Minimizing Carbon Dioxide Emissions with Clinoptilolite Zeolite in Moris Pineapple Cultivation on Drained Sapric Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physiography and Attributes of the Tropical Sapric Soils at Saratok, Malaysia
2.2. Chemical and Morphological Characteristics of the ZeoC Mineral
2.3. Experimental Design and Fertilization Treatments for Moris Pineapples Cultivated on a Drained Sapric Peat Soil
2.4. Soil Carbon Dioxide Measurements in Pineapple Cultivation
2.5. Laboratory Soil Carbon Dioxide Experiment
2.6. Data Analysis
3. Results
3.1. Soil Carbon Dioxide Emitted from Moris Cultivated Sapric Soils
3.2. Laboratory Soil Carbon Dioxide Experiment
4. Discussion
4.1. Effect of ZeoC Application on Soil Carbon Dioxide Emitted from Moris Cultivated Sapric Soils
4.2. The Effect of ZeoC on Soil Carbon Dioxide Emission from Peat Soils—A Laboratory Incubation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameters | Values |
---|---|
Oven | Temperature: 100 °C Maximum temperature: 275 °C |
Column | Stainless steel packed column Diameter: 0.125 inches Dimension: 28 cm × 31 cm × 16 cm Length: 20 ft Flow rate: 15 mL min−1 Pressure: 32.6 psi |
Flame ionization detector | Temperature: 250 °C Hydrogen flow: 400 mL min−1 Air flow: 400 mL min−1 Make-up flow (helium): 25 mL min−1 |
Thermal conductivity detector | Temperature: 250 °C Reference flow: 20 mL min−1 Make-up flow (helium): 3 mL min−1 |
References
- Veloo, R.; Paramananthan, S.; Van Ranst, E. Classification of tropical lowland peats revisited: The case of Sarawak. Catena 2014, 118, 179–185. [Google Scholar] [CrossRef]
- Adon, R.; Bakar, I.; Wijeyesekera, D.C.; Zainorabidin, A. Overview of the sustainable uses of peat soil in Malaysia with some relevant geotechnical assessments. Int. J. Integr. Eng. 2012, 4, 38–46. [Google Scholar]
- Jauhiainen, J.; Silvennoinen, H.; Hämäläinen, R.; Limin, S.; Raison, R.J.; Vasander, H. Nitrous oxide fluxes from tropical peat with different disturbance history and management. Biogeosciences 2012, 9, 1337–1350. [Google Scholar] [CrossRef]
- Warren, M.; Frolking, S.; Dai, Z.; Kurnianto, S. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: Implications for climate mitigation. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 1041–1061. [Google Scholar] [CrossRef]
- Dhandapani, S.; Ritz, K.; Evers, S.; Yule, C.M.; Sjögersten, S. Are secondary forest second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsula Malaysia. Sci. Total Environ. 2019, 655, 220–231. [Google Scholar] [CrossRef]
- Girkin, N.T.; Lopes dos Santos, R.A.; Vane, C.H.; Ostle, N.; Turner, B.L.; Sjögersten, S. Peat properties, dominant vegetation type and microbial community structure in a tropical peatland. Wetlands 2020, 40, 1367–1377. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Dawson, Q.; Bartlett, M.; Leeds-Harrison, P.B. The role of soil moisture, temperature and nutrient amendment on CO2 efflux from agricultural peat soil microcosms. Geoderma 2010, 154, 203–210. [Google Scholar] [CrossRef]
- Jauhiainen, J.; Kerojoki, O.; Silvennoinen, H.; Limin, S.; Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—A passive ecosystem cooling experiment. Environ. Res. Lett. 2014, 9, 105013. [Google Scholar] [CrossRef]
- Hatala, J.A.; Detto, M.; Sonnentag, O.; Deverel, S.J.; Verfaille, J.; Baldocchi, D.D. Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agric. Ecosyst. Environ. 2012, 150, 1–18. [Google Scholar] [CrossRef]
- Chaddy, A.; Melling, L.; Ishikura, K.; Goh, K.J.; Toma, Y.; Hatano, R. Effects of long-term nitrogen fertilization and ground water level changes on soil CO2 fluxes from oil palm plantation on tropical peatland. Atmosphere 2021, 12, 1340. [Google Scholar] [CrossRef]
- Hoyos-Santillan, J.; Craignon, J.; Lomax, B.H.; Lopez, O.R.; Turner, B.L.; Sjögersten, S. Root oxygen loss from Raphia taedigera palms mediates greenhouse emissions in lowland neotropical peatlands. Plant Soil 2016, 404, 47–60. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem. 2006, 38, 425–448. [Google Scholar] [CrossRef]
- Rastogi, M.; Singh, S.; Pathak, H. Emission of carbon dioxide from soil. Curr. Sci. 2002, 82, 510–517. [Google Scholar]
- Zhang, H.-M.; Liang, Z.; Li, Y.; Chen, Z.-X.; Zhnag, J.-B.; Cai, Z.-C.; Elsgaard, L.; Cheng, Y.; van Groenigen, K.J.; Abalos, D. Liming modifies greenhouse gas fluxes from soils: A meta-analysis of biological drivers. Agric. Ecosyst. Environ. 2022, 340, 108182. [Google Scholar] [CrossRef]
- Aerts, R.; Toet, S. Nutritional controls on carbon dioxide and methane emission from carex-dominated peat soils. Soil Biol. Biochem. 1997, 29, 1683–1690. [Google Scholar] [CrossRef]
- DOA. Crop Statistics Booklet (Food Crop Sub-Sector); Department of Agriculture Malaysia: Putrajaya, Malaysia, 2021; p. 108.
- FAOSTAT. Pineapple World Production 2020, Crops and Livestock Products Statistics; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Available online: https://www.fao.org/faostat (accessed on 30 September 2021).
- Darnaudery, M.; Fournier, P.; Lechaudel, M. Low-input pineapple crops with high quality fruit: Promising impacts of locally integrated and organic fertilization compared to chemical fertilisers. Exp. Agric. 2018, 54, 286–302. [Google Scholar] [CrossRef]
- Choo, L.N.L.K.; Ahmed, O.H. Partitioning carbon dioxide emission and assessing dissolved organic carbon leaching of a drained peatland cultivated with pineapple at Saratok, Malaysia. Sci. World J. 2014, 2014, 906021. [Google Scholar] [CrossRef]
- Ramesh, K.; Reddy, D.D. Chapter 4—Zeolites and their potential uses in agriculture. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: San Diego, CA, USA, 2011; Volume 113, pp. 219–241. [Google Scholar]
- Jakkula, V.S.; Wani, S.P. Zeolites: Potential soil amendments for improving nutrient and water use efficiency and agriculture productivity. Sci. Rev. Chem. Commun. 2018, 8, 1–15. [Google Scholar]
- Sangeetha, C.; Baskar, P. Zeolites and its potential uses in agriculture: A critical review. Agric. Rev. 2016, 37, 101–108. [Google Scholar] [CrossRef]
- Zwingmann, N.; Mackinnon, I.D.R.; Gilkes, R.J. Use of zeolite synthesized from alkali treated kaolin as K fertilizer: Glasshouse experiments on leaching and uptake of K by wheat plants in sandy soil. Appl. Clay Sci. 2011, 53, 684–690. [Google Scholar] [CrossRef]
- Belviso, C. Zeolite for potential toxic metal uptake from contaminated soil: A brief review. Processes 2020, 8, 820. [Google Scholar] [CrossRef]
- Derbe, T.; Temesgen, S.; Bitew, M. A short review on synthesis, characterization, and applications of zeolites. Adv. Mater. Sci. Eng. 2021, 2021, 6637898. [Google Scholar] [CrossRef]
- Kurniawan, T.; Nuryoto, N.; Firdaus, M.A. Zeolite for agriculture intensification and catalyst in agroindustry. World Chem. Eng. 2019, 3, 14–23. [Google Scholar]
- Mansouri, N.; Rikhtegar, N.; Panahi, H.A.; Atabi, F.; Shahraki, B.K. Porosity, characterization and structural properties of natural zeolite—Clinoptilolite—As a sorbent. Environ. Prot. Eng. 2013, 39, 141–152. [Google Scholar] [CrossRef]
- Wahono, S.K.; Stalin, J.; Addai-Mensah, J.; Skinner, W.; Vinu, A.; Vasilev, K. Physico-chemical modification of natural modernite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity. Micropor. Mesopor. Mat. 2020, 294, 109871. [Google Scholar] [CrossRef]
- Bonenfant, D.; Kharoune, M.; Niquette, P.; Mimeault, M.; Hausler, R. Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 2008, 9, 013007. [Google Scholar] [CrossRef]
- Natpinit, P.; Chantrawongphaisal, B.; Anuwattana, R.; Ditkaew, T.; Kongsomboon, C.; Thapnui, P.; Hongcharoensri, P. Reduction of greenhouse emissions using zeolite 4A under different fertilizer usages in rice cultivation. Appl. Environ. Res. 2019, 4, 70–82. [Google Scholar] [CrossRef]
- Jumadi, O.; Pagoga, S.; Rachmawaty; Hala, Y.; Hiola, S.F.; Karim, H.; Kaseng, E.S.; Inubushi, K. Production of N2O, CO2 gases and microbe responses in the soil amended with urea granulated zeolite. J. Phys. Conf. Ser. 2019, 1313, 012095. [Google Scholar] [CrossRef]
- Zaman, M.; Nguyen, M.L. Effect of lime or zeolite on N2O and N2 emissions from a pastoral soil treated with urine or nitrate-N fertilizer under field conditions. Agric. Ecosyst. Environ. 2010, 136, 254–261. [Google Scholar] [CrossRef]
- Hernández-Espinosa, M.A.; Quiroz-Estrada, K.; Petranovskii, V.; Rojas, F.; Portillo, R.; Salgado, M.A.; Marcelo, M.; Efraín, R.; Felipe, C. Adsorption of N2, N2O and CO2 on epistilbite natural zeolite from Jalisco, Mexico after acid-treatment. Mineral 2018, 8, 196. [Google Scholar] [CrossRef]
- Ahmed, O.H.; Ahmad Husni, M.H.; Rahim, A.A.; Mohd Hanafi, M. Sustainable Production of Pineapples on Tropical Peat Soils; Universiti Putra Malaysia Press: Serdang, Malaysia, 2013; pp. 1–141. [Google Scholar]
- Ming, D.W.; Dixon, J.B. Clinoptilolite in South Texas soils. Soil Sci. Soc. Am. J. 1986, 50, 1618–1622. [Google Scholar] [CrossRef]
- Montalvo, S.; Guerrero, L.; Borja, R.; Sánchez, E.; Milán, Z.; Cortés, I.; de la la Rubia, M.A. Application of natural zeolites in anaerobic digestion process: A review. Appl. Clay Sci. 2012, 58, 125–133. [Google Scholar] [CrossRef]
- Wahono, S.K.; Prasetyo, D.J.; Jatmiko, T.H.; Suwanto, A.; Pratiwi, D.; Hernawan; Vasilev, K. Transformation of modernite-clinoptilolite natural zeolite at different calcination temperatures. IOP Conf. Ser. Earth Environ. Sci. 2019, 251, 012009. [Google Scholar] [CrossRef]
- Hernawan; Wahono, S.K.; Maryana, R.; Pratiwi, D. Modification of Gunungkidul natural zeolite as bioethanol dehydrating agents. Energy Procedia 2015, 65, 116–120. [Google Scholar] [CrossRef]
- Mohammed Selamat, M.; Abdul Rahman, H. Amalan kultur. In Penanaman Nanas—Nanas Makan Segar dan Nanas Kaleng; Mohammed Selamat, M., Ed.; MARDI: Serdang, Malaysia, 1996; pp. 22–34. [Google Scholar]
- Ismail, A.B.; Asing, J.; Zulkefli, M. Residual impact of various land clearing techniques on peat chemical characteristics. In A Case Study at MARDI Peat Research Station, Sessang, Sarawak, Malaysia; Ismail, A.B., Ong, H.K., Mohamad Hanif, M.J., Umi Kalsom, M.S., Eds.; MARDI: Serdang, Malaysia, 2007; pp. 33–61. [Google Scholar]
- IAEA. Methane and nitrous oxide flux measurements form soil and plant systems. In Manual on Measurement of Methane and Nitrous Oxide Emissions from Agriculture; IAEA-TECDOC-674; IAEA: Vienna, Austria, 1992; pp. 45–79. [Google Scholar]
- Widén, B.; Lindroth, A. A calibration system for soil carbon dioxide—Efflux measurement chambers. Soil Sci. Soc. Am. J. 2003, 67, 327–334. [Google Scholar] [CrossRef]
- Sim, A.K.F.; Ishak, C.F.; Hanif, A.H.M.; Melling, L. Effect of N fertilization on N2O emission from a tropical peat soil: A laboratory incubation study. In Proceedings of the 14th International Peat Congress: Peatlands in Balance, Stockholm, Sweden, 3–8 June 2012. [Google Scholar]
- Ferretti, G.; Keiblinger, K.M.; Zimmermann, M.; Giuseppe, D.D.; Faccini, B.; Colombani, N.; Mentler, A.; Zechmeister-Boltenstren, S.; Coltorti, M.; Mastrocicco, M. High resolution short-term investigation of soil CO2, N2O, NOx, and NH3 emissions after different chabazite zeolite amendments. Appl. Soil Ecol. 2017, 119, 138–144. [Google Scholar] [CrossRef]
- Xiong, Q.; Hu, J.; Wei, H.; Zhang, H.; Zhu, J. Relationship between plant roots, rhizosphere microorganisms, and nitrogen, and its special focus on rice. Agriculture 2021, 11, 234. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Meena, V.D. Rhizosphere effect on nutrient availability in soil and its uptake by plants: A review. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85, 1–12. [Google Scholar] [CrossRef]
- McNear, D.H., Jr. The rhizosphere—Roots, soil, and everything in between. Nat. Educ. Know. 2013, 4, 1. [Google Scholar]
- Oktarita, S.; Hergoualc’h, K.; Anwar, S.; Verchot, V. Substantial N2O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environ. Res. Lett. 2017, 12, 104007. [Google Scholar] [CrossRef]
- Hoojier, A.; Page, S.; Canadell, J.G.; Silvius, M.; Kwadijk, J.; Wösten, H.; Jauhiainen, J. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 2010, 7, 1505–1514. [Google Scholar] [CrossRef]
- Kløve, B.; Sveistrup, T.E.; Hauge, A. Leaching of nutrients and emission of greenhouse gases from peatland cultivation at Bodin, Northern Norway. Geoderma 2010, 154, 219–232. [Google Scholar] [CrossRef]
- Nur Aainaa, H.; Haruna Ahmed, O.; Ab Majid, N.M. Effects of clinoptilolite zeolite on phosphorus dynamics and yield of Zea Mays L. cultivated on an acid soil. PLoS ONE 2018, 13, e0204401. [Google Scholar] [CrossRef] [PubMed]
- Mohammed Selamat, M. Biologi tanaman dan keperluan persekitaran. In Penanaman Nanas—Nanas Makan Segar Dan Nanas Kaleng; Mohammed Selamat, M., Ed.; MARDI: Serdang, Malaysia, 1996; pp. 7–16. [Google Scholar]
- Malézieux, E.; Bartholomew, D.P. Plant nutrition. In The Pineapple: Botany, Production and Uses; Bartholomew, D.P., Paull, R.E., Rohrbach, K.G., Eds.; CABI Publishing: Wallingford, UK, 2003; pp. 143–165. [Google Scholar]
- Mumpton, F. La roca magica: Uses of natural zeolites in agriculture and industry. Proc. Natl. Acad. Sci. USA 1999, 96, 33463–33470. [Google Scholar] [CrossRef]
- Palanivell, P.; Ahmed, O.H.; Ab Majid, N.M. Minimizing ammonia volatilization from urea, improving lowland rice (cv. MR219) seed germination, plant growth variables, nutrient uptake, and nutrient recovery using clinoptilolite zeolite. Arch. Agron. Soil Sci. 2016, 62, 708–724. [Google Scholar] [CrossRef]
- Omar, L.; Ahmed, O.H.; Jalloh, M.B.; Muhamad, A.M.N. Soil nitrogen fractions, nitrogen use efficiency and yield of Zea mays L. grown on a tropical acid soil treated with composts and clinoptilolite zeolite. Appl. Sci. 2020, 10, 4139. [Google Scholar] [CrossRef]
- Murkani, M.; Nasrollahi, M.; Ravanbakhsh, M.; Bahrami, P.; Jaafarzadeh, N.; Fard, H. Evaluation of natural zeolite clinoptilolite efficiency for the removal of ammonium and nitrate from aquatic solutions. Environ. Health Eng. Manag. 2015, 2, 17–22. [Google Scholar]
Fertilizer Treatments | Administration Ratio |
---|---|
Z1 | 5 g ZeoC and 20 g compound fertilizer (NPK ratio—30:1:32) |
Z2 | 10 g ZeoC and 20 g compound fertilizer (NPK ratio—30:1:32) |
Z3 | 14 g ZeoC and 20 g compound fertilizer (NPK ratio—30:1:32) |
Z4 | 20 g ZeoC and 20 g compound fertilizer (NPK ratio—30:1:32) |
Z5 | Positive control: 20 g compound fertilizer (NPK ratio—30:1:32) |
Z6 | Negative control: non-fertilized peat soil |
Variable | Plant Growth Phases (Soil Temperature) | ||
---|---|---|---|
3 Months of Plant Growth | 6 Months of Plant Growth | 9 Months of Plant Growth | |
Soil CO2 flux | R = −0.10972 | R = −0.09812 | R = −0.03134 |
p = 0.0552 | p = 0.0778 | p = 0.3290 | |
Time | Mean Soil Temperature (°C) | ||
6.00 a.m. | 26.7 d | 27.3 b | 25.8 d |
12.00 p.m. | 28.9 b | 29.7 a | 29.7 a |
6.00 p.m. | 30.1 a | 30.3 a | 29.7 a |
12.00 a.m. | 27.8 c | 27.8 b | 27.3 b |
6 a.m. (ensuing morning) | 26.4 d | 26.9 b | 26.4 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choo, L.N.L.K.; Ahmed, O.H.; Sekot, S.; Shahlehi, S. Minimizing Carbon Dioxide Emissions with Clinoptilolite Zeolite in Moris Pineapple Cultivation on Drained Sapric Soils. Sustainability 2023, 15, 15725. https://doi.org/10.3390/su152215725
Choo LNLK, Ahmed OH, Sekot S, Shahlehi S. Minimizing Carbon Dioxide Emissions with Clinoptilolite Zeolite in Moris Pineapple Cultivation on Drained Sapric Soils. Sustainability. 2023; 15(22):15725. https://doi.org/10.3390/su152215725
Chicago/Turabian StyleChoo, Liza Nuriati Lim Kim, Osumanu Haruna Ahmed, Shamsiah Sekot, and Syahirah Shahlehi. 2023. "Minimizing Carbon Dioxide Emissions with Clinoptilolite Zeolite in Moris Pineapple Cultivation on Drained Sapric Soils" Sustainability 15, no. 22: 15725. https://doi.org/10.3390/su152215725
APA StyleChoo, L. N. L. K., Ahmed, O. H., Sekot, S., & Shahlehi, S. (2023). Minimizing Carbon Dioxide Emissions with Clinoptilolite Zeolite in Moris Pineapple Cultivation on Drained Sapric Soils. Sustainability, 15(22), 15725. https://doi.org/10.3390/su152215725