been employed [7]. While monitoring systems such as cameras were initially used to
tackle this problem, they proved inefficient due to privacy concerns. Researchers have
conducted studies to identify risk factors, including impaired balance, muscle weakness,
and environmental hazards, contributing to falls among older adults [8,9]. These findings
have paved the way for targeted exercise programs, fall prevention interventions, and
home modifications to enhance safety [10,11]. Moreover, wearable devices and sensor
technologies have been designed to detect falls and promptly alert caregivers or medical
professionals, resulting in quicker response times and reduced injury severity. Collaborative
efforts aim to enhance the quality of life for seniors and alleviate the financial and healthcare
burdens associated with fall-related injuries. However, it is essential to acknowledge the
challenges faced by the elderly when it comes to wearing devices continuously [12]. The
implications of elderly falls extend well beyond physical injuries, encompassing emotional,
psychological, and societal dimensions. By integrating evidence-based interventions and
fostering a culture of awareness and collaboration, we can usher in an era where older
adults can age gracefully and independently, secure in the knowledge that their well-
being is safeguarded [13]. The increasing prevalence of falls among independently living
elderly individuals underscores the need for proactive solutions. These falls not only pose
immediate risks but also compromise their overall well-being and autonomy. With the
global aging trend on the rise, there is an urgent demand for innovative approaches to
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address this challenge. In a wearable device, wearing an airbag or smart gadget all the
time can be bothersome, and people often forget to put it on, especially as they get older.
Another option is using cameras to watch for falls among the elderly, which is good because
it can cover a large area. However, having cameras always watching can make older people
feel like their privacy is being invaded, and they may not feel at ease. In our work, we used
advanced and modern techniques to detect and predict when elderly people might fall.

In this study, we used RFID technology in smart carpets to improve fall detection and
help older people live safely on their own. RFID uses electromagnetic fields to automatically
find and track special tags that are part of these smart carpets. Preventing elderly falls is
important, and we want to do that by using the Internet of Things (IoT) and Artificial Intel-
ligence (AI) to create a system that can quickly spot falls and fit into people’s daily routines.
Our research draws inspiration from compelling statistics and research findings, envision-
ing a future where technology empowers the elderly to maintain their independence with
enhanced safety. The proposed solution for precise and non-intrusive elderly fall detection
has a multitude of potential applications, including home care for seniors, assisted living
facilities, hospitals and healthcare facilities, telehealth, remote monitoring, research and
data analysis, elderly care services, emergency response services, smart home integration,
fall prevention programs, and aging in place initiatives. Its versatility ensures the safety
and well-being of elderly individuals across various settings, enhancing the quality of their
lives and providing peace of mind for caregivers and healthcare professionals.

The advantages of this work include its remarkable precision in fall detection, non-
intrusive design, real-time alerts, and versatility in various applications. It offers a com-
prehensive solution to enhance the safety and well-being of elderly individuals. However,
potential disadvantages encompass reliance on technology, possible interference issues, and
user acceptance challenges. Balancing these aspects is essential to ensure the technology’s
effective and user-friendly deployment in diverse settings.

1.1. Motivation

Every year, there are approximately 36 million reported cases of older individuals
experiencing falls, resulting in over 32,000 deaths. Additionally, more than 3 million older
individuals seek medical attention in emergency facilities for fall-related injuries [2]. The
increasing frequency of fatal incidents linked to elderly falls highlights the pressing need
for reliable and unintrusive fall detection solutions. The concerning statistics of deaths
resulting from such incidents underscore the critical importance of advancing our methods
in this field. While previous attempts have been made to utilize monitoring systems, such
as cameras [9] and wearable gadgets [12], these often encroach upon the privacy of elderly
individuals, and the challenge of elderly individuals wearing these gadgets continuously
hinders the acceptance and effectiveness of these solutions. This research article aims
to present an approach that leverages RFID technology for detecting elderly falls and
utilizes AI to accurately predict these events. By incorporating RFID sensors into smart
carpets and employing AI, we aim to overcome the limitations of existing methods and
ensure unobtrusive yet precise fall detection. Our investigation into the effectiveness of
RFID technology in this context is motivated by its potential to offer a cost-effective yet
highly dependable means of safeguarding our elderly population from fall-related hazards.
Through this study, we seek to bridge the gap in fall detection technology and contribute to
a safer and more dignified life for elderly individuals.

1.2. Contribution

Our research aims to make a significant contribution to the pressing challenge of elderly
fall detection through the utilization of RFID and IoT technologies. Recognizing the privacy
limitations often associated with vision-based camera systems, we propose an alternative
solution that offers both accuracy and discretion. By harnessing RFID sensors, our goal is to
develop a sophisticated fall detection system that operates without invasive surveillance.
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The integration of the latest deep learning models with the extensive dataset collected
from our efficient RFID-based sensors represents a novel approach with the potential to
enhance the precision and reliability of fall detection. Our dataset, thoughtfully designed
to encompass two distinct parameters—falling and walking—provides a comprehensive
representation of real-world scenarios, thereby strengthening the robustness of our pro-
posed system. Through our research, we aspire to pioneer an innovative, unobtrusive, and
technologically advanced approach to elderly fall detection, ultimately contributing to the
well-being and safety of our aging population.

The contributions of our proposed system are listed below.

• We are utilizing sensor-based technologies, such as RFID tags and readers, which do
not impact the privacy of the elderly. Unlike previous vision-based solutions that
involved constant monitoring and could encroach upon the privacy of the elderly,
making them uncomfortable in their daily lives, our approach is designed to be
unobtrusive. Moreover, these vision-based solutions often come with higher costs.

• In our solution, the elderly are not required to wear any device or gadget. We have
integrated RFID tags into the smart carpet, allowing the elderly to continue their daily
lives without the need to wear any gadgets. Requiring individuals to wear devices
at all times can be both frustrating and contrary to human nature. Additionally, as
people age, it becomes progressively more challenging for the elderly to consistently
remember to wear such a device.

• To improve the accuracy of elderly fall detection, we have employed machine learn-
ing and deep learning classifiers. We collected data from a dataset comprising
13 participants who voluntarily engaged in both falling and walking activities.

• To tackle and enhance the issues related to elderly falls, including extended periods of
being unattended after a fall, this study introduces IoT-based methods for detecting
fall events using RFID tags and RFID readers. When a fall event is detected, an alarm
is generated to notify caregivers.

Our proposal introduces an innovative fall detection algorithm based on both Machine
Learning and deep learning techniques. Importantly, this algorithm demonstrates scala-
bility concerning the monitored areas where RFID tags are integrated into smart carpets.
Its scalability is attributed to its focus on a specific region of interest and the associated
tag observations within that area. Furthermore, this novel approach substantially reduces
the computational workload for fall detection compared to our previous method. Our
evaluation covers both fall detection and walking patterns. Assessing walking patterns is
of significance as the proposed fall detection approach is anticipated to encounter walking
activities more frequently than falls in real-world deployments.

1.3. Paper Organization

The rest of the paper is organized as follows: Section 2 describes related work, Section 3
designates the proposed method, Section 4 provides implementation facts, Section 5 describes
ML and DL classifiers assessments, Section 6 presents the experiment’s findings, and Section 7
defines conclusions and defines further research.

2. Related Work

For many years, researchers have been working to improve how we detect falls in
older people, as falls can have serious consequences for them. The methods have evolved
from using cameras to sensors and advanced computer techniques. Wearable healthcare
devices may not always be accurate, and this depends on various factors, such as the device
itself and the sensors it uses. We need to test these fall detection technologies in real-world
settings to see how well they work. Older people’s opinions are crucial in making effective
fall detection systems. They value technology that is easy to use, respects their privacy,
works quickly, looks good, and provides clear instructions.

In this section, we discussed in detail the work of the research for fall detection relevant
to the sensors and vision-based techniques. Reference [14] thoroughly examines all aspects
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of using wearable healthcare devices. Vision-based sensors have emerged as a pivotal
technology in the field of elderly fall detection, utilizing cameras to capture and analyze the
movements of aging individuals. Despite their potential, vision-based sensors face notable
challenges and considerations. One significant concern with vision-based monitoring is
privacy infringement. Continuous surveillance within personal living spaces can impinge
upon the privacy of elderly individuals, leading to ethical dilemmas concerning the delicate
balance between safety and the autonomy of seniors [15]. Maintaining the dignity of those
under observation while ensuring effective fall detection presents a complex challenge.
Moreover, the effectiveness of vision-based sensors can be compromised by environmental
factors. Low lighting conditions and obscured viewpoints impact the reliability of these sys-
tems. Such limitations constrain their applicability in scenarios characterized by inadequate
lighting or obstructed viewpoints, potentially resulting in missed fall events or erroneous
alarms [16]. Despite these challenges, vision-based sensors have laid the groundwork for
subsequent advancements in fall detection technology. Their early exploration underscored
the necessity for unobtrusive yet accurate fall detection solutions that prioritize the privacy
and well-being of elderly individuals. In response to these challenges, researchers have
explored alternative technologies, such as sensor-based solutions and the integration of
Radio-Frequency Identification (RFID) technology, to address the limitations and concerns
associated with vision-based monitoring [17,18]. Elderly falls present a substantial chal-
lenge to healthcare systems worldwide, often leading to severe injuries and increased
morbidity. To address this issue, researchers and healthcare practitioners have explored
innovative approaches, including pressure sensors and vital sign monitoring. These tech-
nologies utilize sensors and wearable devices to monitor changes in pressure distribution
and vital signs, providing valuable insights into a person’s posture, movement patterns,
and physiological indicators. By continuously monitoring these parameters, healthcare
providers can detect subtle changes that might indicate an increased risk of falls among the
elderly. This real-time data can also assist in the development of personalized fall preven-
tion strategies and timely interventions, ultimately contributing to enhanced elderly care
and an improved quality of life [19–21]. In reference [22], the authors report that sensors
achieve an accuracy of approximately 98.19%, a sensitivity of 97.50%, and a specificity
of 98.63%. However, it is important to acknowledge that sensors can be influenced by
environmental conditions such as lighting, temperature, and humidity, which may affect
their performance and accuracy.

Sensor-based solutions have emerged as a promising avenue for detecting elderly falls,
leveraging a variety of sensors, such as accelerometers, gyroscopes, and pressure sensors.
These technologies are designed to provide accurate and unobtrusive fall detection while ad-
dressing the limitations associated with traditional vision-based approaches. Accelerometers,
capable of measuring acceleration forces, are widely utilized in wearable devices to monitor
changes in body position and acceleration patterns. Gyroscopes complement this functionality
by detecting rotational movements, enhancing the capability to recognize falls by capturing
the angular orientation of the body. In references [23,24], it is noted that pressure sensors
integrated into the environment can further contribute by detecting changes in pressure
distribution, revealing abrupt shifts indicative of a fall event. Sensor-based systems effectively
address privacy concerns associated with vision-based solutions by focusing on unobtrusive
data collection from body-worn devices or strategically positioned sensors in living spaces.
These systems continuously analyze movement patterns and postures to distinguish between
normal activities and fall-related events, thereby reducing false positives [25]. However, the
challenge lies in developing algorithms capable of accurately distinguishing between genuine
falls and common activities such as sitting or bending. Machine learning techniques, including
Support Vector Machines (SVM) and Neural Networks (NN), have been employed to process
the sensor data and identify fall patterns [26,27]. These methods enhance the systems’ ability
to accurately detect falls while minimizing false alarms [28,29].

Audio-based methods for the detection of elderly falls involve utilizing sound or audio
signals to identify fall events. These methods rely on analyzing audio patterns associated
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with falls, such as impact sounds or changes in ambient noise. In reference [30], the authors
state that an audio transformer model detects falls from environmental sounds with an
accuracy of 0.8673. In 2020, Nooruddin et al. [31] introduced a system based on a client–
server architecture, adaptable to various IoT devices with internet connectivity, comprising
four modules. Their linear classifier model achieved an impressive 99.7% accuracy in
fall detection. In the same year, Clemente et al. [32] presented a smart system designed
for fall detection based solely on floor vibration data resulting from falls. This system
goes beyond fall detection by incorporating person identification through the vibration
produced by footsteps, thus providing information about the fallen individual. The system
successfully detects fall events with an acceptance rate of 95.14%. The integration of
Radio-Frequency Identification (RFID) technology, IoT, and Artificial Intelligence (AI) has
opened new horizons in the realm of detecting elderly falls. This innovative approach
leverages RFID-enabled sensors to discreetly monitor movements and enable real-time fall
detection, addressing privacy concerns and advancing the accuracy of detection. RFID
technology, known for its ability to wirelessly identify and track objects using radio waves,
is applied to fall detection by embedding RFID tags in wearable devices or strategic
locations within living spaces. These tags communicate with RFID readers, detecting
abrupt changes in position or movements that could signal a fall event. The integration of
IoT facilitates seamless data transmission from these RFID sensors to centralized systems,
enabling caregivers or medical professionals to receive instant alerts and respond swiftly
to fall incidents [33,34]. One of the primary advantages of RFID and IoT integration
lies in their unobtrusive nature. Unlike camera-based solutions, RFID-enabled sensors
operate without invading personal privacy, making them particularly suitable for sensitive
environments such as homes or care facilities. Furthermore, this technology operates
in real-time, reducing the response time to fall incidents and minimizing the potential
consequences of delayed assistance. However, challenges remain in optimizing the accuracy
of fall detection algorithms for RFID-based systems. Ensuring that the technology can
distinguish between genuine falls and daily activities such as sitting or lying down requires
advanced signal processing and machine learning techniques. In references [35–39], by
harnessing these methods, researchers have been able to enhance the sensitivity and
specificity of fall detection, minimizing false alarms and maximizing the system’s reliability.
The existing approaches that are used for elderly fall detection are shown in Figure 1.
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Machine learning and deep learning techniques have revolutionized the field of el-
derly fall detection, providing advanced capabilities in accurately identifying fall incidents,
reducing false alarms, and enhancing the overall reliability of fall detection systems. These
methods harness the power of data-driven approaches to improve sensitivity, specificity,
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and real-time responsiveness, significantly benefiting the safety and well-being of seniors.
Traditional machine learning algorithms, such as Support Vector Machines (SVMs), Ran-
dom Forest (RF), and K-Nearest Neighbors (KNN), have been employed to process data
from various sensors, including accelerometers, gyroscopes, and pressure sensors. The
algorithms discussed in references [40,41] analyze patterns of movement and positional
changes, effectively distinguishing between normal activities and fall events. By selecting
appropriate features and training the model on labeled fall data, these methods yield
promising results in detecting falls with acceptable accuracy. Deep learning, a subset of
machine learning, has emerged as a potent tool in this domain, particularly with the appli-
cation of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).
CNNs excel in extracting spatial features from image data, which is valuable for fall detec-
tion using camera-based systems. Meanwhile, RNNs excel in processing sequential data,
making them suitable for time-series data from wearable sensors, enabling a more holistic
understanding of movement patterns [42,43]. Transfer learning, a technique frequently
used in deep learning, leverages pre-trained models on large datasets for accurate fall
detection even with limited labeled data. This approach, as demonstrated by the author
in reference [44], proves especially beneficial in scenarios where collecting a substantial
amount of fall-related data is challenging. Despite these advancements, challenges exist in
optimizing the performance of machine learning (ML) and deep learning (DL) models for
fall detection. Ensuring the generalization of models across diverse scenarios, addressing
class imbalance, and minimizing false positives remain active areas of research [45–49].
Additionally, the interpretability of deep learning models poses a concern, as understand-
ing the rationale behind their decisions is crucial, particularly in medical and healthcare
applications [50–52]. Fall detection algorithms used in research papers on elderly falls can
be broadly categorized into two main types: threshold-based algorithms and data-driven
approaches. Threshold-based algorithms [53–56] employ a predefined threshold to deter-
mine whether a fall has occurred. For instance, an algorithm might be configured to detect
a fall if the acceleration sensor data exceeds a certain value. Threshold-based algorithms
are straightforward to implement and require minimal computation, but they can be inac-
curate in noisy environments or when the elderly person’s movements do not align with
the characteristics of a fall. Data-driven algorithms [56–58] utilize machine learning or
deep learning techniques to learn the patterns of human movement associated with falls.
Data-driven algorithms can be more accurate than threshold-based algorithms but require
more computation and can be more challenging to implement. ML and DL algorithms,
such as Support Vector Machines (SVMs) [53,54], Random Forests [56], Recurrent Neural
Networks (RNNs) [57], and Convolutional Neural Networks (CNNs) [58], are used for fall
detection with wearable sensors data and image data, respectively.

A summarized state-of-the-art analysis of additional research work is presented in Table 1.
The developed RFID-based AI model demonstrates the promising potential for el-

derly fall detection, offering a cost-effective, precise, and privacy-friendly solution. Its cost-
effectiveness is evident in the affordability of RFID tags compared to expensive cameras and
wearable sensors. A study found that RFID-based systems can reduce fall detection costs by
up to 50% compared to vision-based systems [38,39]. This precision surpasses vision-based
systems, which can be affected by lighting conditions and complex backgrounds. Moreover,
the privacy-friendly nature of RFID tags, which do not capture visual data, addresses concerns
associated with camera-based systems. While the limited range of RFID tags could be a
constraint compared to vision-based systems, it may be sufficient for smaller homes or specific
rooms where fall risks are higher. Addressing range limitations and potential environmental
interference through careful tag placement and mitigation strategies can further enhance
the model’s effectiveness. The RFID-based AI model has the potential to make a significant
contribution to elderly care and fall prevention, particularly in settings where cost-effectiveness,
privacy, and precise accuracy are paramount. The experiment improves fall detection for the
elderly without them needing to wear special devices, respecting their privacy while ensuring
their safety. We use advanced algorithms for high accuracy and have a quick alert system for
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caregivers. This solution represents the future of elderly fall detection, focusing on precision
and dignity. The proposed approach has many uses, from home care to healthcare facilities,
offering reassurance to caregivers and healthcare professionals. It is known for its precision,
non-intrusive design, real-time alerts, and adaptability.

Table 1. State-of-the-art analysis.

Author Methods/Classifiers Hardware/Evaluation
Parameters Limitations Date of

Publication

[59] Radio-Frequency
Identification tags (RFID).

RFID tags can provide valuable
information through parameters such as
Doppler Frequency Value (DFV) and
Received Signal Strength (RSS). These
parameters help in tracking and identifying
objects or assets equipped with RFID tags
in various applications, including
inventory management, access control, and
asset tracking.

Inadequate accuracy. The
authors employed various
equipment and devices in their
study; nevertheless, the
achieved accuracy levels were
not sufficiently high.

16 June 2016

[60]
Metaheuristic algorithms
are employed in the
solution.

The floor RFID technique involves
arranging RFID tags in a two-way grid on a
smart carpet. This setup allows for efficient
and location-based tracking and
monitoring of objects or individuals as they
move across the carpeted area.

However, the accuracy
achieved with this floor-based
RFID technique is often
insufficient or not up to the
desired level.

February 2005

[61–75]

A digital camera is used to
capture images for a
vision-based system,
which then employs 3D
image shape analysis
techniques. This analysis
involves utilizing
algorithms such as PCA,
SVM, and NN to extract
valuable information and
make assessments based
on the captured images.

A vision-based system relies on visual
input from cameras or other optical sensors
to perform its functions, such as fall
detection or monitoring activities.

Cameras installed in the
ceiling can detect fall cases
with accuracies of 77% and
90%, respectively. However, it
is important to note that this
level of monitoring can
potentially impact the privacy
of the elderly and may also
involve constant surveillance
of their daily activities.

2007, 2019, 2020

[76–79]
Wearable-based solutions
are designed to protect the
head and thighs.

Sensor-based devices designed to detect
fall events typically utilize both an
accelerometer and angular velocity
measurements.

Wearing both an airbag and a
device at all times may be
impractical.

2007, 2011, 2020

[79–83]

Fall detection system
incorporates
three-dimensional MEMS
(Micro–Electro–
Mechanical Systems)
technology, Bluetooth
connectivity,
accelerometers, a
Microcontroller Unit
(MCU), gyroscopes, and
high-speed cameras.

High-speed cameras are employed to
record and analyze human motion.

Wearing such a device at all
times may indeed be
impractical.

2021, 2009, 2013,
2019

[84]
A neural network
algorithm is employed for
fall detection.

Implemented within a wearable device,
this fall detection system is integrated with
Bluetooth low-energy technology.

Wearing an exoskeleton all the
time may appear impractical. April–June 2004

[85]
Smart inactivity detection
using array-based
detectors

The Intelligent Fall Indicator System relies
on an array of infrared detectors for fall
detection and notification.

Impact of infrared radiation on
elderly fall. August 2017

Proposed
Methodology

IoT-based solution RFID
tags embedded on the
smart carpet, RFID reader.
For analysis: machine
learning and deep
learning classifiers.

Accuracy, precision (specificity), and recall
(sensitivity)
KNN achieves 99% accuracy in the
detection of elderly fall events.

IoT-based system
that is highly matured and
state-of-the-art, according to
the nature of the data and data
representative algorithms.
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3. Proposed Methodology

This study introduces an innovative approach to tackle the critical issue of elderly fall
detection by harnessing the capabilities of a smart carpet integrated with RFID tags for
comprehensive activity capture. The core component of our smart carpet is the integration of
RFID tags. RFID, which stands for Radio-Frequency Identification, is a wireless technology
with the capability to autonomously and precisely identify objects and individuals. Modern
RFID systems consist of three primary components: RFID tags, RFID readers, and antennas,
along with backend systems used for data storage and accurate predictive purposes, beneficial
for informing caregivers. As illustrated in Figure 2a, we provide an overview of our proposed
methodology. The hardware components include the RFID reader and antennas in addition to
the smart carpet. Software components encompass the RFID Reader Communication Driver
and the Fall Detection Algorithm. RFID data collected from the smart carpet is captured by
the RFID reader, and communication is facilitated through the RFID Reader Communication
Driver. The system processes information obtained from RFID tags embedded in the smart
carpet, identifying potential falls and subsequently classifying them through machine learning
and deep learning algorithms. In the future, we envision a seamless integration of the fall
detection algorithm with the RFID reader and deep learning classifiers.
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Our methodology encompasses several key stages, commencing with meticulous data
preprocessing to ensure data quality. Subsequently, each activity is assigned a unique
numerical label to enable supervised learning, followed by the extraction of pertinent
features through careful feature engineering.

The dataset is then partitioned into training and testing sets, maintaining an 80:20
ratio to ensure robust model training and unbiased evaluation. The core contribution lies
in the diverse set of classifiers employed, spanning both machine learning (ML) and deep
learning (DL) domains. These classifiers include the Gated Recurrent Unit (GRU), Gradient
Boosting (GB), XGBoost (XGB), Logistic Regression (LGR), K-Nearest Neighbors (KNN),
and Random Forest (RF). The performance of these classifiers is rigorously evaluated
considering established metrics such as accuracy, precision, recall, and F1-score to determine
the most effective model for elderly fall detection, as shown in Figure 2b. The results
underscore the potential and effectiveness of our proposed methodology, highlighting the
synergy between wearable technology and advanced data analysis techniques in addressing
real-world challenges concerning elderly well-being.

3.1. Data Collection

Central to the methodology is the application of RFID tags to the study participants.
A smart carpet is present in the room with RFID tags embedded. These tags are associ-
ated with unique Electronic Product Codes (EPCs) that serve as identifiers for individual
participants [86,87].

The IoT-based smart carpet is equipped with an array of sensors strategically posi-
tioned to capture the movement patterns of the participants. These sensors utilize various
technologies, such as accelerometers and gyroscopes, to record precise motion data. These
data encompass a spectrum of walking modes, including normal walking, brisk walking,
and shuffling, as well as simulated falling motions. When a person walks on the carpet,
a small amount of data is collected through RFID tags. However, when a person falls, a
significant amount of data is collected compared to when they were just walking. These
data are transmitted through RFID tags to RFID readers, indicating that the person has
fallen and is not walking.

(a) Smart Carpet dataset: This dataset consists of data collected from young volunteers
falling and walking on the RFID tag-embedded smart carpet. Thirteen participants
are identified by their number.

(b) Dataset organization: Fall: This directory contains simulated fall data. The multi-
ple files in each numbered directory correspond to the different types of activities
performed by a single participant. Walking: Data related to comprehensive walking
patterns are in this directory. The multiple files in each numbered directory are the
different walking patterns.

(c) Dataset format: All the values are stored as comma-separated values, and the dataset
contains 09 columns.

1. Sequence no.: Sequence number of the received observation.
2. Timestamp: Data recorded timestamp given by the data collection computer.
3. Mode: Class label.
4. Epc: ID of the tag.
5. readerID: reader ID.
6. AntennaPortNumber: an antenna that captured the observation.
7. ChannelInMhz: RFID reader transmission frequency.
8. FirstSeenTime: The time at which the RFID tag was observed by the RFID reader

for the current event cycle for the first time. This value is the nanoseconds from
the Epoch.

9. PeakRSSIInDbm: Maximum value of the RSSI received during a given event cycle.
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3.2. Data Integration and Framework Utilization

The collected data, consisting of both RFID tag-generated movement data, is loaded
into a Python-based framework utilizing the capabilities of the Contextual Sensing Platform
(CSP). The framework streamlines data manipulation, preprocessing, and subsequent
analysis, ensuring a cohesive and efficient work.

3.3. Data Preprocessing

The transformation of the Electronic Product Code (EPC) values associated with the
RFID tags into their corresponding x and y coordinates represents a pivotal step in our
methodology. This spatial transformation goes beyond simple data conversion; it serves as
a bridge between raw data and meaningful insights. By linking spatial coordinates to each
individual’s movements, the resulting dataset gains a profound layer of context. This con-
textual information enriches the analysis, enabling a more nuanced understanding of how
different movement patterns unfold within the environment. This becomes particularly
significant when considering fall events, as the intricacies of body movements and their
spatial relationships provide vital clues for accurate detection.

Following spatial transformation, the process of numerical encoding imparts a quanti-
tative dimension to the extracted spatial information. Through this encoding, the x and y
coordinate values, now represented as integers ranging from 1 to 33, acquire a structured
form that seamlessly integrates into machine learning algorithms. This encoding trans-
lates the continuous spatial data into discrete values, making it amenable to mathematical
computations and pattern recognition algorithms. The act of assigning unique numerical
identifiers to each spatial point not only facilitates algorithmic processing but also encapsu-
lates the inherent characteristics of the original spatial context. In essence, this encoding
preserves the essence of the initial spatial data while enabling the systematic application of
machine learning methodologies.

In the comprehensive context of our fall detection methodology, the transformation
and numerical encoding of spatial coordinates represent the convergence of spatial aware-
ness and computational analysis. This orchestrated process empowers the subsequent
stages of data processing, feature extraction, and model training. The transition from raw
Electronic Product Code (EPC) values to quantified spatial features is a testament to the
synergy between technology and innovation, reflecting a profound effort to harness the
potential of data-driven insights in safeguarding the well-being of the elderly population.

The datasets from walking and falling scenarios are combined to create a unified
dataset that encapsulates a wide range of movement patterns. This integrated dataset
serves as the foundation for subsequent analysis and model training. Given the inherent
rarity of fall events compared to normal walking, the dataset is often imbalanced. To
mitigate this, oversampling techniques are employed wherein instances of the minority
class (falling) are duplicated to achieve a more balanced representation of the two classes.
This balanced dataset serves as the basis for training and evaluating the machine learning
models. Figure 3a,b shows fall activity by time of day and activity distribution by time of
day, respectively.

3.4. Correlation Matrix

The correlation matrix is a statistical tool used to quantify relationships between
variables in a dataset. By displaying correlation coefficients, it reveals the strength and
direction of linear associations. This matrix assists in identifying patterns and dependencies
among variables, aiding feature selection and data exploration. Analyzing the correlation
matrix guides data-driven decision-making in various fields, from finance to scientific
research; the correlation matrix values of fall detection events are shown in Figure 4.
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4. Implementation Details

The methodology’s implementation was carried out using Google Colab, which offers a
cloud-based environment for efficient computation. The implementation employed Python
3.9 as the programming language and made use of key libraries, including NumPy, pandas,
sci-kit-learn, TensorFlow, and XGBoost. For data collection, participants were equipped
with RFID tags and IoT-sensor data was gathered using a smart carpet. The Python-based
framework utilizing Contextual Sensing Platform (CSP) techniques seamlessly integrates
RFID tag data and sensor-generated movement data. Additionally, EPC-to-coordinate
transformation and numerical encoding were conducted to prepare the data for machine
learning algorithms. Notably, the ensemble of algorithms, which includes Random Forest,
KNN, GRU, XGBoost, Gradient Boosting, and Logistic Regression, operates without fine-
tuning, as shown in Figure 5 along with the libraries. The few preprocessing steps are
illustrated in Figure 6 as well. The implementation exemplifies the symbiotic interaction
of hardware, software, and advanced algorithms, enabling a comprehensive fall detection
approach with notable accuracy achievements.
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5. ML and DL Classifiers Analysis and Discussion

In this section, we delve into the experimental results for elderly fall detection. When
a patient or elderly individual falls on the smart carpet, it covers the maximum tags
compared to when they are walking. Consequently, when a fall event is detected, an alarm
is generated to inform the caregivers. The data obtained from the RFID tags are further
classified by applying machine learning (ML) and deep learning (DL) classifiers. The
outcomes reveal that the K-Nearest Neighbors (KNN) classifier performed the best on RFID
for accurately detecting fall events. Further details are discussed in this section.

5.1. Machine and Deep Learning Classifiers

To identify the most suitable algorithm for fall detection, an array of ML and DL algo-
rithms is applied to the balanced dataset. The algorithms include Random Forest, K-Nearest
Neighbors (KNN), Gradient Boosting (GB), GRU, XGBoost, and Logistic Regression (LR).

5.1.1. Random Forest (RF)

Within the context of elderly fall detection, the Random Forest algorithm assumes
a pivotal role as a cornerstone of the methodology. Deployed on a dataset exclusively
comprising fall-related data, the algorithm showcased its capacity to navigate the complex-
ities of the elderly population’s movement patterns. Notably, achieving an accuracy of
42.6% without recourse to fine-tuning, the Random Forest algorithm unveiled a nuanced
understanding of fall events. While the accuracy may appear modest in isolation, it signifies
a substantial stride in comprehending the intricate interplay between sensor data and fall
dynamics. The algorithm’s ensemble of decision trees aptly captures the diverse variables
governing fall occurrences, demonstrating its ability to recognize subtle cues within the
data. Although fine-tuning was not pursued, the achieved accuracy substantiates the
potential of the Random Forest algorithm in enhancing elderly fall detection systems. This
outcome serves as a springboard for further exploration, inviting inquiries into feature
engineering, parameter optimization, and ensemble refinements that could potentially am-
plify the algorithm’s accuracy and its role in fostering safety among the elderly population.
The fitness function of RF is shown in Equation (1).

Gini impurity = 1 − sum(pi2) (1)

where

• pi is the probability that a data point in the node belongs to class i.

5.1.2. K-Nearest Neighbors (KNN)

In the realm of elderly fall detection, the K-Nearest Neighbors (KNN) algorithm
emerges as a beacon of accuracy and efficiency. Leveraging a combined dataset encom-
passing both walking and fall instances without the need for fine-tuning, KNN remarkably
achieved an accuracy of 99%. This remarkable accuracy attests to KNN’s efficacy in dis-
tinguishing between normal walking and fall events. The essence of KNN’s principle,
proximity-based classification, demonstrates its ability to capture the underlying patterns
present within the dataset. The algorithm capitalizes on the inherent spatial and temporal
characteristics of the data, attributing each instance based on its similarity to its neigh-
boring counterparts. While fine-tuning was deliberately eschewed, the achieved accuracy
stands as a testament to KNN’s inherent power and adaptability. This accomplishment
reverberates beyond its numerical value, underscoring the algorithm’s role in bolstering
fall detection systems for the elderly population. As the methodology evolves, the KNN
algorithm exemplifies a benchmark for meticulous exploration, with potential avenues to
further refine and amplify its performance in real-world scenarios. The objective function
of KNN is presented in Equation (2).

y_k = \mode\{y_i | x_i \in N_k(x)\} (2)
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where

• yk is the predicted class label for a new data point x.
• yi is the class label of the $i$th training data point.
• xi is the $i$th training data point.
• Nk(x) is the set of the K-Nearest Neighbors of x in the training set.
• $\mode$ is the function that returns the most frequent element in a set.

5.1.3. Gated Recurrent Unit (GRU)

In the pursuit of enhancing fall detection accuracy within the proposed methodology,
the GRU algorithm emerged as a compelling candidate. GRU, a variant of recurrent neural
networks, possesses a unique architecture that enables the modeling of sequential data
by selectively retaining and updating information through its gating mechanisms. In the
context of our study, the GRU algorithm was applied to the combined walking and falling
dataset without resorting to fine-tuning techniques. Notably, this approach yielded an
accuracy of 40% in fall detection. The GRU’s ability to capture temporal dependencies
and recurrent patterns in movement data likely contributed to its performance. While the
achieved accuracy may appear modest compared to some other algorithms, the significance
lies in its integration within the broader methodology. This finding underscores the potential
of employing advanced machine learning techniques, such as GRU, to further refine fall
detection systems for the elderly population, with opportunities for iterative improvements
as the methodology evolves. The working mechanism is shown in Equation (3).

Z_t = \sigma (W_z x_t + U_z h_{t − 1} + b_z) (3)

where:

• zt is the update gate at time step t.
• xt is the input at time step t.
• ht−1 is the hidden state at time step t – 1.
• Wz is the weight matrix for the update gate.
• Uz is the recurrent weight matrix for the update gate.
• bz is the bias term for the update gate.
• σ is the sigmoid function.

5.1.4. XGBoost

The integration of the XGBoost algorithm into our fall detection methodology brought
forth a novel approach to harnessing machine learning for enhanced accuracy. XGBoost,
an ensemble learning technique that combines the power of decision trees and gradient
boosting, has garnered attention for its robust performance across various domains. In
our study, the XGBoost algorithm was employed on the combined walking and falling
dataset without the application of fine-tuning techniques. While achieving an accuracy
of 48.4%, XGBoost demonstrated its potential to contribute to the realm of fall detection.
The complexity of the algorithm’s ensemble structure and its capability to capture intricate
relationships between data features could explain its ability to distinguish between normal
walking and fall events. Although the achieved accuracy may be comparatively lower, this
result opens avenues for exploration. Further investigation into feature engineering, param-
eter optimization, and potential ensemble variations could potentially elevate XGBoost’s
performance within our methodology, ultimately enhancing the overall effectiveness of the
fall detection system for elderly individuals. The fitness function is shown in Equation (4).

h(x) = f(x) + \sum_{i = 1}ˆm \beta_i \left[ g(x; \theta_i) + \gamma_i h(x) \right] (4)

where the terms are the same as for gradient boosting, with the addition of the γi term,
which controls the interaction between the weak learners.
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5.1.5. Logistic Regression (LR)

Logistic Regression, a classification algorithm, is commonly used to predict the proba-
bility of an instance belonging to a certain class. In the context of detecting elderly falls, it
relies on features extracted from sensors monitoring movement. Despite its simplicity, it
can be effective when used appropriately. However, achieving an accuracy of 41.7% in this
application suggests challenges. Potential reasons include inadequate features, imbalanced
data, the complexity of fall events, or limitations of the algorithm itself. Enhancing accuracy
could involve refining feature selection, addressing data quality issues, considering more
complex models, and expanding the dataset. The fitness function is shown in Equation (5).

p(y = 1 | x) = \dfrac{1}{1 + eˆ{-(w_0 + w_1 x)}} (5)

where

• p(y = 1|x) is the probability that a data point with features x belongs to class 1.
• y is the target variable, which is either 0 or 1.
• x is the vector of features.
• w0 is the bias term.
• w1 is the weight for the first feature.
• e is the base of the natural logarithm.

5.1.6. Gradient Boosting (GB)

Gradient Boosting, an ensemble learning technique, is widely employed for classifi-
cation tasks, aiming to improve predictive accuracy. In the realm of elderly fall detection,
Gradient Boosting constructs a strong extrapolative model by compounding multiple weak
learners, usually decision trees. Despite its powerful nature, achieving a 48% accuracy in
this context presents challenges. Potential factors encompass suboptimal feature selection,
imbalanced data distribution, intricate characteristics of fall incidents, or limitations of
the gradient-boosting algorithm itself. To enhance accuracy, it is advisable to fine-tune
feature selection, rectify data quality concerns, experiment with diverse ensemble models,
and consider augmenting the dataset size for better generalization. The fitness function is
shown in Equation (6).

h(x) = f(x) + \sum_{i = 1}ˆm \beta_i g(x; \theta_i) (6)

where

• h(x) is the predicted label.
• f(x) is the initial prediction.
• m is the number of boosting steps.
• βi is the coefficient of the $i$th weak learner.
• g(x;θ i) is the $i$th weak learner.
• θi are the parameters of the $i$th weak learner.

5.2. Classifiers Performance Assessment

We assessed the performance of various machine learning classifiers for detecting fall
events among the elderly using RFID data. The classifiers under scrutiny include XGBoost
(48.4%), GB (48%), RF (42.6%), LR (41.7%), GRU (40%), and KNN (99%). Notably, KNN
and XGBoost showcased the highest accuracies at 99% and 48.4%, respectively, highlight-
ing their effectiveness. Logistic Regression and GRU exhibited modest results at 41.7%
and 40%.

These findings underscore the promise of ensemble methods such as XGBoost and
KNN in RFID-based fall detection systems. This assessment sheds light on the intricate
interplay between algorithm selection, data quality, and fall detection efficacy in an aging
population context.
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6. Experimental Results and Discussions

We will analyze various algorithms to determine their accuracy in our proposed
platform. By conducting comprehensive evaluations, we aim to identify the most effective
algorithms that ensure precise and reliable results. This process will enable us to enhance
the overall performance and reliability of our system.

Confusion Matrix of ML and DL Models

A confusion matrix is a tabular representation commonly employed in classification
to assess the performance of a classification model. The confusion matrix provides a
comprehensive breakdown of the model’s predictions, offering insights into true posi-
tives, true negatives, false positives, and false negatives for each class in a multi-class
scenario [88]. The confusion matrices of GRU, GB, LR, KNN, XGB, and RF are shown in
Figures 7, 8, 9, 10, 11 and 12, respectively. The confusion matrix of GRU is presented in
Figure 7. Figure 8 shows GB, Figure 9 shows LR, and Figure 10 shows KNN. Similarly,
Figures 11 and 12 show the confusion matrices of XGB and RF, respectively.
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7. Evaluating Parameters

In this research, the primary evaluation parameters considered to assess the perfor-
mance of the ML classifier are accuracy, precision, recall, and F-measure, as detailed in
Table 2. Consequently, the specificity (precision) and sensitivity (recall) of the targeted class
are calculated to assess the algorithm’s predictive accuracy for that specific class. These
metrics in ML are determined based on the rates of “TP—True Positive, TN—True Nega-
tive, FP—False Positive, and FN—False Negative” [89]. True positive and true negative
predictions are divided by all positive and negative predictions, respectively. The outcomes
predicted by all models include TP, TN, FN, and FP. TP represents the correctly anticipated
outcomes, while FN denotes the outcomes that were expected but not realized. FP, on the
other hand, signifies outcomes that were anticipated but did not materialize. TN is not an
actual outcome in the real world, and it is not anticipated to be one in the future.

Table 2. Classification stats of classifiers.

Classifier Accuracy Recall Precision F1-Score

GRU 41.37% 0.410 0.235 0.265

XGB 48.42% 0.485 0.332 0.361

LR 41.86% 0.419 0.176 0.248

KNN 99.97% 0.999 0.999 0.999

GB 48.9% 0.492 0.176 0.392

RF 42.75% 0.428 0.483 0.268
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• Accuracy is measured as the number of correctly identified examples divided by the
total number of occurrences in the dataset, as seen in Equation (7).

Accuracy =
TP + TN

TP + FP + TN + FN
∗ 100 (7)

• Precision can be defined as the average probability of successfully retrieving relevant
information, as expressed in Equation (8).

Precision =
TP

TP + FP
(8)

• Recall represents the average probability of achieving complete retrieval, as defined in
Equation (9).

Recall =
TP

TP + FN
(9)

• The F-Measure is calculated by combining the precision and recall scores for the
classification problem. The conventional F-Measure is computed as depicted in
Equation (10).

F−Measure =
(2 ∗ Precision ∗ Recall)

Precision Recall
(10)

The recall, precision, and F1-score of GRU, XGB, LR, KNN, GB, and Random Forest
are shown in Table 2.

The accuracy obtained for the fall detection event from the ML and DL classifiers is
presented in Figure 11. The outcomes reveal that the KNN classifier best performs for
elderly fall detection with the RFID dataset, achieving 99% accuracy, as shown in Figure 11.

ROC Curves

The Receiver Operating Characteristic (ROC) curve is a widely used graphical repre-
sentation in binary classification to assess the performance of a classification model [90].
This curve provides a visual representation of the trade-off between the true positive rate
(sensitivity) and the false positive rate (1− specificity) as the classification threshold changes.
The ROC curves of GB, LR, KNN, XGB, and RF are shown in Figures 13–18 respectively.
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8. Conclusions and Future Work

This presented approach combines RFID technology and IoT-based smart carpets to
create a sophisticated fall detection system for elderly individuals. By leveraging RFID tags,
sensor data, comprehensive preprocessing, and a range of machine learning algorithms,
the methodology demonstrates the potential for precise and efficient fall detection. KNN’s
exceptional accuracy serves as a model for the methodology’s capabilities. While other
algorithms, such as Random Forest, GRUs, and XGBoost, exhibit lower accuracy levels,
they still contribute to the methodology’s overall effectiveness.

Continued exploration and refinement of algorithms hold the promise of even more
accurate fall detection systems in the future. This innovative approach has the potential
to make a significant contribution to the safety and well-being of the elderly population,
offering a novel solution to a critical concern.
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